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Abstract

In order to describe the time evolution of an inhomogeneous collisionless plaéma. the
nonlinear Vlasov equation is solved perturbatively, using subdynamics approach and
the diagrammatic techniques. The solution is given in terms of a double pérturba.tion
series, one with respect to the nonlinearities and other with respect to the interaction
between particles. The infinite sum of interaction terms can be performed exactly
due to the property of dynamical factorization. Following the methodology, the exact
solution in each order with respect to ﬁonlinea.rities is computed. For a choice of initial
perturbation the first order exact solution is numerically integrated in order to find the
local density excess. The approximate analytical solution is found to be in excellent
agreement with exact numerical results. Analytical computation gives a bétter insight
into the problem and it has the advantage to be simpler, and also accessible in some

range of parameters where it is difficult to find numerical solutions.
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I. Introduction

The time evolution of a quasi electrostatic plasma in the regime where the collisions are neg-
ligible is governed by a pair of coupled equations; Poisson equation for electric potential and
the “collisionless” Boltzmann equation, i.e. the Liouville equation for one particle distribu-
tion function. By requiring that the electric field in the Liouville equation be self-consistently
generated by the motion of electrons, this set of coupled equations can be reduced to the
Vlasov equation. Being nonlinear, such an equation is hard to solve. A considerable effort
has been invested over many years in seeking its solutions numerically (using either Eule-
rian or particle codes) [1-3] as well as analytically [4-7]. Montgomery formally extended
Landau’s method to the nonlinear case, but offered no proof of completeness and gave no ex-
plicit computations [8]. A somewhat different approach, using the subdynamics methodology
established by the Brussels Group, seems to offer interesting possibilities [9].

The concept of subdynamics was introduced by Prigogine, George, and Henin [10], and
was further elaborated by Balescu [11, 12] in order to derive kinetic equations. Following
this method, the dynamics of a large system is split into a complete set of independent
subdynamics [13]. Using the resolvent formalism, this approach has been recently extended
to inhomogeneous gases and plasmas [14]. The method was also successfully used to obtain
formal solution of the nonlinear Vlasov equation, where it represents a generalization of Van
Kampen and Case’s treatment of the linearized equation [15-18]. The subdynamics approach
has been later on generalized to deal with plasmas op‘en to interaction with time-dependent
external fields [19, 20].

In the present paper, the general analytical solution of the nonlinear Vlasov equation is
explicitly computed and expressions for space-time variation of the local density excess for

different initial conditions are derived.



II. General Formalism

We begin by a short review of the subdynamics formalism developed primarily to deal with
problems in nonequilibrium statistical mechanics. In this approach the plasma is considered
not as a fluid but as a one-component gas of charged particles (e is the charge) moving in a
neutralizing background, and interacting through the Coulomb potential [12]
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The dynamics of such a large system is governed by the Liouville equation for the N-particle

distribution function
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Equations (2)-(4) constitute an essentially exact description of the plasma as a collection
of charged particles, each interacting simultaneously with a large number of others. Taking

advantage of its linearity, the Liouville equation can be formally solved as
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The resolvent of the total Liouvillian is then expanded with respect to the interaction
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which, along with the Fourier expansion of the distribution function ({2 is the volume)
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allows us to write the formal solution in the representation of the eigenfunctions of the

unperturbed Liouvillian, L [14]

p{k}(v t) = —--/dz ety Z <{k}lz—1Lo [62 L, z--lL
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The Fourier components, in general, have simple physical interpretations in terms of inho-
mogeneities and correlations between various degrees of freedom. The correlations and the
inhomogeneities are associated with the wave vectors in the Fourier coefficients P and in

the unperturbed resolvent, i.e. in the free propagators:
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The system evolves because of the change in correlations caused by the binary interactions;

in all these interactions, the total wave vector K = ¥, k,, is conserved:

({k}|e* 1| {K}) = ZZZ m (3?, 3‘6, ) Ss il O tren 1] S -
a(#5n) (10)
In Eq. (10), Vp’s are the coefficients in the Fourier expansion of the interaction potential. In
an inhomogeneous plasma, the total wave vector K must be different from zero; the inhomo-
geneous vacuum of correlations is defined by the set of Fourier coeficients, p, K, . o(Viit)
with only one non zero wave vector K, = K. Such a dynamics of correlations admits
a very useful diagrammatic representation, in which for instance, the propagator of the
K-inhomogeneous vacuum of correlations is drawn as one line [14]. The correlations are
classified with respect to the minimum number of interactions needed to create them from
the K-vacuum. Each interaction (10) changes the correlations, and is represented by an el-
ementary vertex (Fig. 1) [12]. Using these elementary vertices, a diagram can be associated
by one to one correspondence to each transition in (8).
The next step is to compute the residues at various poles of the expanded resolvent (7).

Only the residue at the pole  contributes to the (7) subdynamics. The pole 5 of a propagator,
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being a particular eigenvalue of the unperturbed Liouvillian (n|Lo|n), is associated with
a correlation 7 given by the corresponding set of wave vectors. Therefore, there are as
many subdynamics as there are correlations and the distribution function p,(v;t) can be

decomposed in terms of components p{"(v;t) contributing to various subdynamics (n):

pu(vit) =3 A0 (v;t) . | (11)

The essence of this approach lies in the fact that each (1) subdynamics evolves independently.
If this were not the case, the breakdown into various subdynamics will not be particularly

useful or even meaningful. The evolution equation is of the form

9
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and is obtained from the formally exact solution [14] [constructed from (8)]:

szﬂ) (vit) =Cuy e—it{(nlLolﬂHe"}An Z Doy pu(v;0)
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by collecting together the contributions from the residue of the same pole (5). In the ex-
pression (13) C,, stands for the creation superoperator. The distribution function pg”)(v; 0)
includes the destruction superoperator D, and it defines the “postinitial conditions.” The
superoperators C,, and D, correspond to the off-diagonal contributions. The collision su-

peroperator ©, to which A, is functionally related, comes from the diagonal transitions.

III. Solution of the Vlasov Equation

Following Balescu, we now simplify Eq. (12)-(13) in the Vlasov approximation [12]. With
the collision superoperator ©, = 0, one obtains, from the formalism of Sec. 2, the Vlasov
equation in Fourier representation

a w (v, t
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along with a consistent scheme for constructing its perturbative solution {15]. The Vlasov
equation (14) is obtained when the Poisson equation is solved and the electric potential (as
a functional of the inhomogeneous one-particle distribution function @x(v;t)) is substituted
into the Liouville equation, making the force term nonlinear. Notice that in Eq. (14), Ava;t)
is the homogeneous one-particle distribution function and w, = (4wne?/m)'/ is the plasma
frequency depending on the number density n.

In the classical plasma approximation achieved at low densities or at high temperatures,

the dimensionless parameter

3
n¥e?\)’ 1 <1
g &T ni}
is very small implying that the relaxation time 7, = m'/2/e*n(kT)~# can be very long, much
longer than the plasma characteristic time which is proportional to the inverse of the plasma
frequency w,. As a consequence, an expansion of the formal solution (13) in which only the

terms proportional to powers of e2n are retained, corresponds to the formal solution of the

Vlasov equation [15]:

Fr =L SO =% [ doCryp e ®liah) 5 D,, T] £,0)
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In terms of the diagram given in Fig. 1, C, D and E are the only elementary vertices pro-
portional to e?n. Since the solution is an inhomogeneous one-particle distribution function,
the corresponding connected diagrams necessarily end with an external line at the left. If
such a diagram is constructed using the elementary vertex C, it is always negligible in the

thermodynamic limit (in which the number N of particles and the volume  containing



them, both tend to infinity in such a way that the density n remains finite) [21]. Therefore,
the solution (15) contains all possible combinations of only two elementary vertices, D and
E. Displayed in Fig. 2 [18], these vertices are conveniently referred to as the ‘fork’ and the
‘loop’ respectively. The dots between loops indicate all possible number of additional loops.
For instance the first diagram {a} in Fig. 2 corresponds to the sum of the entire family of
diagrams with number of loops ranging from one to infinity. Such an infinite series of dia-
grams with contributions proportional to powers of e?n must be summed in order to get a
physically consistent result. The first family of diagrams constitute the linear solution: the
final one-particle distribution function is related to a single power ;)f the initial one-particle
function. All other diagrams connect, in a nonlinear way, the final distribution function with

two or more initial one-particle distribution functions.

IV. Solution of the Linearized Vlasov Equation

The solution to the linearized Vlasov (Eq. (14) without the last term on the right-hand side)
is fully gi;/en in terms of diagrams with loop vertices. The fork diagrams contribute only to
the nonlinear part. The contribution of a typical one loop diagram to the solution of the
linearized equation, written explicitly using expressions (8)-(10), is given as

dre’n K 8p(vs;0) 1 .
R K'UJ fK(VJ,O) . (16)

1 . 1 oo
(i t) = o= [ deemit— 1 [T 4y,
Fr(vait) mile % T—Kug Jow T m K Ov, z-—

Computing the residue corresponding to the pole K;v; of the initial propagator, we express

the solution in terms of an experimentally measurable quantity, the local density excess k().

. o) ) L —1 sz a va;o
M) = [ doafictvait) = [ do [ o z'ﬁ—f(((va) —5) K7 o

—itKvj o N
cet 7 fr(v;;0) = /_ dv; T e fr(v;;0) . (17)
In this way, the contribution to the solution, associated with the pole K;v; (in the sub-

dynamics (K;)) is obtained. The infinitesimal imaginary part :{ appears in the propagator
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through the analytic continuation procedure. The regularization recipe is called the i¢-rule
in the resolvent formalism; a small positive (negative) imaginary part i£(¢ > 0) is added to
the denominators of the propagators belonging to a state more (less) correlated than the one
whose subdynamics is sought [22]. Each loop represents a binary interaction so that many
loops correspond to the interaction between many particles. In the collisionless plasma each
particle interacts simultaneously with a large number of other particles due to the long range
Coulomb forces. Therefore, in order to describe the collective effects (such as screening) cor-
rectly, the higher order terms in the infinite series of the loop diagrams (Fig. 2.) cannot be
dropped. The sum of all loops has to be computed. Fortunately, each new loop changes the
name (label) of the particle so that the term corresponding to a loop commutes with all other
loop terms. Consequently, the two-loops diagram contributes to the same subdynamics (Kj;)
the product of two J terms and so on. Therefore, the sum of the whole family of diagrams
{a} in Fig. 2. corresponds to a geometrical progression whose exact sum {(1 — J)™'} is

inversely proportional to the dielectric function:

wiK (—-1) 9p(vz;0)

K? i€ - K(vy—vy) Ovy (18)

e=1—.7=1—-/_:dvz

The solution in the other subdynamics associated with other poles can be obtained in
the same manner. The solution of linearized Vlasov equation corresponds to the sum over

all subdynamics (K;), i.e. to the sum over all possible particles j:

. o 1 ikews oK
hre(t) = S RED(R) = [ doj 7= e R £E(0)
2
o0 e—l'tK‘U,‘ ) 00 . ] .
= [~ do; ——fP0) = [ dv;Cic; e (). (19)

In the last line the linearized solution is written in the from (15) and the destruction su-
peroperator ID is absorbed into the “postinitial” distribution function f,((K’ )(0), so that only
the creation superoperator Ck,x; needs to be computed [18]. As a corollary, one need only

to compute the subdynamics associated with the states present at the extreme right-hand
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side of each diagram and when the sum over all diagrams is made, the contributions to all
possible subdynamics are collected.

Notice that the solution in each subdynamics (K;) describes the free propaga,tion of an
undamped plasma mode corresponding to the eigenvalue Kv;, and is thus equivalent to the
distribution obtained by van Kampen and Case [16,17]. Summation over all subdynamics
(19) (a complete set) corresponds to the superposition of these plane-wave eigenfunctions,
yielding the exact solution of the linearized equation. Since the subdynamics form a complete
set (a suitable basis for decomposition), the current method is an appropriate nonlinear

generalization of the van Kampen-Case treatment [18].

V. Nonlinear Solution

The solution of the nonlinear Vlasov équa.tion (14) is represented in Fig. 1 by the family
of diagrams {b}, {c}, etc. [18]. It is a double perturbation series, with respect-to the
interactions between the particles with the same wave vector (loop vertices) and with respect
to the nonlinearity (fork vertices). The nonlinear contribution of fork diagrams have to be
computed order by order. At each order, one has to perform the summation over the infinite
series of interactions (loop vertices), in order to insure that the collective effects are correctly
described.

Starting from Eq. (8), the contribution of family of diagrams in Fig. 2, as well as of those
of higher order, has been already computed elsewhere [18]. The basic purpose of this paper
is to find explicit analytical expressions for the physically relevant quantities. Limiting the

calculation to the first order in nonlinearity, we find the local density excess to be

)= 3 400 = [ ave s Zogl o [ Mo [ ety
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In order to understand the structure of the nonlinear terms, let us take a closer look at
the diagrams {b} and {c} (of Fig. 2.). Notice that the line leading to the final state in the
diagrams {b} and {c} is equivalent to the one corresponding to the linearized solution, and
consequently contributes the factor €1 in the expression (20). The same holds for the lower
line of the fork, since its mathematical expression commutes with the one of the fork vertex.
Therefore, in order to obtain the expression corresponding to the whole family of diagrams
{b}, only the contribution of the fork vertex D (see Fig. 1.) has to be computed explicitly,
taking into account Gauss’ theorem as it has been already done in Ref. 18. In diagram {c},
there are loops on the upper line also. The fork vertex D (i.e. its contribution) commutes
with all except the loop E on its immediate right, since they both share the same particle c.
Due to the property of dynamical factorization [18,23,24], contribution of all other loops on
the same line can be summed independently of those on the lower line. The exact solution

(20) up to the first order in nonlinearities can be written more explicitly as

h ( ) /oo e—itKu.
k(t) = dv, fx(ve; 0
-% 1—ff°wdv%m§—v¢(v;0) (450)
) ) 1 WK
+ [ d [ de——— [ __“
/—oo ~/—oo 1 —_ f—OO dv T{% ;‘£+v_u¢_1.f? (vj_ve) % (p(v; 0) (_z£ + vj bl ve)2£4

dv, P —_—
+/_oo v i§+vc,—ve—-;<—(vj-v,) £2(K —£)2K Qv, —i€ +v. — v,

 9¢p(ve; 0) 1 —it{Kvett{vj—ve)} .
ov o0 wd 1 9p(v;0) e
e 1= 206 v mtyr <o o

- 9¢(v0) }fK—l(ve;o)fK(vj,O) . (21)
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It is obvious from Eq. (21) that the explicit expressions tend to become long and unwieldy,

and their further evaluation will be rather tedious if one does not resort to some well defined
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systematic procedure. One thus needs a methodology to write final expressions directly
from the diagrams, knowing that the diagrams bear one-to-one correspondence to the initial
expressions. Such a procedure for direct transcription was developed in Ref. 18. It should be
noted that the final algebraic expressions obtained after computing the residues of different
poles (separation into the subdynamics), can be written in the same general form. The
correspondence between this general form and the.diagram from which it originates, has been
found. An algorithm how to fill the general form, using the labels of the particles and wave
vectors coming from a particular diagram, has also been established. This algorithm allows us
to immediately write the final expression once the diagram is drawn. Tedious computations
are avoided, and it becomes possible (whenever needed) to extend the calculation to higher
orders.

Equation (21) is the main theoretical result on which further computations of this -;Iiaper
are based. The expression can be evaluated using numerical methods whenever an appropri-
ate “equilibrium,” and the initial disturbances are specified; most realistic plasma problems
will require us to resort to numerical techniques. However, to establish the workability of
this scheme, we deal with an idealized problem which allows an analytical solution under
some drastic assumptions. The analytical solutions are compared with the exact numerical -
solutions to demonstrate that approximate analytical techniques can prove to be very useful.
In future, we expect to carry the analytical methods further (make the approximations less
drastic) and add to the understanding of nonlinear solutions.

For our test problem, we choose to study the evolution of a homogeneous plasma after -
it has been perturbed by a beam like pulse with a periodic modulation in space. Initial

homogeneous one-particle distribution function is taken to be the Maxwellian

i) = 2 (22)

where b~1/2 = vy, is the thermal velocity. The perturbation, i.e. the initial inhomogeneous
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one-particle distribution function, is sinusoidally modulated in space. This perturbation
corresponds, in velocity space, to a shifted Maxwellian (u is the flow, and A=%/2? = ¢ is the

thermal spread).

f(q,v;0) = %/w dKe""K\/_%-e"’\(""’)2 {6(K —2a) + §(K +2a)} = A\/ge"\(“"’)2 cos 2aq .

(23)
In terms of the first derivative of the plasma dispersion function
! -1/2 * 1 —v3
Z'(z) = 2 - 2¢ / —— e dv, (24)

and the redefined variables o = i — v, — %(vc —v;); B =1 + v, v = i€ + v; the inverse
Fourier transform of the solution can be written more compactly. For the particular choice of

the wave number vector K = +2a, the parameter p = 4w2b/K? = w?b/a?, and the solution

becomes
h(g;t) / dK &K / dﬂ\/_ { lj(z_; (,;j‘p) ’24 [5(1{ 2a) + 6(K + 2a)]
) :\_ 7 K _ o ”K3
* /_m d7\/; 1 - £Z'(av/b) [4(a + B)%b¢ /-oo e LK — £)*V/7b
9 Ve e—bu?: 1 e—)\(q—u)2+itKa
da ve+ave—PB 1—pZ(avb) |1 = p2'(1V/b)
iz S(K —2a)§(€ — a) + 8(K + 2a)6(£ + a)] } (25)

The kernel of the last integral in (25) can also be expressed in terms of the Z-function.
Variable transformations a = i€ — }(v. + v;) = ordt B=i+v. = 52-;-’, and vy =i +v; =
2 1+ 4i€ with z = av/2), y = (@ +8)V2}, and dedy = Adfdy and v = BV in the linearized

term, lead to

cos 2a vt
h(t) = hr(t) + / Y GUV\;)} e~V +avuVA-u?
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where G = (b/2))'/? is a measure of the relative width (thermal spread) of the two Gaussians.
Before making further approximations, it is important to cast Eq. (26) into a form more
suitable for numerical and further analytical computations. The apparent problem for nu- |
merical integration, associated with the double pole in the propagator (y~?) is resolved by
making a partial integration. Using Plemelj formula, then, allows one to explicitly display the
principal part and the pole contribution [24]. The final formula Eq. (A1) of Appendix A, still
~ constitutes an éxact solution of the Vlasov equation correct to the first order in nonlinearity.
Further analytic progress involves making simplifying approximations. For this paper, we
" make rather dfastic approximations to obtain an easily interpretable and compact expression
giving the spatial and the temporal behavior of the perturbation. Our primary motive is
to develop confidence in our analytical methods before we investigate more complicated
problems. |

Let us consider a beam-like pulse (with narrow thermal spread) propagating in a moderate

b .
G=\/2—/\<<1 (27)

for this case, the small argument expansion of the Z-function will be adequate. A straight-

temperature plasma. The para.meter

forward calculation yields, in the leading order, very simple linear hz(g¢;t) and nonlinear

hnr(g;t) solutions:

242
e” % cos[2a(q — tu)]

A
h(g;t) = hir(g;t) + hnr(g;t) = 5T

A2 { T 1 + 2#} _‘2“2
+ 6——=-— e~ 7% cos[2a(q — tu)] . (28)
@+p)(t+2)’ L G wG
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The observant reader well notice that the linear part of our result appears to be rather
unusual. When the perturbation amplitude A goes to zero, hp also goes to zero, because the
denominator 2 + ¢ # 0. Under the specified conditions of our problem, there indeed are no
normal modes of the plasma; the system was designed to study the propagation of a finite
amplitude pulse in a plasma. However, all the physics of electrostatic plasmas, including
plasma waves and Landau damping, is there in Eq. (26). In Appeﬁdix B, we explicitly show
that with different approximations, we readily obtain Langmuir waves etc.

The analytical solution (28) will be now plotted as a function of space and time, in
order to be compared with the “exact” solution obtained numerically. As usual in numerical
computations, the parameters are rescaled; the plasma frequency w,, and the inverse square
root of the width b are both taken to be unity. Choosing the amplitude of perturbation
A = 0.01, together with the velocity shift u = 0.2, space and time behavior of the solution can
be studied for different values of the wave vector @ and the width parameter A. For instance,
for @ = 0.3 and A = 10, the superposition of the linearized and the nonlinear solutions
is given in Fig. 3a. Such a perturbation, corresponding to a relatively wide Gaussian, is
strongly damped due to the spread in velocity space and the interaction between particles.

In order to test the accuracy of the analytical results, the numerical methods of inte-
gration are applied to the solution (26). The linear part of solution is a one dimensional
integral. The double integral of the nonlinear part is expressed in the more suitable form
(A1) containing a single pole. The integral remains double only for the principal part of the
propagator, while it reduces to the simple one for the pole contribution. The integrand is
(in both parts) a functional of the dispersion function multiplied by Gaussians and a cosine
with the argument increasing with time. When this argument is small, the integrand is a
slowly varying function in time, and Gauss Hermite integration scheme with twenty points
is used [25]. The integral is then exact for a polynomial of degree 41. For the growing

argument of the cosine for larger times ¢, Filon’s numerical integration is applied, since it is
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well adapted to the rapidly varying functions [26]. A good approximation of the plasma dis-
persion function and its derivative is obtained by means of Padé approximation for Kummer
function [27]. The accuracy of our program is tested by using Romberg integration. The
‘exact’ numerical solution corresponding to the parameters of Fig. 3a is plotted in Fig. 3b;
the agreement is quite good.

For better visual comparison of the approximate analytical solution with .the numerically
integrated one, we shall superimpose the two solutions from now on. Fora = 0.3 and A = 100,
Figs. 4 and 5 compare respectivély the linear and the nonlinear parts of the solutions from the
two a,pproa;:hes. The good agreement between the approximation and the “exact” solution
is expected since the parameter G = 0.07 is comfortably small. Notice that the linearized
solution is damped much quicker than the nonlinear one. The total excess density response,
i.e., the sum of the linear and the nonlinear parts is displayed in Fig. 6 and shows good
agreement as expected.

For the same A = 100, we now vary the perturbation wave length; Figures 7 and 8cor-
respond to @ = 0.5 and 0.7 respectively. Increase of the wave vector a leads to quicker
damping, and at the same time improves the agreement with the numerical solution.

Let us now make the perturbation more beam-like (A = 1000) and at the same time
also change the velocity shift u = 0.1 (see Fig. 10). The obtained approximate solution
practically coincides with the exact one (parameter G = 0.02).

From Figs. 3, 7, and 9 (¢ = 0.3 for all of three), one notices that as the perturbation
sharpens in velocity space, i.e. A increases, the damping slows down. This behavior is
predicted by Eq. (28), since the exponential decay time is 74 ~ (A/a?)¥/3.

Although the approximation used to obtain analytical solution is drastic, (even the Lan-
dau damping is thrown away), the agreement with the exact solution is excellent. This is
because in investigated cases (where parameter G is very small) the disturbance is bodily

carried away by the jet of incoming particles and the Landau damping is very small. This
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damping will be dominant just in the opposite situations, when there is an appreciable frac-
tion of injected particles having velocities larger than the thermal velocities of the medium,
ie. When/ the perturbation Gaussian is larger than the one of the medium: G > 1. This will
be the subject of a forthcoming paper.

Accuracy of the analytical solution has also been successfully tested using Mathematica
as a tool for numerical integration [28].

Having gained confidence in our approximation, which gets progressively better as G
becomes small, we plot our analytic solution for A = 10000, a = 0.3, and u = 0.2 (see
Fig. 11). For such a large A the numerical integration is no more possible. However, this case
may be even more interesting (for an experimentalist) since it corresponds to the injection
of an almost monoenergetic beam of particles into plasma. The obtained picture conforms
to the fact that the more coherent the beam, the less is its spread in time. For the fime
interval for which the evolution of the system is followed (40 time units) the damping, due

to the spread in velocity space, is inobservable.

VI. Conclusions

In this paper we have made use of the techniques of subdynamics formalism to obtain
solutions of the nonlinear Vlasov equation. The subdynamics approach, developed for dealing
with general many body systems, is clearly not the most efficient way for solving simple
problems like the linear Vlasov-Poisson system. However, the formalism, with a little effort,
can be marshalled to solve the nonlinear Vlasov equation for which few other means are
available.

The diagrammatic techniques are particularly suited for doing higher order calculations.
In this paper, however, we have limited ourselves to solving a rather idealized problem of the
evolution of a sharp beam like pulse in an ambient plasma with moderate temperature. The

explicit calculation is carried out to the leading order in the nonlinearity. Analytical and
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numerical solutions are computed and are seen to be in very good agreement. This calculation
is primarily meant to demonstrate the working of this methodology and, in particular, the
excellent accuracy of our explicit analytical method. In future, we shall exploit this powerful
technique to solve more and more involved problems in basic plasma physics. We would like
to stress that the analytical methods used here can be extended to treat problems in higher
spatial dimensions, where the numerical methods may be limited by the size of the actual

computers.
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Appendix A

In order to facilitate the subsequent numerical and analytical computations, the double
pole (y~2%) in the propagator of Eq. (26) is eliminated using partial integration. After some
algebra, the remaining propagator (y~!) is, by means of Plemelj formula, expressed in terms
of the principal part and the pole contribution

A oo cos2a(q—-§‘-) .
h(g;t) = hr(g;t) + hnr(g;t) = —= d A =P +2vuVA- )
(a51) = halast) + bwalait) = 72 [ vy lse

v T J-co 1 — pZ'{~G(z + y)}

iz -
+A2# e— P /'°° d cos 2a (q+ 72A) e~ -0z £/°° dye?’
2 -0 1- ‘:— Z’{G:‘B}

| o # [2{=G(z +y)} — GzZ'{-G(z +y)} 1 e a1
[P Gv( 1—pZ'{-G(z +y)} U (e OP)] [G (Z{G(y - =)}

' Z{-G(z +y)} - GzZ'{-G(z + y)}
-Z'{Gz}) + (Z{Gz} + Z{G(y - a:)}){Zsz( 1= 421Gz 1 9)}

_Z2{Gly—=) - GeZ{Gy~=)}) _ (|} _ (L, _#Z{-Glz+y)}
1 —pZ'{-G(z +y)} G 1-pZ'"{-G(z +y)}

rous| Ly pGZ'{-G(z +y)} |, pGZ'{G(y—=)} | Z{Gz}+ Z{G(y — =)}
G 1-pZ{-G(=z+y)} 1-pZ2'{Gly—=)}| 1-pZ{G(y—=z)}

_iu(GeZ'{Gz} + 2{Gz})
Gl = pZ'{-Gz))? } ' (A1)
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Appendix B

In this appendix we motivate the drastic approximations used to obtain Eq. (28) in which the
linear term is a little unorthodox. To make contact with the usual plasma physics literature,

we go back to the linear term of Eq. (21) (we could as well have used Eqgs. (25)-(26))

_ dy e~ tKy fx(y, 0) |
(t) /oo 1- foo dv _%' v—y Ov (p('U 0) (Bl)

where ¢ is the equilibrium distribution function and fx(y;0) is the initial disturbance. Let

us take its Fourier transform
R ( w) / dt e“thL(t) . " (B2)

The integration over time yields the delta function §(w — Ky) which allows y-integral to be

trivially performed

Moo fx (%0 _Jx (£;0) (89)
K FAC Ryl (w, K)

which is the familiar expression. When fx — 0,AE(w), can remain finite, if e(w, K) = 0
giving the standard normal mode; in this case the Langmuir wave. To derive the Langmuir
wave, it is assumed that w/K > v of the ambient plasma. For the idealized problem chosen
in this section where fx ~ e~**’ represents a sharp Gaussian compared to ¢ ~ e~ (/X K
1), the situation is effectively reversed and the denominator reduces (in the leading order)
to

wl 7 2bw3 M
~y — — 8” 4 _— LN
ew,K)~1 K2/ - dv=1+ 1 = 1+ 5 (B4)

which contains no normal modes.
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Figure Captions

1.

2.

10.

Elementary vertices.
All families of diagrams up to the first order in nonlinearity.

a and b. The local density excess corresponding to the sum of the linear and the
nonlinear solution, analytical [Fig. 3a], and numerical [Fig. 3b], is plotted as a function

of time (z-axis) and space (y-axis) for u = 0.2, a = 0.3, and A = 10.

The superposition of the analytical and the numerical (lower amplitude) solutions of

the linearized equation for u = 0.2, a = 0.3 and A = 100.

The nonlinear part of the approximated and exact (larger amplitude) solutions plotted

together for parameters of Fig. 4.

. The total density excess [linear and nonlinear] for parameters of Figs. 4 and 5. Larger

amplitude corresponds to the approximation.

Higherer amplitude corresponds to the total approximate solution for 4 = 0.2 and

A = 100, a different wave vector a = 0.5.
For u = 0.2, a = 0.7 and A = 100 the numerical solution has slightly higher amplitude.
The analytical results are of slightly lower amplitude for u = 0.1, a = 0.3 and A = 1000.

Only the analytical solutions are available for A = 10000 and a = 0.3.
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