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Magnetic reconnection and tearing can play an important role in fusion exper-
iments and in space plasmas. This thesis is devoted to the magnetohydrody-
namic (MHD) study of the linear and nonlinear evolution of the resistive tearing
mode instability in the presence of equilibrium shear flow, and the reconnection

of an z-point magnetic field configuration.

Numerical solutions of the linearized time-dependent MHD equations
and growth rate scaling are obtained. The results of the computations are
compared to previous work, and the computed growth rate scalings agree with
analytical predictions. The introduction of viséosity and small equilibrium

shear flow alters the growth rate scaling considerably. When the shear flow is
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large, the growth rate behaves in a more complex way, and Kelvin-Helmholtz

"instability effects are present.

The linear evolution of the double tearing mode with equilibrium
shear flow and viscosity is investigated numerically. The dispersion relation for
the growth rate of the double tearing instability is generalized to include flow.
Relatively small shear flow at the resonant surfaces has a stabilizing effect on
the double tearing mode. For Reynolds number comparable or larger than the

magnetic Reynolds number a stabilizing effect is found.

The nonlinear evolution of the tearing mode instability with equilib-
rium shear flow is investigated via numerical solutions of the resistive incom-
pressible 2-D MHD equations. The simulations are initiated with solutions of
the linearized MHD equations. Magnetic energy release decreases, and the sat-
uration time increases with shear flow. The validity of the numerical solutions

is tested by verifying that the total energy and helicity are conserved.

The reconnection of two-dimensional stressed z-type neutral point
magnetic fields is studied via solution of the nonlinear incompressible and com-
pressible resistive MHD equations. Solutions of the linear eigenvalue problem
are obtained and compared to the MHD simulations. It is found that with
conducting boundary condition, the fields relax to the force-free z-type neutral
point at a rate close to that predicted by linear theory. When flow through the

boundaries is present, the z-point evolves into a current sheet.
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Chapter 1

Introduction

1.1 Overview and “Motivation

Understanding tk  icroscopic and macroscopic processes that ¢
cur in plasma involves the study of plasma instabilities. In an ideal infinitely
conducting plasma, the field lines and the plasma move together, and the topol-
ogy of the field lin~s cannot change. Tearing mode instability occurs when a
component of the ambient magnetic field (in Cartesian geometry) reverses its
sign, and the resistivity becomes important in a singular region of the plasma
(tearing layer). The magnetic field is then free to tear and reconnect, and the
topology of the magnetic field lines can change. Large currents are generated
in the singular region and the free magnetic energy is released through Ohmic
heating of the plasma. As the instability proceeds, magnetic islands are gen-
erated and grow exponentially in size (Furth, Killeen, Rosenbluth, 1963) until
they reach a size comparable to the tearing layer. The growth then slows to an
algebraic rate due to the nonlinear satura’ n of the instability (Rutherford,
1973). When shear flow is present, the growth rate can decrease or increase
depending on the flow profile and its parameters (Chen and Morrison, 1990;
Ofman et al., 1991). When reconnection occurs at a singular line (singular
point in 2-D), the initial perturbation can decay away on a resistive time scale
(Hassam, 1991; g aﬁd McClymont, 1991), or with appropriate boundary

ditions it migu. evolve into a sheet curreat (Dungey, 1953).
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These processes are of particular interest to the study of laboratory
and space plasmas. The tearing mode instability is a major source of the
disruption of nested magnetic flux surfaces (on which the plasma pressure is
constant) that are needed to confine the plasma in a tokamak. Shear flow (of
poloidal sheared rotation in toroidal geometry) of the plasma might be one of
the means to control the tearing instability and to suppress it. In space plasma
the tearing mode instability and magnetic reconnection are associated with
solar flares (Priest, 1981) and solar coronal loops (Priest, 1985). Strong shea.r
flow motions are observed in the solar chromosphere, and in the corona and. are
believed to exist in galactic jets. The reconnection of an z-point magnetm ﬁeld'
was suggested as a mechanism for release of magnetic energy in solar ﬂa.res a,nd. oy

for the formation of sheet current (Dungey, 1953; Syrovatsky, 1966).

The resistive magnetohydrodynamic (MHD) approach used in this
dissertation relies on the assumption that plasma can be approximated by a
set of fluid equations together with Maxwell’s equations with finite dissipation
~ parameters. Many approxima.ﬁons are used in the derivation of the MHD equa-
tions (see below), and their applicability is restricted to temporal and spatial
scales in which the “MHD ordering” holds. In spite of these shortcomings, .
MHD theory hés proven to be a very useful tool for understanding the var-
lous macroscopic processes in plasma. The full set of the MHD equations is
nonlinear and for most cases of interest cannot be solved analytically, and is
difficult to solve numerically for realistic plasma configuration in three dimen-
sions. Usually, simplifying assumptions are made with respect to the geometry,
and to the boundary and the initial conditions. The MHD equations are then

linearized, and the resulting equations are solved numerically in one spatial




dimension. Additional approximations are made in order to solve the linear set

of equations analytically.

Progress in computer technology and algorithm development makes
it feasible to solve nonlinear MHD equations in two or three spatial dimensions
with realistic initial and boundary condition and with satisfactory spatial and
temporal resolution. On one hand, the validity of the simplifying assumptions
in the linear and the nonlinear theory can be tested with the aid of computer
simulations. On the other hand, computer simulation codes are tested against
the analytical theory, and the quality of the simulation can be estimated from
its energy conservation and additional constants of motion. Finally, the results
of both analytical theory and computer simulation can be compared to ex-
periments or observations, and qualitative predictions of experimental results
or physical phenomena can be made, although, due to the large number of

assumptions used in the theory, a quantitative prediction is rarely possible.

In this dissertation an MHD approach is used to study numerically
and analytically the linear and nonlinear evolution of the tearing mode insta-
bility in the presence of shear flow for a wide parameter range, and with various
‘flow profiles. The magnetic reconnection of an z-point and the possibility of

current sheet formation are also investigated.

1.2 Model Equations

We assume that collisional MHD theory (Drake and Lee, 1977) is
applicable, that the plasma resistivity 5 is constant and isotropic, and the

perpendicular viscosity v is constant (Braginskii, 1965). We neglect the effects



of gravity. The basic equations in cgs units are:

p [av + (v - V)v} =—-VP+ i(v xB)x B+ pvrViv (1.1)

ot
%? VX (vxB)— 4:VX(V><B) a9
gi’ +V-(pv) =0 (1.3)
V.B=0 | (1.9)
dilt (-’5—) —0 (1é:‘5)

where ¢ is the speed of light, p is the plasma density, B is the magnetic ﬁeld A

is the velocity of the plasma, P is the pressure, and 4, is the polytropic 1ndex

In the second and third Chapter we use the linearized version of the
MHD equations in one spatial dimension with constant and uniform density.
The initial magnetic field, flow, and the boundary cogditions are appropriate
for the tearing‘ (Chapter 2) and the double tearing (Chapter 3) modes. In the
fourth and fifth Chapter we present and solve the nonlinear iﬁgompressible 2-D

MHD equations. Assuming p = const., Eq. (1.3) becomes
V.v=0, (1.6)

and the pressure P becomes an implicit variable that is eliminated from the
calculations by taking a curl of Equation (1.1). In Chapter 5 we solve the
adiabatic (, = 5/3) and compressible 2-D MHD equations for the reconnection

of an z-point. For isothermal evolution 4, = 1 can be used.



1.3 Organization of this dissertation

In Chapter 2 the linearized, time-dependent, incompressible visco-
resistive MHD equations for the tearing mode are solved numerically for a
wide range of parameters. The linear theory of the resistive tearing mode in-
stability, has been recently extended by introducing the effect of equilibrium
shear flow and viscosity. In this éha.pter, the growth rate scalings, and the
eigenfunctions are obtained, and the results of the computations are compared
to previous work. The computed growth rate scaling agree well with the an-
alytical predictions. The presence of flow modifies the solutions considerably
and affect the growth rate scaling: it can stabilize or destabilize the mode. The
presence of small flow shear (compared to the magnetic shear) alters the growth
rate scaling with viscosity. When the shear flow is large, the growth rate be-
comes independent of small viscosity, and the transition to Kelvin-Helmholtz

instability is observed.

In Chapter 3 the linear evolution of the double tearing mode with
equilibrium shear flow parallel to the magnetic field and viscosity is inves-
tigated numerically. Growth rates obtained from the MHD simulations are
found to agree with the solutions of the double tearing dispersion relation in
the parameter range of validity. Solutions of the linearized MHD equations for
the double tearing mode with parallel shear flow are found for wide relevant pa-
rameter ranges. Large (weakly coupled) and small (strongly coupled) rational
surface separation are investigated. Shear flow decouples the rational surfaces,
reduces the growth rate, and transforms the instability to the standard tearing
mode. Overstable modes are found from the solutions of the dispersion relation

and in the numerical computatior ~The presence of small viscosity reduces the



growth rate of the instability, but has little effect on the oscillatory part of the
growth rate. The temporal oscillations of the solutions increase with the flow
at the resonant surfaces at a rate slower than that of the Doppler shift. The
parameters of the shear flow that will stabilized the double tearing mode with

large and small rational surface separation is found.

Chapter 4 is devoted to the study of the nonlinear evolution of the
tearing mode instability with equilibrium shear flow via numerical solutions
of the resistive MHD equations. The two-dimensional nonlinear simulations
are in slab geometry, are periodic in the z-direction, and are initiated with

solutions of the linearized MHD equations presented in Chapter 2. When the

shear flow is small the tearing mode saturates within one resistive time, while. ;:

E

for larger flows the nonlinear saturation develops on a longer time scale. The
magnetic energy release decreases and the saturation time increases with the

flow shear, for both small and large resistivity. The validity of the numerical

solutions was tested by verifying that the total energy and the magnetic helicity _

are conserved. The total energy dissipation rate decreases as the tearing mode

approached its saturated state.

In Chapter 5 the reconnection of two-dimensional stressed z-type neu-
tral point magnetic fields is studied via solution of the nonlinear resistive MHD
equations and by analytical solution of the linear eigenvalue problem. For
nearly azimuthally symmetric perturbations with conducting boundary condi-
tion‘, the fields relax incompressibly to the unstressed force-free z-type neutral
point at a rate close to that predicted by the linear theory. The linear disper-
sion relation is derived and solved, and the results compared to compressible

and incompressible MHD simulations. A faster reconnection rate is found for




azimuthally non-symmetric perturbations. When flow through the boundaries
is allowed and the fields at the boundaries are free to adjust we find that the

perturbed z-point evolves into a sheet current.



Chapter 2

Linear Evolution of the Tearing Mode with
Equilibrium Shear Flow and Viscosity

2.1 Introduction

The linear theory of the tearing mode instability was first developed
by Furth, Killeen and Rosenbluth in 1963 (hereafter FKR). They solved the
linearized MHD equations using the boundary layer approach. Numerical tech-
niques for the solution of the linear equations were subsequently applied to the
problem (Killeen,1970). FKR theory has been widely used and applied to lab-
oratory plasmas and fusion experiments in various geometries. Numerical com-
putations of linear tea.ringvrnode instability have been performed by many, in
various sub-volumes of parameter space (see, for example, Steinolfson and Van
Hovén, 1983) usually without equilibrium shear flow or viscosity effects. The
importance of flow and viscosity in the evolution of tearing instability growth
rate scaling has been recently shown using both analytical (Chen and Mor-
rison, 1990a, 1990b) and numerical (Einaudi and Rubini, 1986, 1989; Ofman
et al., 1991) analyses. Non-homogeneous flows are commonly observed in var-
ious phenomena believed to involve reconnection, such as solar coronal loops,
solar wind, magnetopause boundary, extragalactic jets and fusion experiments

(Priest, 1985; Drake, 1985).

In this chapter the time-dependent equations are solved numerically

throughout the entire physical region of instability, in contrast to the bound-

8




ary layer approach in which solutions of two physically different regions must
be matched. This approach enables us to avoid some significant assumptions
required by the boundary layer theory, such as constant-y or conditions on
the growth rate v (Chen and Morrison, 1990a, 1990b), see also Section 2.3.
Thus, we can test the validity of these assumptions and corroborate various
scaling laws predicted analytically. Using a finite difference method for the
time-dependent problem, we are able to show the spatial and temporal evolu-
tion of the perturbed quantities and the dependence on the physical parameters
of the problem. Some relevant parameters examined in our study are the nor-
malized wavenumber o, the magnetic Reynolds number S, the shear parameter
R, the fluid velocity V' (normalized to Alfvén velocity) and the ratio between
the viscous and the Afvén time scales, S, (i.e., the Reynolds number). By
retaining the time dependence, we are able to study cases on a relatively short
time scale, such as may be necessary when more then one over-stable mode
is present in the solutions. This is particularly significant for the non-linear
simulations in which several modes can interact (Steinolfson and Van Hoven.
1984).The results of the linear calculations are later used to initiate the non-

linear simulations (see Chapter 4) .

This chapter is organized as follows. In Sec. 2.2 we present the basic
equations. In Sec. 2.3 the main results of the linear boundary layer theory
are reviewed. In Sec. 2.4 the method of solution is described. S« *ion 2.5 is
devoted to the results of numerical computations. Summary and dis.ussion are

presented in Sec. 2.6.
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2.2 Basic Equations

We use Cartesian geometry and choose an equilibrium magnetic field

of the form

Bo(y) = Bzo(y)ez + Buo(y)e.. (2.1)

Similarly, the equilibrium plasma flow is assumed to be in the (z, z) plane, with

the form
Vo(y) = V::O(y)e:z: + ‘/;O(y)ez- (2.2)

Equations (1.1)-(1.4) are linearized around the mégnetic field and flow
velocity equilibrium, solutions assuming perturbations of the form fi(y,t)x
exp(ikzx + 1k,z). The normalized linearized time-dependent y-components of

the MHD equations can be written as

a . " | . " . " :
(E + zaG) (W - a2W) —i1aR*G"W = iaF (¢ - a2¢) (2.3})}
o 1 O'W
—taF"p + A
D tiaG) g —iaFW =1 (" - a®y) (2.4)
ot S ’ '

where the dimensionless variables are ¢ in units of 74, y in units of a;, and the
perturbed physical quantities ¥ = By, /B, W = V,;/V,, and the primes denote
the derivatives with respect to y. Also, the dimensionless parameters ‘are the
magnetic Reynolds number S = 7, /74, a measure of viscosity S, = 7,/74, the
shear parameter R = a;/a, and the normalized wave number a = ka,;. The

relevant time scales in these definitions are the resistive time Tr, the Alfvén time
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4 and the viscous time 7, given by 7, = paf/v, 7. = 4na}/c*n, Th = ap/A7p/B
and in the above quantities a; is the magnetic length scale, a, is the velocity

length scale, V; is the Alfvén velocity and B is a measure of the magnetic field.

The quantities F' and G are the normalized equilibrium magnetic and

velocity field, respectively, in the z-direction. We assume that F' is given by
F(y) = tanh(y) (2.5)
and present results for each of the following velocity profiles
G(y) = V tanh(Ry) (2.6)
or
G(y) = V{1 — sech (Ry)}, (2.7

where V is the velocity parameter in units of the Alfvén velocity V,. Hereafter
we refer to Eq. (2.6) as the tanh velocity profile and to Eq. (2.7) as the sech
velocity profile. The geometry of the tearing mode in Cartesian coordinates,
and the equilibrium quantities are shown in Fig, 2.1. In Fig. 2.1a , the tanh
velocity profile is shown, thus V, and By have the same dependence on y. The
two flow profiles and their derivatives (i.e., flow shear) are shown in Fig. 2.1b.
It is evident that the tanh flow profile has the largest shear at y = 0 (the
tearing layer), and the sech flow has the largest shear away from the tearing

layer.
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Equations (2.3) and (2.4) are solved numerically without any further
approximations. They are subject to the boundary conditions that W, — 0
exponentially when y — co. For the numerical simulation limited to finite

boundaries located at y; and y;, the above boundary conditions become

W (y12) = £aW(y12) (2.8)

¥'(y12) = Tay(y1,2), (2.9)

where primes denote the derivatives with respect to y taken at the left (y;) and

right (y2) boundaries of the physical region.

2.3 Linear Theory

The growth rates of the instability can be found from the time-

Fourier-transformed Equations (2.3)-(2.4), using the boundary layer approach

(FKR; Chen and Morrison,1990a, 1990b; Porcelli, 1987; Paris and Sy, 1983; Do-

brovolny et al., 1983). Assuming perturbations of the form f, (y)ezp(iwt+ik,z)

* these equations become

(7 +ieG) (W' — &*W) — iaR2G"W = iaF (v" - a?p) (2.10)
w1 W
—al ‘l,[) + Fv 33/4

(v +:aG) Y — iaFW = % (z,b” - a2¢) , (2.11)

where ¥ = 4R + iy = w7y is the complex growth rate and the subscripts R

and I denote real and imaginary parts, respectively.

The physical region is divided in two regions, namely, an inner region

in which |[F| << 1 and resistivity cannot be neglected [e.g., near y = 0, for
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4
s (a)
/7
/
=
b
Bo=B(y) e
Vo= V(y) e

1
Gu(y) = V[1 - sech(Ry] (b)

0S T

P T NJL e e
95 +

G

Ga (y) = V tanh(Ry)
-1
0y S 0 s 10

Figure 2.1: The initial equilibrium magnetic field and flow.
(a) The tanh dependence on y for Bzg andVy. (b) Equilibrium flow profiles
G(y) and their derivatives used in the present work.
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F(y) asin (2.5)] , and an outer region in which the resistivity can be neglected
in Ohm’s law. In the inner singular layer, one can substitute ¥’ = F’(0), F" =
F"(0),G" = G'(0),G" = G"(0), and F = yF'. The solutions in the outer and
the inner regions are matched continuously through a matching parameter

¥ _ %
A= T

where the subscripts 1 and 2 denote values at the boundaries of the inner sin-

(2.12)

gular layer of width €, respectively. An important result obtained by Chen and
Morrison (1990a), is that that flow in the outer region can drastically change
the matching quantity A’. In fact, alteration of the external flow profile can
effect the transition from constant-i to nonconstant-i tearing. A numerical
estimate of A’ is discussed in Section 2.5. The FKR result, without shear flow

or viscosity is
YR = wiTh ~ S35, (2.13)

This scaling can be used as a benchmark for comparison with new numerical

results.

The growth rates and their scalings are found by taking the following

limits of the parameters:

EF7(_0)‘£ << 1 (slow growth), : (2.14)
aF7(0)e ~ 1 (fast growth), (2.15)
%% < 1 (small shear), - (216)
%(—8; ~ 1 (comparable shear), (2.17)
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where ¢ is the width of the tearing layer. The results for the inviscid case, as
obtained by Chen and Morrison (1990a), are summarized in Table 2.1. For the
nonconstant-y tearing mode and small or comparable shear (2.16)-(2.17), the

growth rate scaling is
TR ~ /35713, (2.18)

In the case of the constant-i tearing mode when the velocity shear is com-
parable to the magnetic shear, i.e. (2.17) is satisfied, the growth rate scales

as
g ~ a/?§71/2, (2.19)

When viscosity is present and the condition F’(O)I < 1 is satisfied, the scal-

ing (2.19) is modified to

' 21-1/6
YR ~ 5‘2’3621/3[ Sy g,gg; (1 Si) ] , (2.20)

where Q = aF"(0) ( - g—:((g};—) As I F,(0)| — 1, the growth rate approaches zero
as Q3. When | F’(O)I > 1, the tearing mode disappears, and Kelvin-Helmholtz
(K-H) instability effects are present. When the shear is very small (2.16), the

growth rate scaling (2.13) becomes
1/6
& ~ [aF'(O)/3 §-/3 (%) . (2.21)

The dependence of the growth rate on S, S, and | 75} | 10 Egs. (2.18)-(2.21)

has been verified numerically. These results will be presented in Sec. 2.5.

2.4 Method of Solution

We solve Equations (2.3) and (2.4) using an implicit finite difference
scheme (Killeen, 1970; Steinolfson and Van Hoven, 1983) with a variable spatial
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Table 2.1: ‘Surnmary of the effects of equilibrium shear flow on the tearing
mode. (From Chen and Morrison, 1990a.)

Constant-3 tearing mode Nonconstant-i tearing mode

F’(O)l < 1 (a) The growth rate and scale (a) The growth rate and
length of the resistive region scale length of the resistive
are, respectively, region are, respectively,

y ~ a3 AMI55-3/5, o~ Q23G-1/3
e~ (aS) AN « 1 e~ (aS) VP k1
(b) The constant-3 (b) In this limit, we have
approximation is valid if elAl>1
ela'l <1 1-G(0P/F(0)?#1 |
(c) Small flow shear G’(0) (c) Small flow shear G’ (0)
destabilizes the constant- stabilizes the constant-1
tearing mode tearing mode with

sufficiently large A’

F’(O)I <1 (a) The growth rate and scale (d) There exists a transition
length of the resistive region to ideal instability when A’
are, respectively, becomes negative through
v ~ (a|A))V/285-1/2 A’ = oo (which is made
e~ (aS) P k1 possible by the flow on the

(b) If G'(0)G"(0) — F'(0)F"(0) # 0, external region)
A’ > 0 instability criterion is

removed

(c) The constant-1)

approximation is valid if

V=GP PP A% < 1

F’(o)l > 1 stabilized stabilized
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grid. The following system of finite difference equations in the complex plane,

which accommodate flow and viscosity, are solved numerically:

ok : F; aFy J
SR A ?If+z(A°‘ += F+ )W‘“ 2oty e

2Ay;Ay, +Ay- 2AyJAy-
1 n-1 1 1 n+l 1 n+1
N (At + 3G+ s,,Ay+Ay_) 23 = 35 Agays o
a?  iad o n n
— (-A—t + TGJ‘ + —ERZG;!) Wit = k] (2.22)
1 n+1 1 1 n+1
25AyAg, T (At +5Gi+ SAy.iy. T 25) ¥
1 +1 ter n+1
ntl __ pwrtl = gm 2
2SAy,Ay_¢ 2 BV 9 (2.23)
Zr}+1 1 Wn+1 I — 2 Wn+1 1 Wn+1 q (2 24)
! AyiAyy Tt T Ayl Ay Ay;Ay_ i '
where Ay; = (yj41 — ¥j-1)/2, Ayy = Yj+1 — ¥;, Ay- = y; — y;j—1. The variable

grid spacing Ay; expands from a minimum of Aypyin = 10'5 near the singular

surface t0 Aymqse = 0.5 near the compr:ational boundaries ..ccording to the
Aymi )(J‘j)- 1)

Aomin , where J denotes the boundary

prescription Ay; = Ayma,(
grid point. Up to 240 grid points were «_.d.

The purpose of Eq. (2.24), which is a finite difference form of Z(¢,y) —

W"(t,y) = 0, is to enable the numerical calculation of the fourth order viscous

term Siv%‘yvf in Eq. (2.3), while maintaining the tridiagonal form of the finite

difference equations:
—A; UM + BjU_;‘“ - CJ-U}‘_“"I1 = P}, (2.25)

where A, B, C are 3 by 3 matrices and U, P are 3-dimensio: ' vectors. Equa-

tion (2.25) is solved for U by using Gaussian elimination.
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The time step At was selected so that At < min {(vr)™?, (5v1)~1},
and the simulation was evolved for N time steps until only the fastest growing

mode is present in the solutions. Usually the number of time steps satisfied

50 < N < 500.

From the complex solutions W (¢,y) and (¢,y), which are symmetric
or antisymmetric relative to y = 0 [the symmetries are determined by the
functions F(y) and G(y) in Egs. (2.3)-(2.4)], the growth rates were obtained in
two steps (see Fig. 2.2). First, the real part of the growth rate vg is found by
fitting a straight line to the logarithm of W (¢, yo) (where yo is an arbitrary point
in the domain). Next, the exponential trend is removed from the solutions and
a Fast Fourier Transform (FFT) is performed on the remaining oscillatory part.
of W(t,yo), which thereby determines the imaginary part of the growth rate
7v1. If more than one overstable mode is present at the same time, the resﬁlt
of the FF'T will show a corresponding number of well defined peaks, indicating
the values of the 4;. This occurs when the real parts of the two modes have

very close values:

exp(YRitm)ezp(—7vRatm) ~ 1, (2.26)

where ¢,, = NAt. If the modes are purely growing (no time-dependent oscilla-

tions are present), then only the first step in the above method is performed.

2.5 Numerical Results

The method of finding the complex growth rate (Sec. 2.4) is clarified
in Fig. 2.2. In Figs. 2.3-2.11 we present the results of computer simulations of

tearing mode instability. In Figs. 2.3-2.5 the spatial behavior of the complex
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solutions W (to,y) and t(to,y), normalized to their respective peak values, is
presented. In what follows, we have used the normaiizations ¥ = By1/Byimas
and W = —iV,1/Vy1maz, where the absolute maximal values are given in Ta-
ble 2.2. Figures 2.6, 2.8-2.10 show the various scalings of the growth rate, as
in Egs. (2.18)-(2.21). In Fig. 2.7, the dependence of the growth rate v on the

shear parameter R, for sech and tanh flow profiles is shown.

In Figs. 2.3 and 2.4 the constant-1 solutions are shown. This is clearly
seen from the fact that the tearing layer, defined by the inner peak of Wp, is
located in a region where g is constant. The presence of flow introduces
the imaginary parts of the perturbed quantities and the outer peak in Wpg, as
compared to FKR type solutions (see, for example, Steinolfson and Van Hoven,
1983). The inviscid solutions in Figs. 2.3a and 2.4a agree with the results in Ein-
audi and Rubini (1986). The figures of the eigenfunctions as given by Einaudi
and Rubini are drawn with a linear scale in the y-direction, rather than loga-
rithmic scale used in this chapter. In Fig. 2.3a the equilibrium magnetic field
was (2.5), the flow profile was tanh (2.6), and the velocity shear, determined by
V =1.0 and R = 0.73, was comparable to the magnetic field shear. The anti-
symmetric solutions, namely, Wg (short dashes line) and 1; (long dashes line),
for the positive and negative values of y are plotted on the positive logarithmic
y axis. The solutions in Fig. 2.3b are for the same parameters as in Fig. 2.3a,
but they include viscosity comparable to resistivity S = S, = 106. Its effect is
to reduce Wg and 9y relative to 1p (see Table 2.2) and therefore, reduce the
reconnecting fields and the growth rate. Figures 2.4a-2.4b show the behavior
for a sech equilibrium flow. In Fig. 2.4b the antisymmetric solutions are Wx
and Wy (dashed line). The solid line is 15 and in this case it merges with the
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Table 2.2: The maximal absolute values of the solutions in Figs. 2.3-2.5.
Fig. 2.3a Fig. 2.9b Fig. 2.4a Fig 2.4b Fig 2.5a Fig. 2.5b

YR 1.000 1.000 1.000 1.000 1.000 1.000
Yr 0.145 0.129 0.218 0.049 1.798 2.156
Wgr 0.145 0.129 0.060 0.014 1.851 2.166

Wr 0.897 0.898 0.271 0.271 0.984 1.081

normalized i that has similar shape. The effect.of viscosity on this solution
is shown in Fig. 2.4b. The inner peak of W; has practically disappeared, and
the growth rate is smaller than in Fig. 2.4a.

In Figs. 2.5a-2.5b a nonconstant-i tearing mode is shown. In other
words, most of the spatial variation of the perturbed flow Wjg is confined to the
region of the maximal variation of ¥p. Viscosity, in Fig. 2.5b adds additional
features to the eigenfunctions, reducing slightly the.growth rate. The more
complex dependence of the solutions on y is due to the mixing of Kelvin-

Helmholtz and tearing instabilities.

The scaling of the growth rates for the inviscid case is presented in
Fig. 2.6. The lower line represents the analytical scaling and has a slope of —1/2
on a log-log scale. It fits very well the calculated points that were obtained from
the type of solutions shown in Fig. 2.3a, having values of resistivity S = 103 —
107, and it agrees with the analytical results iﬁ Table 2.1 for the Consta.nt-xﬁ case.
The lower the resistivity (higher S), the closer the inner peaks of Wg and v; are
to the singular surface y = 0, while W} and 15 remain almost unaffected. This
result is expected from the analytic scaling of the inner layer width ¢ ~ $-2/5
(small shear, Fig. 2.6b) and € ~ S~/3 (high shear). The upper line of Fig. 2.6a
has a slope of ~1/3, in good agreement with the calculated points from the

solutions shown in Fig. 2.5a and the nonconstant-i tearing mode (Table 2.1).




21

The dashed curve is the imaginary part of 4 for the nonconstant-1 case. The
oscillations of the fluid appear due to K-H instability and therefore exhibit a
different behavior than g that is dominated by tearing.

The dependence of the growth rate on the shear parameter R is shown
in Fig. 2.7 for tanh flow profile (empty circles), and sech profile (full circles).
Here vp agrees with Einaudi and Rubini (who used a different numerical ap-
proach). For small values of R the FKR growth rate is recovered. When R is
of ord : unity (R = 0.73), the tanh profile, produces a peak in the growth rate,
which satisfies conditions (2.15), (2.17) and scales as $~'/% in (2.19). The sech
profile, produces a different behavior for R > i, namely the solutions become
non constant-i solutions and the tearing mode is further destabilized. The
nonconstant-1 is most evident for 2 < R < 3 with V = 1.0. At R > 4 a
transition to ideal K-H instability occurs (Einaudi and Rubini, 1986, Chen = .
Morrison, 1990a). The oscillating part .a,ppea,rs in the nonconstant-i regime

and reaches its peak value near the transition point to ideal instability.

The matching quantity A’ was estimated numerically for the solutic-
in Figs. 2.3-2.5 by calculating ¢'/1 near the singular layer. I: s found tL
A’ is drastically affected by the flow in the outer region (e.g. by .ae value of R),
while almost unaffected by the resistivity. For the constant-1 case A’ ~ O(10)
and for nonconstant-¢ case A’ ~ O(100) in agreement with the analytical
calculation of Chen and Morrison (1990a).

When the viscosity is comparable to or larger than resistivity, and no
shear flow is present, the classical FKR scaling (2.13) changes to (2.21). In
Fig. 2.8 the dependence of the growth rate on S, is shown. TL ne with the

theoretical slope of 1/6 agrees wi' the calculated points, which ..ave a least
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mean square slope of 0.168. In Fig. 2.9 the dependence of the growth rate on
@ (Eq. 17c) is verified and is found to agree well with the analytical result
in the range 0.02 < @ < 0.2 . When @ is very small, the influence of flow
on the matching quantity A’ should be accounted for in the analytical growth
rate scaling, thereby modifying (2.20). (Note that in the numerical solutions,

¥ and ¢’ are continuous everywhere, therefore A’ is not well-defined).

The dependence of the growth rate on viscosity for the sech profile
is presented in Fig. 2.10. For R = 0.44,V = 1.0 the analytical scaling of S1/¢
is recovered (lower straight line). For R = 6 (high shear) the tearing mode
is stabilized, and the instability becomes a Kelvin-Helmholtz mode. The K-
H instability is practically unaffected by intermediate to low viscosity (&, ="
10*—10®), but for higher viscosity, when the viscous time scale is comparableto
the instability growth time scale, the mode is stabilized (S, < 10%) in agreement
with the results found by Einaudi and Rubini (1989). It is interesting to note
that the imaginary part of the growth rate exhibits similar behavior to the real

part, unlike 47 in Fig. 2.6 where both K-H and tearing instabilities are present.

' In Fig. 2.11 an example of the dependence of 4; on viscosity is shown.
For the sech flow profile, R = 6 and S, = 10° (Fig. 2.11a) only one value for ~;
is found, and it corresponds to the fastest growing mode. When the viscosity
is increased and S, = 10° , two overstable modes are present in the solution
(Fig. 2.11b) due to condition (2.26). The growth rate of the fastest growing
mode for this value of viscosity has a local minimum (with respect tq,Sv), and
is shown in Fig. 2.10. When the viscosity is further increased to S, = 104,
the difference between 7&1 and 7g; increases, and the magnitude of the second

mode in Fig. 2.11c becomes very small compared to the fastest growing mode.
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The boundary conditions in the above solutions required exponential decay of
the solutions to zero at infinity, Eqs. (2.8)-(2.9). We have found that using
conducting wall boundary conditions at large y > 10 would not change the

results significantly.

2.6 Summary and Discussion

The results of an analytic boundary layer approach were compared
to numerical solutions of the time-dependent, linearized, resistive, and viscous
MHD equations (2.3)-(2.4) for various values of the parameters a, R, V, S and
Sy. In general, a very good agreement with the analytical growth rate scalings
was found. Therefore, the approximations used in analytical theory to find the
growth rate scalings are found to hold. The spatial variations of the solutions,
that were not found analytically for the viscous and inviscid cases with flow,
have been presented. A nonconstant-i tearing mode and its parameter range
have been found numerically to be in agreement with the analytical predic-
tions. The numerical growth rate scalings have been calculated and found to
agree with the analytical ones, within the given range of their parameters. The
time dependent linearized MHD Equations (2.3)-(2.4) for tearing mode insta-
bility were solved numerically, without further approximations, in the region
of interest. An implicit variable grid tridiagonal finite difference scheme was
used to obtain the numerical solutions, and Fast Fourier Transform techniques
were used to find the imaginary part of the growth rate after the real part, the
exponential growth rate ygr was found. When the shear flow was very small
(V < 0.1, R < 0.1), in the inviscid case the classical FKR growth rate and

inner layer scalings were recovered. When viscosity is present, the growth rate
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scaling is changed to 4, ~ S~%/3 (%‘L)l/e. For the tanh profile, when the shear

%g% ~ 1 and S, = S it has been verified that the growth

flow was large, i.e.
rate scales as yp ~ [1 - (%—%)2] 1/3. For the sech profile, a transition from the
constant-i) to non constant-i tearing mode was observed to be driven by the
flow in the outer region (outside of the tearing layer). In particular for a = 0.5,
§ =10°%,V =1.0 and 2 < R < 3 the nonconstant-¢ tearing mode is obtained,
with the analytically predicted growth rate scaling yg ~ S~1/3. In case of the
tearing mode, small and intermediate values of viscosity , S’,, = 107 — 103, lower
the growth rate. For the sech profile and R > 4, Kelvin-Helmholtz instability
is dominant; it is-stabilized for higher values of viscosity (S, < 10%) when the
viscous time scale is comparable to the growth time scale. The advantage of the;,
time dependent approach over time independent methods (such as those used
by Einaudi and Rubini, 1986,1989) is clearly seen when relatively short time
scale simulations are performed, where more then one oscillating mode in the
magnetic and velocity perturbations is present. This is particularly important

for the generalization of the problem to non-linear studies (see Steinolfson and

Van Hoven, 1984, and Chapter 4).
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Figure 2.2: The oscillating and exponentially growing components of the solu-
tions.

(a) The time dependent solution =*log|#r(t,¥0)|- (b) The linear fit to the
maxima of log|Yr(t,¥0)| . The slope of this line determines yr. (c) The
solution 1r(t,0), with only the oscillatory part remaining. Performing FFT
on it determines 47. Note that the initial transition time of 15007, was removed

from the calculations.
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Figure 2.3: The spatial variations of the complex solutions W and % (inviscid
case) normalized to their peak values. The equilibrium flow is G = V tanh(Ry).

The parameters are (a) V =1, R = 0.73, § = 108, = 0.5, and no viscosity.

(b) Same as (a) except with viscosity S, = 10°.
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102

Figure 2.4: Plot of W and ¥ as in Fig 2.2 except the equilibrium flow is

G = Vsech (Ry).
The parameters are (a) V = 1, R = 0.44, S = 10%, a = 0.5, and no viscosity.

(b) Same as (a) except with viscosity S, = 10°.
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Figure 2.5: Same as Fig. 2.3a with (a) R = 2.5. (b) Same as Fig. 2.3b with
R =2.5. .
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Figure 2.6: Growth rate scaling with S.
(a) V=1, R = 2.5, a = 0.5 and the sech flow profile, the non constant-z
case (the squares are the calculated points). The scaling for V =1, R = 0.73,
a = 0.5 and the tanh flow profile (the circles are the calculated points). (b)
The scaling with S of the inner layer width ¢, as defined by the inner peak of
Wh, for the tanh profile with the parameters V = 0.1 and R = 0.5
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and sech (full circles) equilibrium flows. The peak is located at R = 0.73. For

small values of R, the FKR growth rate is recovered.
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Figure 2.8: Calculated numerical growth rate scaling with viscosity parameter

Sy.
The other parameters are S = 108,V =0,a=05.
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Figure 2.9: The dependence of the growth rate on Q.
The parameters areS = S, = 10%, V = 1, a = 0.5. The straight line represents
the analytical dependence of Q/3,
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Figure 2.10: The dependence of the growth rate on S, for sech flow profile and

small shear.

The parameters are V = 1, R = 0.44, « = 0.5. The analytical scaling is
recovered (empty circles). For R = 6, the transition to ideal Kelvin-Helmholtz
instability occurs (the squares are the calculated points).
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Chapter 3

Linear Studies of the Double Tearing Mode with
Equilibrium Shear Flow and Viscosity

3.1 Introduction

The double tearing mode requires two tearing layers that are close
enough together to allow nonconstant-i effects to enhance the growth rate +.
The analytic linear theory of the single tearing mode in slab geometry with
equilibrium shear flow and viscosity has been considered by several authors
(Dobrowolny et al., 1983; Paris and Sy, 1983; Poricelli, 1987; Chen and Morri-
son, 1990a, 1990b). They conclude that flows, approaching the Alfvén velocity
can greatly modify the stability criteria of the single tearing instability. This
was shown to hold numerically in the linear regime in Chapter 2 and by Einuadi

and Rubini (1986, 1989), and Ofman et al. (1991).

There is evidence that the double tearing instability has been observed
in fusion devices with non-monotonic current profiles in the plasma column
(Stix, 1976), and it is also believed to be important in solar flares (Spicer,
1977; Priest, 1985). Large shear flow motions have been observed between the
footpoints of solar flares, and along the field lines (Wang and Zirin, 1990). The
instability without equilibrium shear flow has been studied by several authors
(Furth et al., 1973; Lee et al., 1979; Carreras et al., 1979; Dnestrovskii et al. ,
1979; Pritchett et al.,1980; Kerner and Tasso, 1982; Mahajan and Hazeltine,
1982; Gatilov et al., 1989), and has been subject to few experiments.

35
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Thé effect of equilibrium shear flow on the double tearing mode has
not been considered previously, despite the fact that such coupling of shear flow
and double tearing may occur in fusidn devices and space plasmas, and may al-
ter the behavior of the instability without shear flow considerably. For instance,
equilibrium shear flows can partly stabilize the mode, modify the growth rate
dispersion relation, and excite temporal oscillations of the perturbed quantities

for relatively small values of flow shear at the tearing layers (see, Secs. 3.3-3.4).

Here, the double tearing mode with equilibrium shear flow parallel
to the magnetic field is investigated via MHD simulations. The chapter is

organized as follows. In Sec. 3.2 the initial magnetic field configuration, the

equilibrium shear flow profiles and the boundary conditions that excite, the-

double tearing mode are presented. In Sec. 3.3 the linear growth rate dispersion
relation is presented, and in Sec. 3.4 the numerical methods and results are

discussed. Section 3.5 is devoted to a summary and interpretation of the results.

3.2 Model Equations

We use the linearized time dependent MHD Equations (2.3)-(2.4) with

the following forms of F and G for the double tearing mode:
F(y) =1- (1 + F.)sech (¥), (3.1)
G(Ry) = V [1 — sech (Ry)], (3.2)

where F, = cosh(y,)—1 is determined by the locations +y, where F(y) vanishes
and therefore where tearing may occur. As in Chapter 2 the velocity parameter
V is given in units of V. The spatial dependence of F and G for V = —0.5,
Ys = 0.75, and R = 0.5 are shown in Fig. 3.1. The particular choice of the
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flow profile (3.2) with an even dependence on y is suggested by the types of
flows believed to occur in solar coronal loops, (Priest, 1985; Wang and Zirin,
1990) although the actual shear flow profiles are not well known. The relative
importance of the flow shear with respect to the magnetic shear at the tearing

layers (for symmetric shear profiles) is measured by the parameter R, as defined
by
G'(Ry)

RF'W

In Ofman et al.. (1991) we have shown numerically that when R, > 1 a

: (3.3)

y=zty,

transition to the Kelvin-Helmholtz (K-H) will occur. In this study we are
interested in the types of flow profiles with the magnetic field profile (3.2) that
are not subject to the K-H instability. The dependence of the growth rate on
R, is presented in Sec. 3.4. Equations (2.3) and (2.4) are solved numerically
without any further approximations, subject to zero boundary conditions that

are equivalent to conducting walls placed at +|ymaz|:
W(—Iymazl) = W(Iymaa:l) = 0, (34)

"/)(_lymaxl) = d’(,ymaz‘l) = 0. (35)

The value of ymqz is chosen such as to satisfy the condition |ymaz| > |y,|. When
this is satisfied the results of the computations do not depend significantly on
the size of the system. The assumption of incompressibility is justified by using
small flow at or near the resonant surfaces where the growth of the instability
occurs. We will show later that it is the equilibrium shear flow in the vicinity
of the resonant surfaces that determine the mode structure and growth. The

values R, are less than one in all the cases considered in this work. The values
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- of the flow at the computation boundaries are 0.57V, for the simulation with

Ys = 0.75, Ymaz = 3.01, and 0.34V, for y, = 0.15, Ymaz = 1.0 considered below.

3.3 Dispersion Relation

The doubie tearing dispersion relation is generalized here to accommo-
date equilibrium shear flow. Later the analytical growth rates will be compared
with the numerical solutions of Egs. (2.3)-(2.4) and thereby test the numerical
procedures (see Fig. 3.3 in Sec. 3.4). In order to include the flow shear at

the resonant surfaces and the viscosity for the general flow profiles, one has

to follow the steps of Chen and Morrison (1990a, 1990b) with the boundary

conditions and matching appropriate for two adjacent resonant surfaces. This’

substantially more complicated derivation is not the aim of the present work.

Here, the simplifications arising from the centrally peaked, symmetric (with

respect to y = 0) shear flow profile are used in the derivation. The growth rate
of the instability is found from the linearized Fourier-transformed Egs. (2.10)-
(2.11) neglecting the viscous term and using the boundary layer approach. The
physical domain is divided in to two types of regions; namely, an inner resis-
tive region near |y,| in which |F| < 1, |G| < 1, where resistivity cannot be
neglected in Ohm’s law, and an ideal outer region in which the resistive term
can be neglected and the ideal MHD equations are used. It is assumed that
near the rational surfaces o? <« 9%/9y?, and F(y) is linearly expanded around
Ys- It is further assumed for simplicity that the flow (3.2) can be approximated
by

0, if |y| < ys,
G(Ry) = (3.6)
Go = const. if |y| > y,.
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Figure 3.1: The initial equilibrium noyrmalized magnetic field F(y) and shear
flow G(y) given by Eqs. (3.1) and (3.2), respectively.
The parameters are y, = 0.75, R = 0.5, V = —0.5, and R, = 0.132.
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Where Go is a measure of the flow in the outer region and is constant for a
given flow profile. Next, since the flow shear is important near the tearing
layers we match the outer region equations with constant low Gy to the inner
region equations with G(Ry) = 0. This amounts to the incorporation of an
effective flow shear in the solution. The value of Gy is determined by

Go—G(0) _ G
Ry, -0 B Ry,

G'(Ry,) ~

and G'(Ry,) obtained from Eq. (3.2) is the flow shear at the tearing surfaces.

Note, that in the limit Ry, — 0 the above expression (3.6) is exact, and that
|Go| = R,|F'(ys)Rys|- The inner resistive equations then become

1% = YF (y:)(y = ys)b + 5", (3.8).

7211)// — —azF'(y,)(y _ ys)¢ll (39)

where & = iaW/v. In the ideal regions, the resistive term is neglected in

Eq. (2.11), and the flow velocity is Gy, leading to

wFW
= 7+ iaGy’ | (3.10)

which is then substituted into Eq. (2.10) to obtain

gd,; {[(7 +iaGo)? + F?| ‘;—‘;’} =a? [(7+4aGo)? + FYw,  (3.11)

where w = 1aW/(y + iaGp). The above non-resistive equation describes the
double kink mode with flow in slab geometry. It is solved asymptotically in

terms of a power series expansion with the boundary conditions

0, if [y| > y,,
w(y) = (3.12)

wo = const. if |y| < y,.

(3.7)
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The form of Egs. (3.8)-(3.11) is s.. . ar to those obtaine in Pritchett
et al. (1980) for the double tearing mode witiiout flow. Following the procedure
of Pritchett et al. we equate the solution of Eq. (3.11) near |y,| in the limit
[aF'(ys)(y — ¥s)]/ (¥ + iaGo) — —o0 to the external first-order solution. We
thereby Doppler shift ti:cir solution and obtain the following growth rate -, of
the double kink mode with flow

3

ra ) i " Fly')dy’ — iaG,. (3.13)

™= FG b

Finally, matching the external and internal solutions we use the dispersion
relation with G = 0 of Pritchett et al., which was derived in detail by Coppi
et al.(1976), and obtain the double tearing dispersion relation corrected for

shear flow

(=7*)

y‘ "2y — = 8b~3/24 -5/4F
F'(y,)/ )2dy' —iaGo = 86~ — e

: (3.14)
I (=)

where b = ﬁ:—‘j and T is the complex gamma function. When Gg = 0, the

results of the double tearing mode without flow are recovered in agreement
with Pritchett et al. (see, Fig. 3.3). When Gy # 0 Eq. (3.14) expands to the
complex piane and exhibits rruch more complicated behavior than for Go = 0.
The solution now can have iuore than one branch for a given parameter set.
Therefore, one needs to place additional constrains on the solutions of Eq. (3.14)
for the growth rate. Reasonable requirements are yg > 0, 77 > 0 for growing
overstable modes. It is interesting to note that the Doppler shift in the growth
rate of the external Eq. (3.11) affects both the real and imaginary part of the
growth rate in Eq.(3.14). Fina.lly, the condition for small separation of singular

surfaces (Pritchett et al., 1980) that was used to select y, in the numerical
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calculations:
Yy, < a”7/9851/° (3.15)

holds for the case with flow. In the following section the above analytic re-
sults are compared to the numerical calculations and are used as a guide for

investigations in the parameter space of the double tearing mode.

3.4 Numerical Results

Since the method of solution is described in detail in Chapter 2, Here
only a brief discussion of relevant details is presented. The variable grid spacing
used expands from a minimum of Ay, = 10~2 near the singular sur?;ées;;
to AYmaz = 0.5 near the computational boundaries. When the computation
domain, and § are small (|[ymaz| < 2, S < 10%), a fixed grid with up to 500 grid
points is used. The time step At is selected so that 6t < min(yg',0.297?), and

the simulation is evolved for NV time steps until only the fastest growing modes

are present in the solutions. The number of time steps required is usually in :

the range 100 < N < 500. As in Chapter 2 the growth rates are obtained from
the complex solutions in two steps. The real part of the growth rate ~r is first
found by fitting a straight line to the logarithm of the solutions. Next, the
exponential growth is removed from the solutions and an FFT is performed on
- the remaining oscillatory part, which thereby determines the imaginary part of
the growth rate ;. If the modes are purely growing, then only the first.step in

the above method is performed.

The results of the numerical computations are presented in Figs. 3.2-

3.6. The spatial variations of the perturbed magnetic field % and the perturbed



43

flow W are shown in Fig. 3.2. In Fig. 3.2a the parameters are S = 10°,
Sy, =10°, a = 0.5, V = —0.1, and R = 0.5 (the value of R is not changed
in Figs. 3.2-3.6). The separation y, is large in Fig. 3.2a (y, = 0.75) and
small in Fig. 3.2b (y, = 0.15). Note the rapid variation of W across the two
tearing layers and the location of the sharp peaks that indicate the width of the
resistive regions. It has been found that large viscosity reduces the sharpness
of the peaks and widens the effective width of the resistive region ¢; this effect
is compatible with the single tearing mode scaling of the tearing layer width
with the Reynolds number; i.e. € ~ S;'/3 (see, Chen and Morrison, 1990b).
Also, setting Ymar = 1.0 for y, = 0.15 and yp., = 3.0 for y, = 0.75 the
condition [Ymas| > y, is satisfied, that is evident from the negligible values of
the perturbations near the boundaries as compared to their values near the
tearing layers. In Fig. 3.2b the separation y, = 0.15 is small according to
condition (3.15) thereby resulting in a nonconstant-1 tearing mode that scales
as yp ~ S~Y/3, For large flow, say V = —0.5 as in Fig. 3.2c, the double tearing
mode is significantly different from that in Fig. 3.2b where V = —0.1. The
effect of flow is evident in the external regions adjacent to the tearing layers
where partial decoupling of the nonconstant-3 tearing occurs and results in a

lower growth rate.

Analytical and numerical growth rates and their dependence on R,
are presented in Fig. 3.3 with the parameters S = 10°, « = 0.5, and y, = 0.15.
When R, < 0.4 the agreement of the growth rates is very good. For R, > 0.4
both growth rates exhibit a decrease with R,. The numerically obtained growth
rate decrease at a higher rate with R, than the growth rate obtained from the

solution of Eq. (3.14), possibly due to the underestimation of the flow shear in
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the approximations [Eqs. (3.6)-(3.7)] used to derive the dispersion relation. It
has been found that the analytical dispersion relation yields a decrease in the

growth rate when the shear is increased for both positive and negative values

Of Go.

In Fig. 3.4 the dependence of the growth rate 4z on the resistivity
for y, = 0.15 is shown. The top three curves are for o = 0.5, and the bottom
two curves are for o = 0.05. The circles correspond to V = —0.1 (R, = 0.025),
the triangles to V' = ~0.5 (R, = 0.125), and the squares to V = —2.25 (R, =
0.564). When the rational surface separation is of the order of the resiéi;ive
layer width, the growth of the double tearing mode is suppressed, while for
small resistivity it scales as 7 ~ S~1/3, thus leading to the peaked behavior
in Fig. 3.4. For a = 0.05 aﬁd V = —0.5, the values of the growth rate are
an order of magnitude smaller than those for & = 0.5 and V=-0.5. When
« = 0.05 and V = —2.25 the growth rate decreases significantly with respect
to the case where @ = 0.05 and V = —0.5. Thus the contribution of long
wavelength perturbations to the growth of the double tearing mode is small.
To summarize, the main result in Fig. 3.4 is that flow has a stabilizing effect
on the growth rate for all calculated values of S and «, and the decrease of the
growth rate with R, is more significant when the resistive layer width is large

compared to y,.

In Fig. 3.5 we examine the dependence of the complex growth rate
on the equilibrium shear flow at the resonant surfaces with a = 0.5, ys = 0.15,
S =10% and y, = 0.75, S = 106. The numerical values of the shear flow at the
resonant surfaces and the corresponding growth rates are presented in Table 3.1.

When y, = 0.15 and S = 10, the real part of the growth rate decreases by an
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order of magnitude for R, = 0.752, and V' = —3.0, as compared to the case
where V = 0, while the flow shear at the resonant surface is G'(y,) = +0.11.
When y, = 0.75 and S = 10, the real part of the growth rate decreases by an
order of magnitude for R, = 0.237 and V = —0.9 from its value for V = 0.
In this case the flow shear was G'(y,) = £0.15. It is interesting to note that
in both cases the same amount of suppression of the growth rate is achieved
when the flow shear at the tearing layers is of the same order of magnitude,
while the flow is an order of magnitude lower for the small y, than that for the
large y,. The frequency of the temporal oscillations increases with V at a rate
slower than that predicted from the linear Doppler shift for both small and large
Ys. The oscillations dominate the behavior of the double tearing instability, in
contrast to the single tearing mode with flow, where the imaginary part of the
growth rate was always found to be considerably smaller than the real part.

This is in part due to the non-zero flow at the tearing layers used in this model.

The effect of viscosity on the double tearing Iﬁode with y, = 0.75,
S = 10% and o = 0.5 is examined in Fig. 3.6. Small viscosity does not
significantly affect the growth rate. When S, < 102 x S a simple scaling
law behavior emerges. For V = 0 and V = —0.1 the scaling is 75 ~ S%2,
when V' = —0.5 the double tearing mode approaches the standard tearing
mode growth rate scaling with viscosity yr ~ S1/6. This further indicates that
large flow reduces the nonconstar - effe .5 and has a stabilizing effect. The
imaginary part of the growth rate was found to be independent of viscosity,

and it increases with V' (see, Fig. 3.5).
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Table 3.1: The values of the flow parameter V, the shear at the resonant
surfaces R,, and the growth rates for y, = 0.15, § = 10%, and y, = 0.75,
S =10° with R = 0.5.

ys = 0.15 Yy, = 0.75
174 R, YR I R, YR I
0.0 0.000 4.15-10°3 0.0 0.000 1.69.-107° 0.0

0.1 0.025 4.15- 10-3 8.03- 1075 | 0.026 1.52-103 5.06-10~4" i
-0.3  0.075 3.92-10"® 1.65-10~* | 0.079 8.39-10~* 1.26-10-3
0.5 0.125 3.73-107° 2.77-10~* | 0.132 4.66.10-* 1.72-1073
-0.8  0.201 3.41-10"° 4.00-10~* | 0.211 2.10-10~* 1.96-10-3
-1.0 0.251 3.14-107% 4.94.107* | 0.263 1.34-10~* 2.07-1073
-20 0501 1.67-107% 8.09-10"¢
-26 0.652 7.84-10"* 9.29.107*

-3.0 0.752 2.41-10* 9.89.10"*
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3.5 Summary and Discussion

We have investigated the double tearing mode instability with shear
flow by numerically solving the resistive MHD equations with equilibrium mag-
netic field and shear flow. Comparison with the linear dispersion relation was
made. The enhancement of the growth rate due to nonconstant-i effects in
the double tearing mode without flow is reduced by the presence of signifi-
cantly large shear flow at the tearing layers (R, < 0.8). A stabilizing effect was
found for both large and small surface separation. Shear flow induces temporal
oscillations of the perturbed quantities, and the frequency of the oscillations
increases with V' at a rate lower than that expected from a simple Doppler shift
of the frequency. Overstable modes were found from the analytical dispersion
relation, and their values are in good agreement with those obtained numeri-
cally. We have also calculated several cases with a flow profile that has an odd
dependence on y [i.e., G = V tanh(Ry)] and found that for small V and R that
the flow has a stabilizing effect comparable to that obtained with (3.2), but for
larger V or R (such as R, > 1) and with the magnetic field profile (3.1) the
double tearing mode was further destabilized by the K-H instability.

The effect of viscosity on the double tearing mode was also investi-
gated numerically. When S, 3> 10% x S the viscosity had no significant affect
on the growth rate. When S, < 102 x S, it had a stabilizing affect, and the
growth rate exhibited a power law dependence on S,. In the presence of large
flow the growth rate scaling with viscosity approximates that of the standard

tearing mode scaling, namely, yg ~ S8, and +; is independent of viscosity.

Double tearing instability with flow exhibits a complicated behavior

in the physical and parameter space, and is significantly modified by the pres-
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ence of shear flow. The main result of the present work is that equilibrium
shear flow has a stabilizing effect on the double tearing instability. As a re-
sult, fusion devices with non-monotonic current profiles and equilibrium shear
flows may be less unstable than those with monotonic current profiles that are
subject to the development of the usual single tearing mode. Suggestions that

the double tearing mode may explain the fast evolution times of solar flares
must be re-examined when shear flow is present due to its stabilizing effect, as

demonstrated in this chapter.
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Figure 3.2: The spatial dependence of the complex perturbed magnetic field ¥
and flow W. '

(a) The parameters are S = 10%, @ = 0.5, y, = 0.75, V = -0.1, S, = 10°, and
R, = 0.026. (b) Same as (a), but with y, = 0.15, and R, = 0.025. (c) Same as
(b) except S = 104, @ = 0.5, V = =0.5, and R, = 0.125.
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Figure 3.3: Growth rate dependence on R,
The growth rates obtained from Eq. (3.14) (solid curve) are compared with the
growth rates obtained from the numerical MHD simulations (empty circles).
The parameters are R = 0.5, y, = 0.15, S = 108, and a = 0.5. The value of
the growth rate with G = 0 is shown (dotted line).
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Figure 3.4: Growth rate dependence on S.
The parameters are y, = 0.15, « = 0.5 (top three curves), and a = 0.05 (bottom
two curves) with V = —0.1, R, = 0.025 (circles), V = —-0.5, R, = 0.125
(triangles), and V = —2.25, R, = 0.564 (squares).



52

1072
Y |
10'3:
10’4:'

: 5 Im yS=O.15

L . P,

= =O.75

. ====&-=- Im ys
10-5 i L bt 2 1 3 1 A 'y PR S W U ST 1
.01 .| 1
R;

Figure 3.5: The dependence of the complex growth rate 4 on the shear param-
eter R,.

The parameters are y, = 0.75, § = 108, (circles), and y, = 0.15, S = 104
(squares) with a = 0.5, B = 0.5.



53

10" 2
[ V=-0.1
Yr
L | e V20,0
| m———— V=-0.5

107 3|

10 4L
1¢

Figure 3.6: Growth rate scaling with viscosity parameter S,,.
The parameters are y, = 0.75, S = 10*, o = 0.5, V = 0 (dotted curve),
V = —0.1 and R, = 0.026 (solid curve), V = —0.5 and R, = 0.079 (dashed

curve).



Chapter 4

Nonlinear Evolution of the Tearing Mode with
Equilibrium Shear Flow

4.1 Introduction

Nonlinear saturation of the tearing mode occurs within one or sev-
eral growth times and the growth slows down from exponential to algebraic
(Rutherford, 1973). Numerical evolution of the nonlinear tearing mode (with-
out flow) in slab geometry was studied by Schnack (1977), and Schnack and
Killeen (1979) using the finite difference alternative direction implicit (ADI)
approach. The energetics, growth rate and spatial behavior for several values
of resistivity and for both constant-1 and nonconstant-1 regimes were investi-
gated by Steinolfson and Van Hoven (1984). The effect of plasma rotation on
the nonlinear tearing mode was considered recently by Persson and Bondeson
(1990), and Persson (1991). They solved the reduced MHD equations with the
spectral approach, and found that when flow is sufficiently strong, the viscos-
ity sufficiently small, and the m = 2/n = 1, m = 4/n = 2 modes are present,
the nonlinear evolution of the tearing mode can lead to nonlinear oscillatory
behavior. These nonlinear oscillations were obtained analytically by Chen and

Morrison (1991) using center manifold reduction.

In Chapter 2 we studied the linear evolution of the tearing mode |

with equilibrium shear flow parallel to the magnetic field. Here, the nonlin-

ear evolution of the tearing mode is investigated numerically via solution of

54
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the incompressible two-dimensional resistive MHD equations in slab geometry
using the finite difference ADI method. We find that the presence of equilib-
rium shear flow can reduce magnetic energy release, increase the saturation
time, and can affect the topology of the field and currents generated by the
instability.

This chapter is organized as follows: In Sec. 4.2 the nonlinear MHD
equations in slab geometry, the initial magnetic field configuration, the equi-
librium flow profiles and the relevant conservation relations are presented. In

Sec. 4.3 the numerical method of solution is presented. Section 4.4 is devoted

to the numerical results, and a summary is given in Sec. 4.5.

4.2 MHD Equations

We use the MHD model presented in Chapter 1, and choose the 2-D

equilibrium magnetic and velocity fields to be of the form:
V=Vi(y)ex+VidXxe;=V,0 x ey, (4.2)

where ¥ and @ are the total flux and stream functions, and v, ¢ are the flux

and stream functions relative to the equilibrium quantities By and Vj.

Substituting Eqs. (4.1) and (4.2) in Eqs. (1.1)-(1.4), taking the curl
of Eq. (1.1), thus eliminating the pressure P, and considering the e, and ey

components in dimensionless form, gives the following 2-D MHD equations

51,[)_ aé oY o) d¢ 1
E—_(a—y+c)$+(3—y+l?)a—x+§vi¢ (4~3)
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a(Vig) _ (@+G)m 8¢[dZG+8(V ¢)]+

S ot Oy Oz Oz | dy? dy
9y o(Vig) 0% [¢°F  o(Viy)] . 1 o4
( 3y F) 5 5. | 70z T 3y + = Vig, (4.4)

where Vﬁ_ = ‘%- + 25 % and £ = 0. We have also assumed that the equilibrium
magnetic field is ma,lntained by an external electric field and we imagine that
a similar agent maintains the equilibrium flow. The coordinates are referenced
to the magnetic shear length scale ap, the time to the Alfvén time 7, magnetic
field to B = |Bo(Ymaz)|, Wwhere ymqz is the distance from the tearing layer to
the y-boundary. -

Resistive reconnection of the B, component of the magnetic field
across the tearing layer is measured by the change in the magnetic flux across
y=0

A Tmax a
aby= [
(®) 0 oz’

where .y is one period for the periodic boundary conditions. The nonlinear

(4.5)

growth rate p is given by

a
=001, (4.6)

The growth rate calculated from Eq. (4.6) .agrees with that for linear tearing
(when the instability is in the linear regime) for both V = 0 (Steinolfson
and Van Hoven 1984) and V # 0 (Ofman et al., 1991). Additional relevant

quantities are the changes of the magnetic and kinetic energies relative to the

Y A%
(re50) +(3) -

equilibrium values ; i.e.

AEp(t) /yy’“‘”‘ /x’““ drdy  (4.7)
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AEx(t) = /yym“ /Om“ [(G+ %%) + (%) —Gz} drdy. (4.8)

The total energy is given by

Etot(t) = AEM(t) + AEK(t) + Ero + Exko, (4.9)

where Epro and Ekq are the initial magnetic and kinetic energies stored in the
equilibrium shear flow and magnetic field. Because of resistive and viscous

dissipation F,, satisfies

dE,'t ot Ymax /-‘L‘max [ J ’ 1 ’ ]
— ~Z(J- - - 4.1
7 —2/3,- A S(J F) va(w G|, (4.10)
where J = —V?3 is the nonequilibrium current in the z-direction, and w =

~V?4 is the nonequilibrium vorticity. The resistive dissipation of the magnetic
helicity, which is given by
i/ymax /zmaxibdmdy:—i/m /dea:dy, (4.11)
dt Jy,, Jo S Jymin Jo
is also of interest. Equations (4.10) and (4.11) are valid for the periodic z and
zero y boundary conditions and are used as a means of estimating the quality
of the numerical solutions by comparing ‘he calculated values of the r.h.s and
the L.h.s of the equations. Equation (4.10) is also used to estimate the effective

viscous dissipation that arises in the numerical solution of the MHD equations.

4.3 Method of Solution

We initiate the nonlinear computations with the solutions of the lin-
earized Eqs. (2.4) and (2.3) (see, Chapter 2). The amplitude factors of the
linearized growing solutions are chosen so that the nonlinear terms as calcu-

lated from the linear ¢ and 3, are important. This procedure insures that the
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nonlinear code is initiated at an amplitude where the subsequent evolution of
the mode is in the nonlinear regime (Steinolfson and Van Hoven, 1984). In this
study the normalized spatial wavenumber a = 27/ was 0.5, which implies that
the size of the longest wavelehgth A in the z-direction is 47 in units of ay. As
mentioned, the alternating direction implicit (ADI) finite-difference technique
was used to obtain the nonlinear evolution. The solutions are first advanced
one half time step in the z-direction using the initial linear solutions. Next,
the solutions are advanced another half time step in the y-direction using the
finite difference results in the z-direction from the previous half time step. This

procedure for a single time step is repeated until the full temporal evolution is

obtained. In the z-direction the finite difference form of Eqs. (4.3) and (4. 4) is

given by the following:

2 n n n n n n
P Gyt — P, 46, e /24 8,80 — 6,0%;

At "
2 1 ’
n+1 2 _ n
- ywt] -’D¢ / At —S- Ji',J' (412)
n+1/2 n n+l/2 n+1/2
E ( ¢ +G) :l-‘cJ (G” yw21)6¢

(5 '(/J" +F) b) Jn+1/2+ (F}ll_éyJ::) z¢n+1/2

2

= et (52 +62) Wiy, (4.13)

Sy

where At = t, 4, — t,, and
Jhy=— (24 82) oy, wiy=—(62+8) g%,

The grid spacing in the z-direction is uniform, thus the finite differences are

given by

s ¢7_1. — ?+1»j — d)?—l:j 52t = ?+1,J 2¢ 1,5 + ¢x—1]
A 2Az T (Az)? ’
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where Az = (241 — 2;.1), while in the y-direction

8,40, = 1 (¢3i+1 — ¥ + ri — 3:‘—1)

T2\ Y — Yi—Yji-1 )’
527, = 1 (‘bi'fm'— i Vi~ ffj-l) .
Y i — g \ Y Y Y= Y

The variable grid spacing Ay; = y;41—y; expands from a minimum of Ay, =
1073 at the tearing layer to Aymax = 0.5 near the computational boundaries

according to the prescription

ij = Aymax (Aymm

(jmax—j)/(jmax—1)
Aym)

, (4.14)
where jmax denotes the boundary grid point. Up to 200 grid points in the
y-direction, and up to 64 grid points in the z-direction were used. Constant
grid spacing in the y-direction was also used for low S values. Fourth order
smoothing (Strauss, 1978) was applied to the solutions away from the tearing

layer. Equations (4.12)-(4.13) are written in tridiagonal form

—AY U + Br U - or uphft = Dy (4.15)

—l,j ’vj,

where A, B, C are 2 by 2 matrices, and U, and D are two-dimensional vectors.
Equation (4.15) is solved for U using Gaussian elimination. For the next half
time stepn — n+1/2 and n +1/2 — n + 1 in the above Egs. (4.15), and
the solutions are advanced one time step. The boundary conditions are P(y =
TYmax) = 0, (¥ = +Ymax) = 0, where ymay is the distance to the boundary
from the tearing layer, and both v and ¢ are periodic in the z-direction. Due to
the presence of the symmetry breaking equilibrium shear flow one cannot use
the simplifying symmetry assumptions that enable the solutions of the MHD

equations to be computed in one quarter of the present domain (Steinolfson and
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Van Hoven, 1984). Also, to impose the periodic boundary conditions requires
three passes through the mesh for each integration in the z-direction (Schnack,
1977). Only two passes through the mesh are necessary in the non periodic

y-direction.

For a fully implicit scheme the time step At is limited to the size of
Ag; ie., At < Az (Pritchett et al., 1980). In our case the terms higher than
second order are treated explicitly, and it has been found that the relation
At < Az/2 gives satisfactory results. When nonconstant grid spacing is used,
Az is one or several orders of magnitude larger than Ay across the tea.rin_g
layer. Reasonable computation times on the Cray II for S as large as 108 alre-
possible with this technique. A typical run with S = 10* takes about 1/2 hour
of CPU time. |

4.4 Numerical Results

In Figs. 4.1-4.15 we examine the spatial structure and the temporal
evolution of the nonlinear tearing mode with flow. In these runs the parameters
were S = 102,104,105, R = 0.73,a = 0.5, and the flow parameter was V = 0,
0.1, 0.2, 0.3, 0.5 for the tanh profile, while V = 0.1,0.5 for the sech flow profile.

The spatial variations of ¢, ¢, ¥, &, and the current Jy = J — F’ after
two resistive times, normalized to their respective maximal values are shown
in Figs. 4.1-4.9. In Figs. 4.1-4.2 the equilibrium shear flow is the tanh velocity
profile, with V' = 0.1 and V = 0.2. In Figs. 4.3-4.4 the equilibrium shear flow
is the sech velocity profile with V' = 0.1 and V = 0.5. The other parameters
are §$ = 10%, R = 0.73, and a = 0.5. When V = 0, ¢ is symmetric with respect

to thez and y axes, while ¢ is anti-symmetric in both the linear and nonlinear
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regimes. When flow is present this symmetry is broken and the perturbations
align themselves with the equilibrium flow, namely, in Fig. 4.1, ¥ and ¢ deform
in opposite directions with respect to the z axis and the distortion away from
the tearing layer increases with V. Similar alignment with the flow occurs for
the sech equilibrium in Figs. 4.3-4.4, but for larger V the values of 3 and é
are distorted more near the tearing layer (where the shear is zero) than away
from it, in agreement with the stabilizing effect of higher shear regions (see,

Fig. 2.1) as expected from the linear theory (see, Chen and Morrison, 1990).

The contour lines of the total flux and stream functions for the tanh
flow éroﬁle at t = 2007, with V = 0.5 and S = 100 are shown in Fig. 4.5.
The velocity and the magnetic field lines are parallel to the contours of ¥ and
®. The magnetic field lines exhibit the saturated island structure, where the
island width is an order of magnitude larger than the tearing layer width e.
Similar island structures appear in the contour plot of ®. The appearance of
the stream function is different from the standard FKR case due to the presence
of the equilibrium shear flow. Note that the z-point in the center of contour
plot of ® is distorted in agreement with the structure of ¢ in Fig. 4.2 and small
distortion of the magnetic z-point appears in the contour plot of ¥. We present
the low resistivity solutions with § = 10, V = 0.1, and the sech flow profile
at t = 20007, in Figs. 4.6-4.7. In Fig. 4.6 contours of ¥ and & are shown,
while in Fig. 4.7 displays the contours of % and ¢. The saturated magnetic
island structure is evident in the contours of ¥ . The width of the islands is
an order of magnitude larger than the width of the tearing layer. For S = 10*
both the tearing layer width and the island width are smaller than for S = 102

as expected from the linear ¢ scaling with resistivity. The appearance of sharp
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features along the y axis indicates the narrow tearing layer. It is interesting
to compare the contours of ¢ in Fig. 4.7 to the contours of ¥ in Fig. 43. In
both figures similar sharp features form along the y axis, indicating that the
tearing layer is narrow compared to the high resistivity, low shear flow cases.
In Fig. 4.7 this is due to the low resistivity (S = 10* with V = 0.1), while in
Fig. 4.3 this is due to the high shear flow (V = 0.5 with S = 10%). For the sech
profile the flow near the y axis is small compared to the flow away from the y
axis, and thus the contour of ® shows a relatively flat region of width a, along
the y axis, where ¢ and its vortices are dominant. The effect of the narrow

boundary layer is clearly seen in Fig. 4.7.

The current Jr for V = 0 and V = 0.3 (tanh velocity profile) is shown
in Fig. 4.8. When V = 0 the current is symmetric with respect to the z and
y axes, its maximum Jyma, occurs near the center of the slab, and it points in
the negative z-direction. When V' = 0.3 the current has a more complicated
two-dimensional structure, again aligned with the equilibrium flow. Additional
regions of significant current appear far from the tearing layer, around y = +2.5
with |Jr(z,2.5)/ Jrmax| ~ 0.2, thus the flow generates significant currents in the

external regions of the tearing mode.

We initiate the nonlinear evolution with a single linear mode in the
z-direction. Its wavelength, and hence the size of the computational domain
in the z-direction, is determined by the value of @. In Fig. 4.9 the solutions
¥ and ¢ for the tanh profile with V = 0.3 are plotted as functions of z for
y = 0.5. A single mode corresponding to & = 0.5 (ZTmax = 2r/a = 4r) is

present, and the phase shift between 1 and ¢ is caused by the equilibrium flow.

Detailed treatments of the linear tearing mode with flow are given in Einaudi
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and Rubini (1990), and Ofman et al. (1991).

Figure 4.10 depicts the temporal evolution of the growth rate, the
reconnected flux and the perturbed magnetic, kinetic, and total energies for
eight resistive times (8007;) with V = 0.1, the tanh flow profile, and S = 102.
In Fig. 4.10a we present the temporal evolution of the growth rate (curve A)
and the reconnected flux (curve B). Initially the growth rate calculated from
Eq. (4.6) corresponds to the linear growth calculated directly from the expo-
nential growth of the solutions (Ofman et al., 1991), and the reconnected flux
grows exponentially with time. After 107, the growth rate drops considerably
and the reconnected flux grows linearly with time as expected in Rutherford
regime (Rutherford, 1973). After another 1007, the growth of the reconnected
flux slows to less than the linear rate and after 4007, the mode saturates com-
pletely and the amount of the reconnected flux remains practically constant

with time. The growth rate continues to decrease at an exponential rate.

In Fig. 4.10b curve A represents the change of the magnetic energy in
the z component of the magnetic field AEjy,, (defined by setting 0Y/0z =0in
Eq. (4.7) while curve B represents the change of the magnetic energy in the y
component, AFEyy, (defined by AEy = AEpy, + AFEjy). Curve C corresponds
to the total change of the magnetic and kinetic energies AEys = AFE,, + AE,.
All these quantities are presented on a log scale, thus their absolute values
are shown — AEys, and AF,, are negative for most of the evolution time
indicating energy loss. The changes of sign of AE. and AEp, appear as
sharp minima at ¢ & 5 and ¢ ~ 30, respectively. Most of the transfer of energy
occurs from the z component of the magnetic field to the y component (curve

B) and to resistive dissipation. A small fraction of AEyy, is transferred to
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the kinetic energies (see Table 4.1). The change of the kinetic energies AEk
in Fig. 4.10c is initially comparable in magnitude (but opposite in sign) to
AEys, but after about one resistive time A Eg, saturates at values an order of
magnitude smaller than AEjs, and the transition from exponential to linear
growth occurs in a time ¢ < 10073, when AFEkg, is an order of magnitude smaller

than AFxk,.

In Fig. 4.11 we compare the change in the magnetic and total energies
for the cases V' = 0.2 and V' = 0.3 with S = 10%. For V = 0.3 the rate of change
of the energies is initially (¢ < 1007;) lower than for V = 0.2, but after the

growth saturates the changes occur at similar rates. The initial wiggling of the’

total energy is due to transient effects that arise when the nonlinear code is -

initiated with the linear solutions. The total energy release of the tearing mode
with V' = 0.3 is only 60% of the energy released when V = 0.2. This decrease
of energy release with increasing V is a trend seen in all runs as evidenced in

Table 4.1.

The case where S = 104, V = 0.5, with the tanh equilibrium flow.

profile is presented in Fig. 4.11 up to a time 20007,. The temporal behavior of
the S = 10* case is similar to the S = 10? case, but as expected from the lower
res’istivity, proceeds on a longer time scale. The absolute values of the magnetic
and total energy changes are shown in Fig. 4.12a. Note, that the change of
sign of Ey (curve C) occurs at ~ 7007, that is about an order of magnitude
smaller than for S = 102. This is consistent with the linear growth rate scaling
of $=1/2 for the tearing mode with flow. In Fig. 4.12b total energy dissipation

(curve A) is compared to the resistive dissipation (curve B). Due to an initial

transient instability the total energy dissipation exhibits rapid oscillations that
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Table 4.1: The change in the magnetic, kinetic, and total energies.

14 AFEpM, AEpy, AFEk, AFEg, AV
S =10%, t = 20073
0.0 —0.792 0.488 0.94-10"2 0.73.10°3 —0.294
tanh flow profile
0.1 —0.482 0.305 1.24-10"% 2.71.10°3 —0.162
0.2 —0.296 0.189 1.76-10"2 5.71-10"® -8.37-10"2
0.3 —0.237 0.153 2.58-1072 9.86-10~% —4.83.10"2
S = 10%, t = 20007,
0.0 —-9.11-10"%2 4.38-10"%2 1.44-10"% 4.74-10"7 —4.73-10"2
tanh flow profile
0.1 —446-10"2 2.12-10"% 0.22-10~%® 0.16-10"3 —2.30-10"2
0.5 —2.08-10"2 0.88-10~% 2.02-10~® 1.51-10~3 —8.47-10~3
sech flow profile
0.1 -3.25-107% 1.53.10"% 5.50-10"% 2.45.10~% —1.72.10"2
0.5 -1.15-10"2 543-10"% 4.07-10~* 9.64.10~° —5.59.10"3
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decay within several hundred Alfvén times, and the evolution proceeds with
the resistive dissipation being significantly larger than the dissipation due to
numerical viscosity. The quantities AEg, and AEk, are shown in Fig. 4.12c.
The initial exponential growth slows down after only 50074 and the nonlinear
saturation is evident. The change in the kinetic energies after 10007 is an order
of magnitude lower than the change in the magnetic energies in Fig. 4.12a, thus
the energy release is dominated by resistive effects. Nonlinear saturation of the
growth rate (curve A) and the reconnected flux (curve B) are presented in
Fig. 4.12d. The growth rate defined in Eq. (4.6) decreases by a factor of 2
after 20007, and the slower than exponential growth of the reconnected flux
is evident after 5007,. This is consistent with the nonlinear saturation of the

energies in Figs. 4.12a and 4.12b.

In Fig. 4.13 we present the temporal evolution of the energies for
S =10%, V = 0.5 and the tanh flow profile. In Fig. 4.13a the initial AEys; is
1.5 times larger than A Fyy; in the case where S = 10, and it becomes negative
after ~ 14007,. Its slower evolution is consistent with the S~1/2 linear growth
rate scaling, and due to the large resistive time the nonlinear effects are still not
significant after 20007, or 0.027.. The kinetic energies in Fig. 4.13b evolve with
the corresponding linear growth rate. From the previous results for S = 102
and § = 10* it is evident that the nonlinear saturation becomes significant on

a time scale of 0.17, that corresponds to 10%r, for S = 10°.

Figures 4.14a and 4.15 are devoted to the calculation of the conser-
vation relations of Eqs. (4.10)-(4.11). As a test of the overall behavior of the
numerical code we calculated the temporal change in the total energy, and the

magnetic helicity for V = 0.3 with the tanh profile, and compared it to the
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resistive dissipation according to Eq. (4.10) and (4.11b). After an initial transit
period of ~ 207, a very good agreement is seen between the calculated energy
dissipation and the resistive dissipation. The initial (S 307,) energy discrep-
ancy is due to transient numerical solutions excited initially in the nonlinear
code. Values of the actual viscosity S, in the code were estimated using the
energy conservation relation [Eq. (4.10)] and were found to be 10° — 105, The
obtained values of S, were found to depend strongly on the amount of the nu-
merical fourth order smoothing applied to the solutions. In the case of helicity,
the conservation was two order of magnitude better than the resistive energy

dissipation.

The final distribution of energies for several values of V with the tanh
and sech equilibrium flow, and with S = 102, 10* is summarized in Table 4.1.
The calculated distribution of energies for the cases with V = 0 agrees with
the results obtained by Steinolfson and Van Hoven (1984). When S = 10 (as
noted above) the change in the magnetic energy decreases with V, while the
change in the kinetic energy increases with V. When V' = 0.3 the release of the
magnetic energy is approximately 3 times lower, and the change in total energy
AFE,q is 6 times lower than for V = 0. At the same time AFEk, increased by
50% and AEk, increased by a factor of ~ 3. When S = 10* and V = 0.5 the
release of the magnetic energy is 47% of AEp, when V = 0.1, and less than
25% of the energy released without equilibrium flow. When V' = 0.5 the change
in the kinetic energies is an order of magnitude smaller than the change in the
magnetic energy, and when V = 0.1, AEk is two orders of magnitude smaller

than AEps. The kinetic energy is even less significant when V = 0.
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4.5 Summary and Discussion

We have investigated the effect of equilibrium shear flow on the evo-
lution of the nonlinear tearing mode via numerical solution of incompressible
resistive MHD equations, with V ranging up to 0.5V;, and S up to 10%. The
perturbed flow and stream functions loose the symmetries of the V =  tear-
ing mode- and are found to distort in the direction of the equilibrium shear
flow. Their mode structure in the z-direction, determined initially by the
linear wavenumber a is not greatly affected during the nonlinear evolution.
Additional currents are generated far from the tearing layer by the presence of
relatively small shear flow, in agreement with the linear result that flow has a
significant affect on the external region of the tearing mode. The amount of the
released magnetic energy decreased with V, for both low resistivity (S = 10%)
and high resistivity (S = 10?) tearing. Exponential decrease of the growth
rate, and the corresponding saturation of the reconnected flux occurred in all
the calculated cases; its time scale was primarily determined by the resistivity
and the shear flow. Nonlinear saturation of the energies was found to occur.
after 0.1 7,. The change in the kinetic energy was seen to.be two orders of
magnitude lower than the magnetic energy release for small V, and one order
of magnitude lower for large V = 0.5. The total energy and helicity dissipation
were calculated and found to agree with that predicted by theory.

One potential application of the present results is to flaring loops, a
phenomenon that occurs when magnetic flux tubes rise through the sheared
magnetic fields of solar active regions. The loops often have flows parallel to
their axis (Priest, 1981) and, hence, most likely parallel to the magnetic field.

It is well known that the growth of the usual tearing mode without flow and
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with classical dissipation is an order of magnitude too slow to explain the rapid
energy release in such loops (Sturrock, 1980). The growth rate can be increased,
of course, if the dissipative effects are somehow increased by nonclassical effects,
such as turbulence. However, no generally accepted theory has been developed
for such enhanced dissipation. Therefore, at least for classical dissipation, the
present results predict that the tearing mode is even less likely to play a role

in the energy release in flaring loops with flows.
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Figure 4.12: The nonlinear evolution of the § = 104, V = 0.5 tearing mode
with the tanh equilibrium flow profile.

(a) AEpmz (curve A), AEpy (curve B), and AE;, (curve C). (b) The total
energy dissipation dE.o./dt (curve A), and the resistive dissipation (curve B).
(c) AEk, (curve A), AEk, (curve B). (d) The temporal evolution of the growth
rate (curve A) and the reconnected flux (curve B).
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Figure 4.13: The nonlinear evolution for the case where S = 105, V = 0.5 with
the tanh equilibrium flow profile.
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A), AFEky (curve B).
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Figure 4.14: Numerical test of the energy conservation relation with S = 103.
The energy dissipation as calculated from the L.h.s. of Eq. (4.10) (curve A),
and the r.h.s. of Eq. (4.10) (curve B).
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Chapter 5

Resistive Reconnection of an X-type Neutral Point

5.1 Introduction

Magnetic reconnection is believed to occur in solar coronal loops, the
magnetopause boundary, the solar wind, extragalactic jets and fusion experi-
ments. Giovanelli (1947) was the first to observe that solar flares frequently oc-
cur near magnetic neutral points. Based on these observations Dungey (1953,
1958) proposed an z-type neutral point mechanism for particle acceleration,
onset of sheet currents, and energy release in solar flares, provided that the
magnetic field sources are free to move. Chapman and Kendall (1962) solved
the nonlinear ideal MHD equations for the z-type neutral point and found
growth on an Alfvén time scale, while Syrovatsky (1966) included the mecha-
nism in a solar flare model. Sweet (1958) and Parker (1963) used dimensional
arguments for a model involving merging of antiparallel magnetic fields, and
concluded that the reconnection rate scales as n'/2, while Petschek (1964) pre-
dicted an Alfvénic reconnection rate based on semi-quantitative Alfvén shock
wave solutions. As stated in Chapter 2, Furth, Killeen and Rosenbluth (1963)
developed analytic boundary layer theory, and derived the 7°/° linear tearing
growth rate scaling, while Rutherford (1973) considered the nonlinear stage
(see, Chapter 4) and found that in the reconnected flux ® ~ 5t and the re-
connection rate diminishes from an exponential to an algebraic rate. Hassam

(1991), and Craig and McClymont (1991) have considered an z-point mag-
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netic field configuration with fixed (conducting wall) boundary conditions and
solved the linearized compressible MHD equations, for azimuthally symmetric
m = 0 modes, both analytically and numerically. They found that the per-
turbed z-point magnetic configuration relaxes to the force-free z-point with an
intermediate decay rate that is slower than the Alfvén rate, but faster than the
resistive diffusion rate. Experimental studies by Bratenah!l and Yeates (1970),
Baum and Bratenahl (1974a,b), Baum et al. (1973a,b) found that the initially
perturbed z-type magnetic field configuration will rapidly relax to the force-free

state. For a detailed review see for example Priest (1981).

Here we solve the 2-D nonlinear resistive MHD equations and the

linear dispersion relation with conducting wall boundary conditions, and find

the rate for relaxation of the stressed (perturbed) z-point back to the force-
free z-point configuration. We find (not surprisingly) that the type of bound-
ary conditions imposed determine the subsequent evolution. Conducting wall
boundaries that are more appropriate to fusion devices and laboratory plasma,
lead to relaxation of the stressed z-point back to the unstressed state. Free, or
sheared boundary conditions that are more appropriate to space plasma (see,
 for example, Vekstein and Priest, 1992) may lead to instability and transition
from an z-point to sheet current of the type proposed by Dungey (1958) to

explain solar flares.

This chapter is organized as follows: In Sec. 5.2 the basic MHD equa-
tions for our model, and the iﬁitial magnetic field configuration are presented.
In Sec. 5.3 we present the linear dispersion relation. Section 5.4 is devoted to
the numerical results of the nonlinear MHD simulations, and the summary and

discussion are in Sec. 5.5.
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5.2 Incompressible 2-D MHD Equations

We assume that collisional MHD theory (Drake and Lee, 1977) is
applicable, that the plasma resistivity 5 is constant and isotropic, and that
gravitational and viscous effects are negligible. We use Eqs. (1.1)—(1.5) with the
equilibrium Eq. (5.3) below. Assuming that the evolution is two-dimensional

5‘9; = 0) we solve the above set of equations using three separate approaches:

1. Solution of the dispersion relation arising from the linearized Egs. (1.1)-

(1.4), with the assumption VP = 0 in Eq. (1.1).

2. Numerical solution of the 2-D MHD equations in slab geometry given
below in Egs. (5.4)-(5.5), which are derived from Egs. (1.1)-(1.4) with

the assumption of incompressibility (V - v = 0).

3. Numerical solution of the compressible MHD Equations (1.1)-(1.3) and
Eq. (1.5) in the (r, §) plane without any further approximations [Eq. (1.4)
is not solved explicitly]

The linearized equations resulting from the first approach and their solution
will be presented in Sec. 5.3. In the remainder of this section we present the

equations arising from the second approach.

The 2-D incompressible MHD equations are obtained as follows. The

magnetic field and velocity are written as
B=VUxe, (5.1)

V=Véxe, (5.2)
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where ¥ and ¢ are the flux and stream functions respectively, and ¥ = 5 + 1

with the equilibrium stream function Pg given by
¥E = Bo(z? — y*)/2a. | (5.3)

The contour lines of yp (which are parallel to the magnetic field lines)
are shown in Fig. 5.1. Next, substituting Egs. (5.1)-(5.3) in Eqs. (1.1)~(1.2)
with p = po = const., and taking a curl of Equation (1.1) to eliminated the

pressure P, we obtain the following set of equations in dimensionless form:

W __2 (%% % _,)%_1

Er" <3a: +”)+(ay y) % 57 (5:4)

Ow 00w  0¢ 0w oY oJ o oJ :

3" 9yoz T Bz0y (ay‘y)a"(az”) 5 69
where J = —V?%1 is the z-component of the current, w = —V2¢ is the z-

component of the vorticity, and V3 = ai:f + -é%;; with 2 = 0. The time
is normalized to the Alfvén time 7, = ay(4wpo)*/?/ By, the coordinates are
scaled in units of the typical magnetic field variation length a5, and By is the
average magnitude of the magnetic field at the boundary. The dimensionless
parameter in these equations is the magnetic Reynolds number S = 7,/7;,
where 7, = 4ra}/c*n is the resistive diffusion time. We have also assumed
that the equilibrium magnetic field is maintained by an external electric field
(ie., the equilibrium magnetic field is not dissipated resistively). In Sec. 5.4

we present the numerical results obtained with Eqs. (5.4)—(5.5).
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5.3 Linear Dispersion Relation

We neglect the pressure gradient and linearize the MHD equations
around the equilibrium quantities ¥g, po = 1, and vo = 0, whereupon Egs. (1.1)-

(1.3) in terms of 1, p, and v become

d

FZ+Vv=0 (5.6)
%—: = VgV (5.7)
%tl_b_ +v- V'(/JE = S-—lew. (5.8)

Next, upon multiplying Eq. (5.7) by V45, Egs. (5.6)—(5.8) can be

combined into a single equation for 1,

62'(/) -1 a 2,/ — 2 2
T i S _B—tv P = |Vipg|” Vi, (5.9)

where |Vig|* = r? = z? + y2. Assuming the following separation of variables
in cylindrical geometry ¥(r,8,t) = e f(r)e'™’, the eigenvalue equation for

f(r) becomes
d ( df _ 2 2
The conducting wall boundary condition is given by
fr=1)=%(r=1,6) =0. (5.11)

Equation (5.10) is mapped into the hypergeometric equation by the transfor-

mations z = 725/, and f = z%¢:

2z — 1) + (m + 1)(z - 1)¢' - 4*/4¢ =, (5.12)
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Figure 5.1: The initial equilibrium magnetic field configuration with an
point.
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where we have set o = m/2. The solution of Eq. (5.12) that is regular at
r = 0 is the hypergeometric function F(a,b,c,2) with a = m/2 + A/2, b =
mf2 - A[2, ¢ =m+1, and A = y/m?Z + 4% From the boundary condition

(5.11) we obtain the dispersion relation,
Fm/2+A/2,m[2~-A[2,m+1,8/v) =0. (5.13)

For the cases of interest, |z| = |S/y| > 1; hence, the transformation formula

(Oberhettinger, 1972),

F(a,b,¢,2) = %E‘%g:z%(—z)-aF(a, l-—c+a,1—b+a,1/z)+
F(e)T'(a —b) _ ~
WT)("") F(b,1—c+b,1—a+b1/2), larg(—2)| < #(5.14)

is needed to obtain the dispersion relation. Substituting the values of a, b, and
¢, using the properties of the Gamma function, and using Eq. (5.13) yields the

following linear dispersion relation for the reconnecting z-point:

(m + A)T(=A)*(m/2+A[2)
(m — A)L(A)2(m/2 - AJ2)

_ ( s)A F(m/2 - AJ2,-m[2 — A[2,1 = A,v/S)

4] Fm/2+A[2,-m[2+AJ2,1+A,v/5)

- (5.15)

Equation (5.15) can be further simplified with the assumption v/5 <
1, which results in the following asymptotic expression for the r.h.s of 5.15

= _ (_E)A M wamy (5.16)
7/ 1+ mg

A special case of this dispersion relation for n = m = 0 was derived

by Hassam (1991). When m = n = 0 and in the limit |y| < 1, the dispersion
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relation (5.15) can be approximated by the following asymptotic expressions:

T log(log S))

Im~ g3 [1 oz § (5.17)
/2 w2

Re~ logSImfy Sog 5" (5.18)

We have solved the dispersion relation (5.15) numerically for both
m = 0, and m # 0, with S varied over several orders of magnitude. We
have used the values of v from Eqs. (5.17)—(5.18) as an initial guess in our
numerical solution of the exact dispersion relation. The resulting decay rates
and their dependence on S, with m = n =' 0 and n = 1, m = 2,4 are presented
in Fig. 5.2. The near linear dependence for the various modes agrees with
the log S scaling of Eqs. (5.17)-(5.18). The real and imaginary parts of the:
eigenfunction f(r) withm=0,n=1,9=100andm=1,n=23, S = 10°
are presented in Fig. 5.3. The “quantum” number n determines the number
of radial nodes of f(r) in the interval » € (0,1). When m = 0, Re{f(r)}
approaches a constant as r — 0. When m =1, f(r — 0) — 0. The solution
of the exact dispersion relation for the n = m = 0 modes is compared with
the asymptotic expression (5.18) for 10 < S < 10'®, and with the decay rates
obtained from the incompressible MHD simulation. For § = 10* (characteristic
of laboratory plasmas) the n = m = 0 perturbation decay time is about 20
Alfvén times with similar oscillation period. For S = 101° (a typical value for
the solar coronal plasma) the n = m = 0 perturbation decay time is about 120
Alfvén times and is longer than two oscillation periods. Very good agreement
is seen in Fig. 5.4 between the nonlinear simulation with 102 < S < 4.10%, the
exact dispersion relation, and the asymptotic expression. The nonlinear terms

in the MHD simulations become smaller as the perturbation decays, and the
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decay rates approach the linear rate (see Appendix). The asymptotic nature
of Eq. (5.18) is evident from the figure, since agreement with the dispersion

relation is improved at very larger values of S.



94

10° ‘ ' T ]
— 2 -]
§10 .
& ]
< ]
Q -
k= ]
=
>
8 —
g 10 5

1 1 1 1 i 1 1 1 L

Figure 5.2: Deca;); rates of the modes with m =n =0,andn =1, m = 2,4
obtained from the solution of the linear dispersion relation.
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5.4 Nonlinear Simulations

5.4.1 Incompressible MHD

Now we describe results obtained by using the Alternative Direction
Implicit (ADI) method to solve the 2-D-incompressible MHD Eqs. (5.4)~(5.5)
in slab geometry. The method of solution was discussed in detail Chapter 3
and in Ofman et al.(1991). We have imposed the conducting wall, and no-
slip boundary conditions in z and y-directions, respectively; namely, ¥(z =
tTmazr¥) = 0, ¢(T = £Tmaz y) = 0, P(2,y = LYmaz) = 0, and ¢(z,y =
£Ymaz) = 0. The calculations are initiated with a small perturbation in % (that
is nearly azimuthally symmetric). Figures 5.5~ 5.7 show the relaxation of an
z-point with conducting wall boundary conditions and with a nearly azimuthal
initial perturbation (equivalent to m = 0 in cylindrical coordinates). Here
S = 10*. In Fig. 5.5 a plot of the energies stored in the z and y-components
of the magnetic field, and the total energy as a function of time are displayed.
The relaxation of the z-point proceeds at the rate predicted by the linear
theory and the perturbed energies are transferred alternately between the z-
component (curve A) and y-component (curve B) of the magnetic field. The
total energy (curve C) is conserved within the anticipated resistive dissipation
rate. The perturbed energies stored in the z and y-components of the magnetic

field are given by

AEy(t) =

Zmax vmax 2 2
e L T e o

where the size of the computation domain is 2Zmax by 2¥max- The change in the

total energy AEy,; was defined in Eq. (4.8). Figure 5.6 shows 1(0,0,t) (curve
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A), and the reconnected flux (curve B) defined by

pa) = [T | 2 y(e00)

' ymax i ’ ’
o' + /_ ~ lay 1/)(0,y,t)‘dy. (5.20)

When the initial perturbation decays, the decay rate and the oscillation fre-
quency approach the values predicted by the linear theory. These can be de-
termined from %(0,0,t), or the perturbed energies. In Fig. 5.7 we present the
contour lines of the total flux function ¥ = 1 + v at several representative
times during the relaxation with § = 10%. The region shown is 0.25 by 0.25 (in
units of a,) centered at the origin. Fig. 5.7a is at the minimum of an oscillation
with negative ¢(0,0,¢), Fig. 5.7b is at a time that (0,0, t) is nearly zero, and
in Fig. 5.7c (0,0, 1) is at its maximum (see, Fig. 5.6). The angle between the
separatrices (the solid lines adjacent to the region of ¥(0,0,%) < 0) in Fig. 5.7a
is larger than 7/2, and in Fig. 5.7c is less than 7 /2, indicating the stressing
of the magnetic configuration. In Fig. 5.7b, the separatrices are nearly per-
pendicular and the magnetic configuration is close to the force-free state. The
oscillation are damped by the resistive reconnection, and the final state is the

force-free z-point configuration given by ¥ g.

When the magnetic fields at the boundaries are free to adjust, the
perturbed z-point evolves into a sheet current. In Fig. 5.8a we present a mag-
netic configuration obtained with the free boundary conditions. The transition
to the sheet current occurs rapidly on an Alfvén time scale, and is more than
an order of magnitude faster than the resistive relaxation time. The rate of
the transition is weakly dependent on resistivity, and the mechanism of the
transition involves large flow vortices that are generated around the z-point.

In Fig. 5.8b the dotted contour line vortices correspond to clockwise rotation,
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while solid contour line vortices correspond to anticlockwise rotation. An out-
flow along the z and y axis is present, and flow through the boundaries is

evident.

5.4.2 Compressible MHD

Equations (1.1)-(1.3) and Equation 1.5 were solved using the Lax-
Wendroff differencing scheme, in a manner similar to that given by Richt-
myer and Morton (1967), along with a smoothing term suggested by Lapidus
(1967). The computation domain is in the (r,8) plane, where 0 < § < r,
0 < r £ 1. Equation (1.4) is not solved explicitly, however, the qua.lity of
the solutions can be monitored by checking that Eq. (1.4) is satisfied. "‘The
code was tested, and successfully applied to other MHD problems (Steinolfson
and Winglee, 1992). Here the code is used with conducting wall bounddry
conditions at the outer boundary r = 1, 0 < # < 7, and symmetry bound-
ary conditions at the diameter 0 < r < 1,0 = 0, m. The calculations are
initiated with single m mode magnetic field perturbations that are zero at
r = 1. The simulations are evolved until the magnetic field configuration
reaches a steady state (i.e., relaxes to the force-free z-point). The temporal
evolution of the magnetic field at r; = 0.02,0.04,0.06,0.08,0.1, and 8 = 7/2
is shown in Figs. 5.9-5.10 (curves A-E, respectively). The values shown are of
ABy = [By(ri,0,t) — By(ri,0,1)] / Bs(ri,0,1), with § = 104, and m = 0. The
fields oscillate almost in phase at r;, and the frequency agrees well with that
predicted by linear theory. The minor phase difference, and the higher harmon-
ics are due to nonlinear effects, and can be made arbitrary small by reducing

the magnitude of the initiating perturbation. In Fig. 5.9b the initial m = 0



99

perturbation is an order of magnitude smaller than the one in Fig. 5.9a, and
the evolution at r; approaches that expected from linear theory. In Fig. 5.10
we show the temporal evolution of ABy, where the initial perturbation was
m = 2. The frequency and the decay rate of the evolution agree with the lin-
ear theory predictions. The rapid relaxation (compared to 7,) to the force-free
state agrees with the experimental results [Bratenahl and Yeates (1970); Baum

and Bratenahl (19742 -); Baurr ~ al.(1973a,b)]

When magnetic field and flow are allowed to change at the outer
r = 1 boundary (free boundary conditions), the perturbed z-point evolves into
a sheet current. We have approximated the free boundary conditions by the

zero order extrapolation boundary conditions given by,

v(rs,0,t,) = v(rs-1,0,t,), (5.21)
B(r;,0,t,) = B(rs-1,9,t,), (5.22)
p(rs,0,tn) = p(ry-1,0,t.), (5.23)
P(rs,0,t,) = P(rj_1,9,t,), (5.24)

where ry = 1 is the radial grid point at the boundary. These boundary con-
ditions allow magnetic and velocity flux through the boundary and, with the
Lax-Wendroff differencing scheme, are equivalent to approximating the value of
the flux through the boundary at the current half-time-step by the value from
the previous half time step. The sheet current is subject further to the’ tearing
mode instability, and a large (compared to the width of the current layer) mag-
netic island that is centered at the origin is created. The transitiou proceeds

on a shorter time scale than tha  or resistive reconnection, and the time scale
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estimated from the compressible code is longer than the time scale obtained
from the incompressible model. In Figs. 5.11a~5.11c we show the evolution
of the magnetic field configuration at ¢ = 0.4483, 0.7011, and 1.00 minutes.
It is evident in Figs. 5.11a-5.11b that the z-point transforms to two y-points
connected with a sheet current, and in Fig. 5.11c it reaches its maximal extent
and is subject to the tearing mode instability. In Fig. 5.12 we show the velocity
stream lines; the outflow parallel to the sheet current is clearly seen. The di-
rection of the stream lines in Fig. 5.12a at ¢t = 0.5 min agree with the direction
of the flow in Fig. 5.8a near the z and y axis. In Fig. 5.12b ¢ = 0.7503 min and
the flow points toward the origin parallel to § = 0,7 and 0 < r <1, Whjle’the
outflow is parallel to the sheet current (6§ = 7/2), in agreement with Dungey’s )

qualitative analysis.

5.5 Summary and Discussion

We have derived thé linear dispersion relation for the reconnection
rate of an z-type neutral point with conducting wall boundary conditions.
Numerical solution of the dispersion relation agrees with the asymptotic ex-
pressions for the decé,y rate. We have solved the nonlinear incompressible 2-D
MHD Equations (5.4)~(5.5) in slab geometry, using the ADI method. The
computations were initiated with small nearly azimuthally symmetric pertur-
bation of ¢ with large At ~ 0.87;, and the magnetic Reynolds number was in
the range 102 < S < 4 10*. We have found that the perturbations decay in
agreement with the linear dispersion relation for n = m = 0 modes. Rapidly
growing instability on an Alfvén time scale was found in the incompressible

simulations when the fields at the boundaries are allowed to adjust; the growth
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rate dependents weakly on S. The z-type neutral point evolved into a sheet

current in accordance with Dungey’s (1958) qualitative description.

We have solved compressible 2-D MHD equations in the (r, §) plane
using the Lax-Wendroff differencing scheme, and found that with conducting
wall boundary conditions the perturbed z-point relaxes to the force-free state
for m = 0 and for m # 0 initial perturbations. The decay rate and the
oscillation frequency in the linear stage agree well with the values obtained
from the solution of the dispersion relation. A transition to a sheet current was
found when free (zero order extrapolation) boundary conditions were used.
The transition is faster than the resistive reconnection rate, but slower than
the rate obtained from the incompressible simulations. The outflow along the
sheet current and the flow towards the z-point at the origin along the z-axis
(6 = 0,m,0 < r < 1) occurred in the incompressible, and the compressible
simulations. The evolution of the z-point that emerged from the simulations,
for both conducting wall, and free boundary conditions agree well with the

theoretical predictions.
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Figure 5.10: Compressible MHD simulation of the relaxation of an z-point with

m = 2 initial perturbation.
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5.6 Appendix

In this Appendix, we show why the linearized compressible MHD
Egs. (5.6)-(5.8) for the z-point initial magnetic field equilibrium (5.3) with
conducting wall boundary conditions, initial uniform density and pressure can

be approximated near the z-point by the incompressible 2-D MHD.

In Eq. (5.6) we have assumed VP = 0, and from linearized Eq. (1.5)

we have to the first order
P ~p, (5.25)

where P and p are the perturbed pressure and density respectively. Hence;
both P and p are to the first order functions of time alone, and we get (with

the equilibrium density pp = 1)

6g(tt) +V. V(:D, Y, 2, t) =0 (526)

and therefore V - v is to the first order a function of time alone. Since the
evolution is two dimensional for both the compressible and the incompress-
ible case (B, = v, = 0) we can separate the velocity into compressible and

incompressible parts

v =V x (de;) + rf(t), (5.27)

where the first term is the incompressible part, f(t) = V-v, and r = ze, + ye,.
Next, substituting v from Eq. (5.27) into Eq. (5.7) and taking the curl of the
result yields an equation identical to the linearized form of the incompressible

momentum Equation (5.5)

Qv _ 0T _ 9 (5.28)
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Next, we substitute the velocity Eq. (5.27) into the linearized Ampere’s Eq. (5.8)
and get

Fs; 0 a
S =svi- ot 2y (-0, (5.29)

where the last term on the r.h.s accounts for the departure from the incom-
pressible evolution. It is clear that this term vanishes on the separatrices of the
z-point magnetic field configuration (given by z = +y) and at the z-point. It
is also evident that as » — 0 the incompressible term approaches zero at least
as 2,

Since the reconnection of the z-point in the linear stages occui's in
the vicinity of 7 = 0, and as the initial perturbation decays exponentially, its
relative importance becomes even more localized near the z-point, the evolution
and the decay rates obtained from the linearized compressible MHD equations
are expected to be in good agreement with the evolution and the decay rates
obtained from the incompressible 2-D MHD equations. The agreement is found

to hold numerically and is shown in Fig. 5.4.
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