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Abstract

We investigate a new mechanism, the two-energy-stream cyclotron instability, for
fast ions (e.g., fusion products) to drive electrostatic waves and to slow down. The
instability comes from a relativistic effect, which dominates conventional phase over-
taking as-the axial phase velocity exceeds the speed of light. Both a single particle
model and a dispersion relation are developed in order to illuminate the physics insights
and scaling laws. We present numerical results and discuss nonlinear processes. The

mechanism is essential for the dynamics of the fast ions in both D-D and D-T devices.

PACS numbers: 52.35.Qz, 52.35.Fp, 52.60.+h, 52.55.Pi



Isotropic fast ions produced by thermonuclear fusion reaction are much more energetic
than the background plasma. The total energy of the fast ions is required to be, at least,
on the same order as the total plasma’s energy for ignition [1, 2]. Thus, the dynamics of
the fast ions and the instabilities driven by the fast ions can be critically important for the
performance of fusion devices. In this letter, we study for the first time a new mechanism
for the slowing down of the fast ions and show that this induces instabilities. This can not
be put into the known collective wave/particle interaction: Landau type or beam (in real
space) type [3]-[6]. The mechanism arises from the relativistic mass variation of the fast
ions immersed in a magnetized plasma: namely, a two-energy-stream cyclotron instability.
The background plasma plays a crucial role on the instability. A single particle model is
developed to acquire more novel physics insights. We give a dispersion relation derived
from kinetic theory to illuminate the scaling laws and properties of the instability. We also
present numerical results (both D-D and D-T cases) from the dispersion relation and discuss
nonlinear processes for estimating the saturation level of a single wave. The D-T case has a
characteristic difference with the D-D case.

In the single particle model, we consider an ion gyrating along a uniform external mag-
netic field B,Z. The ion motion is v = v (Zcos¢ — ysin¢g) + v,Z and =z = psin ¢ + z,,
where v(vy,v.) is the ion (azimuthal, axial) velocity, p(¢) is the ion gyroradius (gyrophase),
and z, is the ion guiding center position. Then, there is an electrostatic wave E = (E,Z +
E.Z) cos(wt — kyz — k,z) and E, = E;(k./k;), where E is the electric field of the wave, w-is
the wave frequency, and k, and k, are the components of the wave number. The wave/ion
interaction can be described by (d/dt)ym;c* = ¢(v - E), dP,/dt = ¢E,, d¢/dt = w, = Q./7,
and dz/dt = v,, where 7 is the ion Lorentz factor, m; is the ion rest mass, c is the speed of
light, ¢ is the ion charge, P, is the ion axial momentum, and w, = Q./v with Q, = ¢B,/m;c

the nonrelativistic ion cyclotron frequency.



Only inertial phase bunching [4] and resonant interaction are of concern. Substituting

the ion motion into the governing equations, we obtain
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for the n-th harmonic interaction, where ¢ = wt — k,z — n¢ — kyz,, p = vy /w,, and J, is
the Bessel function of the first kind of order n.

The above equations give a resonance condition §, = w — wp ~ 0, where wp = k,v, +
nf)./v is the Doppler-shifted ion frequency, and 6, is the frequency mismatch. The interac-

tion is characterized by the time dependence of wp:

d qE: Jn 2 2 ' 2
WD = po [kzc (nwe + k,v,) ] cos Y

where the second term in the square bracket (~ w?) is considered due to the effect of the
relativistic ion mass variation. The relativistic effect dominates as w/k, > ¢, which is
independent of the ion energy. The relativistic effect has to be included in the calculation
of the wave/ion interaction even for v ~ 1. This is true at both linear and nonlinear stages.
There are no net energy and momentum changes to first order for uniformly distributed ions.

By employing iaerturbation theory with small E, assumption, we calculate to second
order and then average over a uniform phase (i.e., kzz,, k.2,, or ng,) to obtain the rate of

net ion energy change
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where [sin §,t/62 — t cos 6,t/6,) =~ 6,t%/3 for §,t < 1. Here, we see the same factor for the

competition between the relativistic mass variation and the conventional phase overtaking.

Asw/k, > c, the relativistic effect dominates and the instability condition is w > k,v,+Q./%,



which is in contrast to that when conventional phase overtaking dominates (e.g., inverse
Landau damping).

We will study the collective ion behavior self-consistently. For a uniform plasma and
k:c? > wz, the dispersion relation for an electrostatic wave near harmonic cyclotron fre-

quency can be derived from the relativistic Vlasov and Poisson equations by kinetic theory

[5, 7] and is given by
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where w, = 4mNg¢?/m is the nonrelativistic plasma frequency, N is the ion (i) or electron
(e) density, pr. v. represents the Cauchy principal value of the integral, and the residues are
contributed by the poles along the Landau contour [ex (3f,/0p)s=0]. Equation (2) shows the
same factor for the competition. For an electron beam, the dispersion relation recovers an
earlier result [5] for electrostatic cyclotron instabilities. As k; = 0 and p = 0, we recover the
two-stream instabilities for a beam-plasma system in which Langmuir waves are excited. As
k, = 0 for the case of fast ions with v = constant and a background plasma (Maxwellian and
with 4 ~ 1), we obtain the dispersion relation for the new mechanism (a two-energy-stream
cyclotron instability in energy space) in which ion Bernstein waves are excited:
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where the subscrlpts e,s, and f are for the electrons, slow ions, and fast ions, respectively;

kT is the slow ion temperature; I, is the modified Bessel function of the first kind; <J,f f> =

fQWpLdplfdpzfoJ,ff(kxpf) = 1 [y sin 0d6’J,ff(kmpfo sin §), where ps, = p,/miQes = vo/wes



" for an isotropic distribution f, = §(p — p,)/47p?, and <J,ff> = J,ff(kxpf) for f, = 6(pL —
Po1)8(pz—Poz)/27poy (e.g., neutral beam injection). The residues have been neglected since
the fast ions have v; ~ constant and since the limit Ny/N, < 1 is of interest here. Also,
keps ~ O(1) and kgp, < 1.

For one fast ion species with a harmonic ny in resonance, the dispersion relation becomes

W+A W w2 7’

A+

where W = w?/(nwl) — 1 with A = 1 — v}, A ~ 14 (0}, /wl)— T wi, 81/ (n3Q2 [/} -
QZ;) |nc,¢nf0cp D = —%,wp, Sn,/njwls fn,nc,=n,nc,’ B=-Y;wyny <J3,-1 - J3,+1>]/n§wff,
C =T 4wl <J,ff> Jk2c?, and Sy, = 2n? (wim,/&T1 kL) I,, exp(—k2p?).

In the case of |D| < |B + AA|, the instability is quadratic. There are two conditions for
instability. The condition nfw?; > w?,81/(1+w?, /w?,)+w?, shows that there is a ns threshold.
The condition (16n3w?;/k2c?)A <J§I> / <J,2Lf_1 - J,ff+1>2 > w2, /w?; indicates that the waves
at certain wavelengths become stable as the fast ion density goes higher. The peak growth
rate, for B? < 4AC, is wimax/Wes ~ (Wps/wps)(vo/C)(ns <J,2Lf>/kzpfo)(¢4wff/wgs ~1/2 and
the real part of the wave frequency is w,/w,s ~ ny+ ng(—B/2A4). We note that w;max x

When |D| =~ |B + AA|, the instability is cubic, with w;max/wes ~ 342 /243 (wyz [wps)?/® -
(vo/€)*% nY/® (—Aw?, Jw2) 3 (npy [(J2,) [ kap o)/ and w, fwes ~ ng + (2/V/3) (@i max/wey).
The peak growth rate is scaled as (N;/N,)? and (v,/c)*3. Also we find 6, < Wimax. -

If |D] > |B + AA|, which may be true when 1 = n, ~ n.s/w., we have a coupled
quadratic instability. For 4DCA > (C 4+ BA)?, we find wimax/wer ~ np(wps/wps)(vo/c)?
(i /T2, )/ kapso) S7M? and wrfwer ~ ny + 2np(whp/wh) (va/e)? (n}(J2,) [K26%) 871
The peak growth rate is w; max \/va_/Tv: and (v,/c)?, which is small because v,/c < 1.
~ Also we find 6, o Ny /N;. )

The efficiency 7 is defined as the fraction of the fast ion energy transferred to a single
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wave: that is, 7 = (o — (v7),)/ (7o — 1), where (vy), is 75 averaged at the saturation. If the
time of the interaction obeys ¢t < 7/(n;6,), the saturation may be caused by the change of
the fast ion cyclotron frequencies during their slowing down. From the dispersion relation
we know the initial frequency mismatch is 6, >~ w, —n.;/7, > 0, where 7, is the initial ;.
The interaction stops when the frequency mismatch becomes 6, = w, — nQc¢/ (v5), ~ 0.
Thus, we find 7 =~ &,/njwes(vo — 1).

Two cases are numerically investigated: (1) D+D— p(3.02MeV)+T(1.01 MeV) in
which the fast ion (proton) has v; ~ 1.00322; and (2) D+T— «(3.5MeV) +n(14.1 MeV) in
which the o particle has 75 ~ 1.00093. In both cases, we use B, = 5T, N, =1 x 10%3cm™3,
kT, = 5keV, and N;/N, = 0.001, and the fast jon distribution is taken to be isotropic. For
the D-D case, the maximum gyroradius of the protons is pg, ~ 5cm and ()¢, = 28.p. Figure
1 shows the growth rates and the quantity 6;/wcs of the cubic instability. The higher the
value of ny, the shorter t‘ihe wavelength, A, of the unstable modes. For ny = 1, the instabil-
ity peaks at A ~ 14 cm and n ~ 20%; that is, the wave can significantly gain energy from
the protons. At higher harmonics, the instability becomes quadratic. The growth rates are
shown on Fig. 2. The spectrum slowly moves to shorter wavelength and smaller growth rate
as ny increases. The maximum growth rate w;max is larger than that of the cubic instability.
However, its efficiency is smaller (e.g., 7 ~ 10% for n; = 7). We check the dependence of w;
upon Ny /N, for ny = 1 (not shown), which verifies the cubic scaling law (i.e., Wi max N}/S).
Figure 3 verifies the quadratic dependence of w; max on Ny for ny = 7. We also observe that
the wave is stable in the wavelength interval 4cm < A < 5cm as the fast ion"density in-
creases (i.e., Ny/N, = 0.005). The growth rate of the cubic instability depends on the slow
ion temperature; in contrast, the quadratic instability is insensitive to kT, (not shown). As
the temperature is increased, the spectrum becomes broader, the wavelength at the peak
growth rate is longer, and the growth rate is higher. When we decrease the magnetic field

or increase the slow ion density (at N;/N, = constant), the n; threshold for the quadratic



ins‘ta,bility becomés higher; however, the g-ubic instability is insensitive to these parameters
(not shown). The growth rates become higher, while the width of the spectrum is deter-
mined by n; (e.g., the spectrum of n;y = 10 for B, = 3T has the same A/ps, width as the
one on Fig. 2., B, = 5T.) and part of it may become stable due to being unable to satisfy
the instability condition.

For the D-T case, the « particlg has parameters ps, = 5.4cm, Np = 9Ny, and N, =
Np + Np. We note that Q.o = Q.p, and hence the first harmonic interaction may become
the coupled quadratic instability, which is much weaker. The results are shown in Fig. 4.
The growth rate is proportional to \/m whereas the real part has a linear dependence.
Other harmonics behave similar to the D-D case.

The instability analysis here is for a uniform plasma and electrostatic waves. The con-
tribution from the electromagnetic component remains to be explored. The mechanism may
be modified by including the effects of a nonuniform magnetic field such as adding residues
or Dopple-shift effects. The slow ions can gain energy from this process as indicated by the
single particle model. A sheared magnetic field can introduce a finite k, to the waves as they
propagate. This gives plasma electrons an opportunity to gain energy by Landau damping.
The electric field associated with the ion Bernstein waves is perpendicular to the external
magnetic field. It may become a sheared radial electric field in a realistic geometry such as
torus. The beating of the waves can generate low frequencies. Also, a ponderomotive force
can be produced in a nonuniform plasma. These and other collective effects (e.g., turbu-
lence and anomalous transport) affected may be important for plasma confinement [2, 8, 9],
especially for a burning plasma. It seems to us that, as a new concept, this mechanism may
be relevant to the ion cyclotron emission observed from JET experiments (both D-D and
D-T) [10, 11]. The mechanism may be used for a plasma diagnostic. These points need more
study.

In summary, we have found a new mechanism for wave-particle interaction which is



a two-energy-stream cyclotron instability from the mass variation effect of the fast ions
immersed in a magnetized plasma. A single particle model has been developed to show
that the relativistic effect dominates as w/k, > ¢ and to gain more physics insights. The
dispersion relation verifies the dominance and gives the scaling laws for the growth rate and
wave frequency in three different regimes. Numerical results have also shown the parameter
dependence. The first harmonic for the protons in the D-D case is the cubic instability and
is stronger than other harmonics. In contrast, the first harmonic of « particle in the D-T
case is the coupled quadratic instability and is much weaker. This makes a very fundamental
difference between the D-D and D-T cases. We have also shown that the energy of the fast
ions can be transferred to the waves effectively. This interaction may happen before other
proposed possible interactions [1, 12] since the time scale is much shorter. Simulations are
being studied. We suggest that large scale simulations for fusion study should include this
mechanism. We expect that the mechanism can also be used for the generation of coherent
radiation and applied to space physics. The importance of this study for basic plasma physics
on the understanding of collective wave/particle interactions and its potential applications
for fusion are emphasized. '
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W. Horton, H. Berk, J.M. Dawson, and Y.Z. Zhang. This work was supported by the U.S.
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Figure Captions

1. Growth rate (w;/w.s) of n; = 1 and 2, and w,/w.s —1 of ny = 1 (dashed line) vs. wave-

length (A/py,) for the D-D case. The instabilities are cubic.

2. Growth rate (w;/w.s) of ny = 7,8,9, and 10, and w,/w.;s — 7 of ny = T (dashed line)

vs. wavelength (\/py,) for the D-D case. They are the quadratic instabilities.

3. Growth rate (w;/w.s) of ny = 7 vs. wavelength (A/py,) for the D-D case of Ny/N, =
0.005,0.001,0.0001, and 0.00001, respectively.

4. Growth rate (w;/wes) and w, /wss —1 (with dashes) of ny = 1 vs. wavelength (A/py,) for
the D-T case of N;/N, = 0.01 and 0.001, respectively. This is the coupled quadratic

instability.
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