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ABSTRACT

A procedure is given for eliminating resonances and
stochasticity in nonaxisymmetric vacuum toroidal magnetic
field. The results of this procedure are tested by the
surface of section method. It is found that one can obtain
magnetic fields with increased rotational transform and

decreased island structure while retaining basically the same
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The flow of magnetic field lines through

1 with the

three~dimensional space has an exact analogy
evolution of trajectories in a Hamiltonian system of one and
a half degrees of freedom. Field lines may be closed, they

may ergodically cover a two—dimensional flux surface (which

must be topologically equivalent to a torusz), or they may
wander ergodically throughout a volume. It is of practical
and intrinsic interest to know the conditions for a magnetic
field to have a dense set of flux furfaces. In analogy with
Hamiltonian systems, such fields are termed integrable.
Without any restrictions other than VeB = 0, it is easy to
construct such magnetic fields. However, if the vacuum
condition, VxB = 0, or the magnetohydrodynamic equilibrium
condition?‘"4 (VxB) x B = VP is imposed, then magnetic fields
with a dense set of periodic, ergodically covered flux
surfaces: are known only for the special cases of

translational, rotational, or helical symmetry.

Whether there exist such magnetic fields in the absence
of those special symmetries has been an open question. The
purpose of this Letter is to address awpart“ofuthis”qugstion:
Do there eiiét vacuum magnetic fields with a dense set of
bounded flux surfaces, rotational transform, no magnetic
islands, and no currents inside the flux surfaces? The
requirement of bounded flux surfaces eliminates fields with
- helical or translational symmetry; and the requirement of no
internal currents eliminates the azimuthally symmetric
systems such as the Levitron.5 Thus, the state of the art is
that such systems are not known. Here it will be shown that
such systems can be found. A perturbation procedure is
developed to find the magnetic field, and the final
approximate result 1is checked numerically by a surface of

section analysis and found to have significantly reduced

island structure and stochasticity.

4 —— e e Amn ey



-3

The ability to obtain a magnetic field with these
properties is important to the present effort to magnetically
confine plasma for the purpose of creating controlled fusion
power. Having a dense set of bounded flux surfaces ensures
particle confinement to lowest order in the ratio of Larmor
radius to scale length. Rotational transform reduces or
eliminates the first order drift of particles away from a
flux surface. ZLack of an internal conductor eliminates the
problems associated with the interaction of the plasma with
the conductor support. Absence of magnetic islands reduces

the collisional transport of low—-energy particles.

From the known examples of systems with good surfaces it
is obvious that symmetry plays an important roles To
determine the specific symmetry needed, it is useful to
consider a variational description of field line flow,

§ J A(r)e(dr/dx)dx = 0, in which the path is varied with
certain endpoint restrictions. The Euler-Lagrange equations
yield B x dg/dk = 0. The parameter A is arbitrary. It may,
for example, be chosen to be one of the coordinates. This
variational principle can be transformed to any coordinates.
In altefnéte coordinates, 21 i=1,2,3, thé Lagrangian is
given by L = A « (3r/3z1) dzl/dA = A;(2) dzl/an , in which A,
is the covariant representation of the vector potential, and
summation over repeated indices is assumed. Application of
Noether’s theorem to this Lagrangian implies that Al(z) is a
flow dinvariant, if each component Ai of the vector potential
is independent of zl. Thus, the symmetry needed to prove the
existance of flux~surfaces is a symmetry of the covariant
representation of the vector potential. This is illustrated
by the straight stellarator6, for which the covariant
components of the vector potential depend only on the radius

and the helical angle.
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To discuss the toroidal case it is convenient to
introduce the toroidal coordinates £ , n, ¢, in terms of
which the cartesian coordinates are z = & sin n/(1-E cosn)é
x = (1-¢ 2]1 2 cos ¢/(l-& cos n), and y = (1—62]
sin ¢/(l-Ecosn). In these coordinates, Laplace’s equation
separates (Ref. 7, p.1301), The vacuum magnetic field is

found in terms of the scalar magnetic
potential B = V@(V2®=O). The result is’

® = BOW‘+(1—Ecosn)1/2 zz bzmsz(E)cos(2n+m¢4¢gm): (1

s

in which Bj, by and ¢y, are constants. The functions

Tgm(i) are related to the modified Legendre functions of

half-interger order according to sz(x) = (—l)m(Z/w)l/z(Zﬁ)!{
-1/2 Am -1 ‘

X Q x *)/ T{%m+ 1/2).

o 12 (X /T )

To 1look for symmetries, we must calculate the covariant

components of the vector potential. In the gauge where A =

0, which can be chosen for the m # 0 terms, the remaining

- components of the vector potential are given by.

. Ton(&)
Am RE(1-E cosn)

and

é%—[(l-& cosr’l)l/2 sin[2n+mﬁp+ ¢2m)],(23)

-F,cosn 1-Ecosn l

1 <£n ] | in l THE ) g

An - E-BO 1 - cos n 1 + cos n }
(2T 3 1/2 .

m#0
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As one can see, any single solution depends on all three
variables independently because of coupling terms like

€ cos n. In fact, one can show that no choice of the bzm's
will make the components Ai a function of only one helical
combination of n and ¢. This does not mean that no systems
with invariant surfaces exist, since there may be other
coordinates or another gauge in which the symmetry would be

apparent.

The sutrface of section technique can be used to analyze
these systems lacking apparent symmetry. In this technique
on numerically integrates the field line equations, dn/dp =
B"/BY and di/dy = Bg/Bw, and plots the intersections of the
field line with the ¥ =0 plane. If the points 1lie on a
curve, the field 1lines lie on a surface. Fig. 1l is a
surface of section for the vacuum field of Eq. (1)
corresponding to a single toroidal harmonic function: B0=l,
b3’7=4, bz,m=0 for (L,m) # (3,7), and ¢£,m=0 for all (L,m).
The field 1line generally lie on surfaces out to some final

surface. The outermost confined line was determined to an

accuracy. of 10','4 of the minor radius. This line was found to.

have a rotational transform of .8232.

This surface of section shows the loss df the outer flux
surfaces by stochastic effects. In an integrable system,
such as the straight stellarator, the outermost confined line
would be on the separatrix. The x-point of the separatrix is
fixed in helical angle, 24An + mAY = 0. This implies that, the
rotational transform of the last field lie of an integrable
(4=3, m=7) system would be ltgl = [An/Ap| = 2 %u Yet din
Fig. 1 the observed f£final rotational transform is tg =
.8232. This indicates that all surfaces with rotational

transform between .8232 and 2.333 have been destroyed by

toroidal effects.
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To analyze this surface destruction we introduce an
averaging method analogous to that of Hamiltonian mechanics.
. We define the helical angle, h = Lontmgy , and then we divide

the covariant components of the vector potential into two
-

pieces, A;(£,n,h) = A;(E,h) +§Ki(g,n,h),, one of which is the

average over the poloidal angle at constant helical angle of

the vector potential components:

- 2
A;(E,h) = — [T an ay(Enm.

The averaged piece Ki has good surfaces because it is
independent of n, while Zi is a perturbation. Both fields
are toroidal, but only their sum yields a curl free magnetic

field.

The effect of the perturbation A is to destroy the exact
surfaces of the averaged vector potential A. The cause of
the surface destruction is the formation of resonances

(magnetic islands). The calculation of these resonances

proceeds by writing the perturbation field in terms of the

flux variables of the averaged field Z; and then finding the
fourier amplitudes in the angle variables of the magnetic
field normal to the unperturbed flux surfaces. The resonance
amplitude, the fourier amplitude evaluated at the resonant
layer, determines the disland width. Finally, the island

81:0

widths are wused in the Chirikov overlap criterion
estimate the surface destruction. The details of this

calculation are presented in Ref, 1.

This indicates that one could reduce the stochasticiy by

selecting the perturbation to make the resonance amplitudes

Fani-sh- Fhi:g-—i:s—acconpli-shed—by—adding-addi-tional—vacuum

fields to obtain a total field,
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A=A+ A+ Z by A
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£ ,m*
(%,m)% (2 g,mp) ’

The condition of vanishing resonance amplitude results in a
set of equations for the amplitudes me and the phases bgm of
the additional fields. These equations are easily solved,
since they are linear in the parameters by ncosg and
meSin¢2m' In principle omne could eliminate all of the
first-order resonances by this method; there is one-to—one
correspondence between the additional fields and the
resonance amplitudes. At this point there would remain
smaller, higher—order resonances which could be eliminated by

higher~order theory.

This method was applied to the system of Fig. 1. It was
decided to add in additional vacuum fields with (&,m) =
(4,7),(5,7)yeeey, (10,7). This allows the elimination of the
primary resonances at rotational transform values of 7/10,
7/9, 7/8, «u.., 7/4, i.e. all of the primary resonances in
the stochastic region. Table I shows the actual amplitudes.
As one can see, the amplitudes decrease rapidly with

increasing 2.

Figure 2 shows the last magnetic field 1line for this
particular vacuum  toroidal magnetic field. The final
rotational transform dis found to be 1.205, which is
significantly greater than the original .8232, Thus, a
partial restoration of surfaces has been effected. This is
also seen in that the final surface of the improved case is
significantly more pointed , and, hence, much closer to a

separatrix.

One might expect the volume contained by the last good

A

surfaece—to—be-gigni-ficantly—inecreased—by—this—method= A
comparison of Figs. 1 and 2 shows that this is not the case.
The reason is that the rate of change of rotational transform

with respect to volume is very large near the separatrix.



this does not mean that small-aspect-ratio stellarator fields
with good surfaces cannot be found. To find such fields one
simply begins with an unimproved field of smaller aspect
ratio, which can be obtained by decreasing the helical

amplitude bzo,mo.

The main tangible result of this work is a method for
finding nonaxisymmetric  vacuum magnetic fields with
significantly increased rotational transform and decreased
area of stochasticity and resonances. The problem of
calculating the actual coils remains. This calculation 1is
doable in principle by superimposing coils of various
helicities. However, the determination of practical (e.g.
modularg) coil configurations is a nontrivial problem. The
results of Table I are encouraging in this respect. The

rapid decrease of the harmonic amplitude with poloidal mode

number & indicates that the distortions of present coil

designs will not be too rich in harmonic structure.

In addition, this work strongly indicates that there do

exist nonaxisymmetric vacuum .magnetic fields with a dense set.

of ergodically covered magnetic surfaces. No proof has been
given, but since first—order theory significantly reduces the
stochasticity, it is reasonable to  believe that
infinite—-order theory  would produce a completely

nonstochastic system.

The author would like to acknowledge useful discussions
with Robert Littlejohn, Dan Barnes, and Jim Hammer. This
work was suported by the U.S.. Department of Energy under
Contract #DE-FGO5-80ET-53088. o
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Fig. 1

Fig. 2
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Figure Captions

Surface of section for an £=3, m=7 stellarator. This
corresponds to the vacuum solution of Eq. (1) for the choice
By =1, b3,7 = 4, Voom = 0 for (£,m) # (3,7), and ¢2,m = 0
for all (L,m).

Surface of section for an improved &=3, m=7 stellarator.

Vacuum field amplitudes are given in Table I.

Table Caption

Table I Vacuum field amplitudes for the  improved £=3,m=7

stellarator of Fig. 2.
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