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Hydrodynamic equations for the drift-wave instability contaihiqg
the E x B convective nonlinearity are used to show that the three wave
interactions lead to temporal chaos with brbad-baﬁd'frequehcy.spectra

in the saturated state.

In this Letter we investigate the dynamics of three interacting
~drift waves, one of which is linearly unstable, showing that the
satﬁratéd state can be chaotic with a broad bandlﬁrequgncy spectrum.
The stochastizatién of the plasma oscillations described here is
proposed as a possible explanation for the broéd band freqﬁency
spectrﬁm measured! by scattering microwaves from the electron deﬁsity

fluctuations with a well-defined k vector and space volume.
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For low pressure plasmas with T, > Ty, as in ohmic tokamak
discharges, the drift-wave instability may be described as
quasineutral, electrostatic oscillations with cold hydfodynamic ions.
The ion dehsity evolves by convection yp = (cT YeB)h XUV¢ and the
compressible polarization drift v_ =v gy oo —pz(at + v VIV 6,

pip T Rp

according to

an
— » . + . . = R
T + Yp Vo v (nlgp) 0 (1)

The electron behavior is dissipative and approximately linear with

the density fluctuation given by

én, (x,t)
_r:‘?__}“i__ = ¢(x,t) +L%(x,t) : (2)
e

where £2 1is the anti—Hermitian operator giving the electron-wave
dissipation. The density fluctuations are eliminated through
quasi-neutrality to give the nonlinear equation for the electrostatic
potential. The potential equation is made dimensionless with unit
strength for the nonlinearity by measurlng space in units of

p = c(m ) /eB time in units of r /c where r, -1

=340 n (r), cg=
(T /m )1/2 and the potentlal in units of (p/r )(T /e) In this work we
consider the colllslonless or plateau electron regime where £a(§) =
~iéoky(k% - %-ne) With 8o = (n/2)1/2(me/mi)1/2(Lc/rn) a constant of
order unity. Other models for the linear electron dissipation yield

similar conclusions.
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In the Fourier representation ¢(xt). = Z¢k(t)exp(ig * x) the

nonlinearity is given by the sum over interactions of modes El and Ezv
such that El + 52 = —33. The lowest order set of self-consistent
nonlinear interactions from mode coupling occurs for three modes ¢i(t)

=.¢ki(t) with 1 = 1,2,3. Introducing the amplitude aj(t) and phase

T , 5 1/2 o o o .
aj(t) according to (1 + k%) ¢j(t) = aj(t)exp[iaj(t)], the three

complex equations for ¢j(t) reduce to four real equations for the

amplitudes and the total phase a = o) +a; +oag:

da

e Aakaz(FJcosa + GJsina) . | (3)
' , a,a ' .
do | pw + A ) k74 (F:sino - G.cosa) (4)
dt . a. J J:
jk,2 73

where j,k,% are cyclic permutations of 1,2,3. 1In Egs. (3) and (4) we

“have Aw = wy + wy + wg and Y is the linear growth of the Ej mode. The

linear frequency and growth rate are given by w; +

J

fn 2 a : s , =
iyy = kyj/[1+kJ + £ (Ej)]. For §3 < 1 the linear frequency is wy

: 2
: 2 . : . - 2 2 _ 2
kyj/(1+kj) and the llnegr growth rate is Yj o SOkyj(kj ne/2)/(1+kJ) .
" The coupling strength A is proportional to the area of the triangle

’>formed by the k vectors of the interacting modes A = 1/2(151 x

- ; . 1/2
ko z)/[(l+k%)(l+k%)(1+k%)] . The coupling factors Fj and Gj are

the real and imaginary parts of the symmetrized complex susceptibility
arising from the E x B convection, Fj - iGj = x (k) - x(kg) where

X(E) = Ez - £a(§) = Ef - iSOky (kil- ne/Z). This complex

2

susceptibility combines the coupling models given earlier by Horton

with the nonlinear convection of density and dissipative electrons with
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that of Hasegawa3

with the nonlinear polarization drift and adiabatic
electrons. The complex susceptibilities in the three mode equationé is
generic to the drift wave problem and is an important generalization of

earlier work[*_.7 for the decay of a wave into its own subharmonic in

which the three wave coupling coefficients are real.

‘The three amplitudes and phases evolve in a four-dimensional phase
space defined by generalized polar coordinates with radii aj and the
angle a. The rate of change of a volume V element in this_system is
dv/dt = 2y, where Y, = Y5 + Yo + Y3. A necessary condition for

bounded, stable, asymptotic behavior is that Ye < 0, giving a volume

contracting flow in the phase space.

In the limit of no dissipation (£® » 0) the vectors y and G vanish
simultaneously and the system (3) and (4) is integrable. To show
integrability we give the action-angle variables Jj = a%/Fj and &5 and

the Hamiltonian

H(T,0) = - ) wgdy + AR FF9) Y/ 2(3,3,0)  %sin (a) +ay +ag)  (5)
i=1,2,3
as the generator of the equations of motion &j = BH/BJj and jj =

—aH/Baj, The three constants of the motion are J; = Jy = myo, Jl_' J3

= myg and H(J,a). .From a physical point of view, the integrals may be

expressed in terms of the wave energy W = l/22(1+kf)l¢klz_= %-Zag =

=1/2F5(J3;=J9) - 1/2F43(J;-J3) and the potentia11enstrophy U =
l/2£k2(1+ki)l¢kl2 = 1/2F2k%(J1—J2 ) - 1/2F3k%(J1~J3). The plasma wave

energy density W is the electron electrostatic energy density W, =



=5
1/2é6né¢ in fhe electron distribution and the ion.kine;ic energy Wy =
1/2nimiV%. The enstrophy_U is related to the plasma wave-momentum
density'Py = Z(ky/wk)w(E)j= 1/22(1+kf)2|¢glz~= W+U. From tﬁe integrals

W, U, H the notion is one-~dimensional,

When ‘dissipation is retained in the system Y,F,G # 0, the
existence of a quadrature is unknown. For G # O the enstrophy U is not
conserved by the nonlinear cogpling. We have performed many numerical
integrations of the dissipative equations from which we conclude that
there are perhaps isolating inteérals for special values of y, F, G but
" that generally the system is nonintegrable and chaotic. ' As has been

4_7, the behavior of this system

done for simpler systems of equations
is énalyzed in terms of the stability of the fixed points and limit

. cycles. This staBility analysis delinéates regioqs of constanté
A‘periodic, aperiodic. and stochastic behaviorf The fixed points of the
system are the roots of éj = a = 0 obtained from Egs. (5),(6).

The étability exp(At) of the fixed point is determined by the.
eigenvalues Ecn)\t1 = 0 of the 4 x 4 matrix of the linearized equations
of motion. Four necessary and sufficient conditions for stability are
gi&en_by cg > 0, cg > 0, cocy > c% and cl(c2c3 - c%) > coc% , where
cg = —2Yt, ¢y = Y% - Amz i '

J
4Y1Y2Y3 + 4Y1Y2Y3Z(FkSiHa - chosa) (Fzsina.— G£COsa)/[(Fkgosa +

°1
Gysina) (Fycosa + Gysina)] and co = &YYoy -

-sina)z.

J

4Y1Y2Y32Yj(FjSina - GjCOSa)Z/(chosa + G

+ Zz[yg(Fjsina - G-cosq)z/(chosa + G.sina)z},
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There are numerous ways in which the parameters may be varied to
make the system pass successively from the region of a stable fixed
point to a region of chaotic behavior. We describe two methods and
comment on their relevance to drift waves. In one, this succession is
obtained by taking |F| << |G| and increasing the magnitude of the
damping of the stable modes relative to the growth rate of the unstable
mode. In the-other method, this succession occurs when the values of
fhe érowth and damping rates remain comparable in magnitude, but |F| is
increased relative to |G|. In this case stochastic behavior occurs for
IEl 2 %—IEI- The first process is essentially the‘method applied in
the studies of Refs. 4 through 7. The critical ratio I', of the
-damping—-to—-growth for the onset of chaotic behavior is rather large
(Pc ~ 20) and is atypical for drift waves due to the wavenumber
constraint Ik; = 0 and the functional form of y(&j). These constraints
make growth rates with comparable amplitudes typical while the
functioﬁal form of F and G make |F} ™ |G|. It is thus the complex
susceptibilities which are instrumental in making the three drift wave

interaction chaotic in contrast to the large T in earlier models.

-The time evolution of the amplitudes and phase in the stochastic
regime is depicted in Fig. 1 where the amplitudes and cosine of the
phase are given for a typical drift wave simulation. The amplitude and
the phase appear random with the phase covering the entire range (0,2m)
rather uniformly. After an initial transient there is saturation of
the amplitudes and the total wave energy is constant in a time-average
sense. The assertion that the motion is stochastic is supported by

numerical evaluation of the maximal Lyapunov characteristic exponent
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and the autocorrelation of ¢j(t) = a4C0s0 4. The Lyapunov exponentlis

positive and the autocorrelation function decays rapidly confifming two

important aspects of stochastic signals.

In light of thelstochasticity in the three wave ‘interactions, we
--conslder- two important—as?ects of drift wave turbulence theofy: the -
appiicability of the random pﬁase approximation and the frequency
spectrum for fixed wavenumber k. Because of the random nature pf the
‘phase evolution in the three wave interactions, a random phase |
apﬁéﬁximatién seéms.plausible. We construcf a sef of redﬁced eqﬁétions
of,motionvbased on the random values of a(t) and compare their sblution
with the exact amplitudes. 'Assuméd in this procedure is the separation

of time scales of the random fluctuations on the time scale Te from the

long time scale for the evolution of the average amplitudes Ij = <a%> =
(1+k§)<l¢j|2>‘ The random phase equations are
e A2 (7% + 621, I,+ (f P+ GiG )T, Iy
i - 2"T123 3T G5 IeIpt (FyFy + G601 14
(6)

+ (F5Fy + G56p LI} + 2y 415

where Tj9g = v/(sz + vz) is the maximum interaction time. The
undriven equilibrium of Eq{ (6) is Ij = Iy for G % Oand Ij = IO/(l+ﬁk§)

for G = 0, where I; and B are constants.

© Ve have compared the numerical solutions of the exact Egqs. (3) and
(4) for typical drift wave parameters with numerical solution of the

random phase Eq. (6). In these comparisons the random phase equations
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are observed to faithfully reproduce the average behavior of the exact
equations. This includes correctly giving the relative values of the
mean amplitudes at saturation and the absolute values of these
amplitudes when T1p3 is correctly chosen. We conclude that the
intrinsic stochasticity present in the interaction of the drift waves
is a sufficient condition to justify the use of the random phase

approximation for three wave interactions.

The frequency spectrum for the largest amplitude component ¢1(t)
of the electric potential is shown in Fig. (2). The peak frequency is
well above the maximum linear frequency lw(E)l, and the width of the

frequency spectrum v(k) is of the same order as the peak frequency.

In conclusion, we show that a broad band stochastic process occurs
from the interaction of three electron drift waves for representative
. values of the system parameters. In the stochastic regime the random
phase approximation is found to predict the average behavior of the
wave amplitudes. Finally, the process given he;e appears to be é
candiaate for explaining thé broad frequency spectra observed in the

electromagnetic scattering experiments.
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FIGURE CAPTIONS

Time history of (a) W, U (b) a;, ay, ag and (c) cosa for three
drift waves with k; = (.296,-.716), ky = (.210,.506), kg =
(=.506,.210) and (wy,v,) = (=.447,.160), (wy,vy) = (.389,-.197)
and (w3,y3) = (.161,-.0338).

Frequency spectrum of the electrostatic potential

a;(t)cosa (t)for the time signals shown in'Fig. 1.
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