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Abstract

The scalings of the E X B turbulent diffusion coefficient D and the Kolmogorov
entropy K with the potential amplitude 5 of the fluctuation are studied using the
geometrical analysis of closed and extended particle orbits for several types of drift
Hamiltonians. The high-amplitude scalings, D o 6% or 4° and K o log 6, are shown
to arise from different forms of a periodic (four-wave) Hamiltonian &(z,y,t), thereby
explaining the controversy in earlier numerical results. For a quasi-random (six-wave)
Hamiltonian numerical dafa for the diffusion D ox ¢%92%004 3nd the Kolmogorov en-
tropy K oc 562017 are presented and compared with the percolation theory pre-
 dictions D, o< %7 K, o ¢®%. To study the turbulent diffusion in a general form
of Hamiltonian, a new approach of the series expansion of the Lagrangian velocity

correlation function is proposed and discussed.

~%)Also at Kurchatov Institute of Atomic Energy, 123182 Moscow, Russia.
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I. Introduction

For low-frequency (w < wee,w,) and long wavelength (ki p < 1) fluctuations typically
present in plasmas, the motion of the particles are governed by drift equations. As is well
known, for broad frequency and amplitude fluctuation spectra, the system easily becomes
stochastic exhibiting the sensitive dependence of particle orbits on the initial conditions and
a diffusion-like motion of the particles. Less well known is that even for the simplest periodic
systems of four plane electrostatic waves (previously referred to as “two-wave systems”) the
motion also becomes stochastic under easily satisfied conditions.!=3 In the four-wave regime,
however, the numerically measured scaling of the diffusion coefficient on the amplitude of
the fluctuation has been in controversy.?® The goal of the present paper is to analytically
resolve this controversy by scrutinizing the differences in the previous models,?~* as well as
to numerically study a new model of stochastic plasma transport associated with a quasi-
random (six-wave) Hamiltonian.

As noted by Kleva and Drake,? the usual quasilinear theory is inappropriate to the sim-
ple systems of several waves with moderate to high amplitude of the fluctuations. Dupree’s
improvement on the quasilinear theory includes the orbit corrections due to the fluctuations.
But the Dupree work does not have the physics necessary to describe the exponential diver-
gence of nearby orbits, because his work is before the advent of modern stochastic theory.

In the present work, we investigate the diffusion coefficient and the stochastic exponentia-
tion in the simplest systems. We study the transport of the guiding centers in a homogeneous
constant magnetic field, supporting several transversely propagating, electrostatic, fluctua-
tions. These drift-type waves are easily observed in the tokamak or other fusion devices
which have a confining magnetic field and density or temperature gradient.

The previous studies of Kleva and Drake? and Horton® show significant difference in the



diffusion coefficient with respect to the amplitude of the fluctuations. At high amplitude
Horton reports results D o ¢, and D « ¢°8 depending on the value of ¢ and the wave phase
velocity, whereas Kleva and Drake obtain D « 52 at high amplitude. Chernikov et al.*
calculate analytically the diffusion varying as D #°, for somewhat different Hamiltonians.
Here we reconsider these studies in an attempt to find the relationship between these results.

In this work, we use two different analytical approaches to study the large-amplitude
behaviors of stochastic diffusion of these systems. The first approé,ch is based on the geo-
metrical analysis of phase-space particle orbits for periodic Hamitonians. In this method,
we are able to analytically describe cloéed and extended orbits that assume distinct roles in
the diffusion process. Taking into account these properties leads to the scalings of diffusion,
such as D 52 and ¢°, while the Kolmogorov entropy is found to behave logarithmically,
K « log 5 These results are consistent with the earlier numerical calculations of Kleva-and
Drake? and Horton®.

The second approach employs the two-time particle velocity correlation function, which
is shown. to be in principle calculable, for any specified Hamiltonian, in the form of an
asymptotic series. As is well known, the time integral of the velocity correlation function
is the diffusion coefficient. We regroup the terms of the series to heuristically predict the
diffusion scaling D « ¢°. However, this method suffers drawbacks due to the apparently
conditional convergence of the correlation function series. We also provide numerical results
on the velocity correlation function.

For a randbm, nonperiodic, short-range correlated potential, the percolation theory®®
predicts D o« ¢7/1%, K  ¢!/2, We attempt to numerically prove these results by introducing
the model of a quasiperiodic (six-wave) Hamiltonian. However, our numerical results D
PO92E004 nd [ o GO56E017 ghy oﬁly partial agreement with the theory, and we point out
the reasons likely responsible for the discrepancy.

The work is organized as follows. In Sec. II we introduce the fluctuating electrostatic




potential given in Refs. 2 and 3 and the stream function of Ref. 4, which take the status of
the Hamiltonian of the problem giving the perpendicular equation of t 1e motion. Here we
give a geometric i analysis of phase-space orbits in Kleva-Drake?, Horton®, and Chernikov
et al.* Hamiltonians, which casts a light on the origin of different scalings of the stochastic
diffuson. In Sec. III we consider the stochastic exponentiation of nearby particle orbits
and derive the logarithmic scaling of the Kolmogorov entropy in spatially periodic flows.
In Sec. IV we present a computer study of diffusion and Kolmogorov entropy in a six-
wave (quasi-random) Hamiltonian. I Sec. V we relate the velocity correlation function
with the diffusion coetficient and anaize, both .- alytically and numerically, the scaling of
the correlation time and the diffusion. In Sec. VI the resuits are briefly summarized and

discussed.

II. Particle orbits and diffusion scalings in periodic
potentials

A. Equations of motion

We assume that there exists a uniform magnetic field along the z direction i.e., B = BZ,
where Z is the unit vector along the z direction. Suppose that there are electrostatic waves
propagating perpendicularly to the magnetic field. If such waves have a long wavelength
(kLp < 1) and a low frequency (w/w. < 1), the motion of the particles can be described by

drift equation. That is, the particle motion is given by the E x B velocity

ExB_cixVQ
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v(x,t)=c¢

where ® is the electrostatic potential. In general, ® = &(x) + ®(x,t). In component form

the equations of the two-dimensional particle motion become

dz d /¢ @(m,y,t))

&5 3 (2)
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Thus our system is a Hamiltonian system with canonical momentum and coordinate (p, q) =
(z,y) and with the time-dependent Hamiltonian H = (¢/B) ®(z,y,t). This corresponds to
a 3/2-degrees-of-freedom Hamiltonian motion, which is typically chaotic.

In the present work we consider several Hamiltonians in the form of N travelling waves,

N
H(z,y,t) =) A;sin(kix —w;t +6;) , (4)

1=1

which may be viewed as a truncated form of a general Fourier series expansion. Henceforth,
we refer to expression (4), or its standing-wave analogue with w; = 0 and A; = A;(t), as
the N-wave Hamiltonian. For case of N < 2, the system is integrable because it is possible
(except for special cases) to change the coordinate system to that where the potential is
time-independent. For multiple waves having the same vector phase ve1001ty, the 51tuat10n
is the same. The integrable cases are studied by Horton. 19 Here we focus on the case of

nonintegrable, chaotic motion.

B. Invariance scaling

For the N-wave system with IV > 3, the motion from Eqs. (2)-(4) is (almost) always stochas-
tic diffusion.’=3 The space-time scale of the stochastic diffusion can be determined from
the space-time scale (1/k,1/w) and the amplitude ® of ®(x,t) due to the invariance scal-
ing. With x = (z,y), Eqgs. (2) and (3) are invariant to the transformation kx — x’ and
ck?*®t/B — t' = Qpt’ where Q5! is the characteristic time to rotate around the potential
structure of scale 1/k.

This transformation (x,t) — (x',t’) takes dx/dt = (k®/B)F(kx,wt) to the form dx’/dt’ =
F(x',wt'/Qg) with the diffusion in x’,¢’ space given by Dy = D(w/Qg). Transforming back

to (x,t) variables the diffusion is found to be of the form

D—@B(“’B). (5)

B ck? ®




In earlier work,?® the nondimensional wave amplitude Rg = ck?®/B|w| is defined with the
meaning of the number of rotations round the potential minimum or maximum in a wave
period. If D(2) is analytic at z = 0 then we would expect D = (c®/B)[Do + D1(wB/ck? ®)
+ Dy(wB/ck? ®)? + ---]. However, the limit Dy corresponds to w — 0, where the system
(2)-(3) is integrable, so that the D, term is the first surviving dependence of D(z) at small
z. For large z the expansion D(z) ~ D_;/z gives the quasilinear scaling Dy = (ck®/B)*w™!
which only applies for g € w. Due to the singular nature of the boundary layer between
the positive and negative cells, however, the function D(z) may not be analytic at the origin.

In fact, Ref. 5 uses percolation theory to argue that, for a random Hamiltonian, ﬁ(z) o~ Z3/10

for small z. A numerical attempt to find this percolational scaling is reported in Sec. IV.

C. Orbits and diffusion

In this section we present a qualitative theory of stochastic diffusion for several Hamiltonians

that were previously studied numerically?® or theoretically* and explain the origin of the

difference in the previous results.

If we normalize the length and time appropriately, we can take the stochastic Horton®

Hamiltonian as follows,
H¥ = §lsin z cosy + ¢ cos(kz) cos(qy — wt)] ' (6)

which, in the notation of Eq. (4), corresponds to the four-wave Hamiltonian with &, =
(1, £1), ksg = (£k,q), w12 =0, w3y = w, b2 = 0, 634 = 7/2, and the same wave
amplitudes A; = 5/2 For k = ¢ =1 and ¢ = w = 2, the diffusion in this Hamiltonian was
computed? to behave as D « ¢2 at small ¢ and D o ¢°8 at ¢ > 1.

The Kleva-Drake? Hamiltonian looks very similar to (6),

HXP = §[(1/k) cos kz cos ky + e sinz cos(y — t)] ; (7



however, for ¢ = 1 and the large amplitude é they report a drastically different scalinf
D(k=1) x #2, whereas D(k = 2) o $*/2.
Chernikov et al.* studied a similar problem of passive time-dependent convection that

corresponds to the Hamiltonian
| HONRY — d(sinzsiny + ey cost) , (8)
and reported the saturating large-amplitude diffusion asymptotics
D, =2¢ (9)

that was found analytically. Hamiltonian (8) is not space-periodic but its velocity field
v =2 x VHONRY i5 periodic.

In order to understand the difference between the apparantly similar Hamiltonians (6)-
(8), we examine their phase-space portraits (Fig. 1). In Fig. 1(a) the contours of Hamiltonian
(6) with ¢ = 2 and € < 1 are depicted. Due to periodicity, it is quite possible to plot the
potential contours at finite €; however, it is more convenient to start with the case ¢ < 1.
To zeroth approximation (¢ = 0), the phase pértrait of the Hamiltonian (6) represents a
periodic system of square convection cells with all the orbits closed within the ceils. The
small perturbation, given by the second term on the right-hand side of Eq. (6), preserves the
topology of most contours except for those that are close to the separatrices. These contours
lie near the zero level of H(z,y,t) and are the primary candidates to produce extended
(dpen) particle or.bits.5 The geometry of these strongly perturbed orbits, whose area fraction
is of order ¢, is governed by solely the sign of the perturbation in the nodes of the non-
perturbed separatrix lattice. Given the commensurability of the periods of the baékground
and of the perturbation, this results in a spatially periodic pattern shown in Fig. 1(a). As
the perturbation given by the second term i.n H¥ travels over the unperturbed background,

the topology is periodically changing. This process is accompanied by the particle crossover




between closed and extended orbits. Since the direction of the particle displacement on
an open orbit depends on the random phase difference between the particle closed-orbit

rotation and the perturbation, the process gives rise to diffusion. (A similar transport model
was discussed in Ref. 7 for the case of travelling “breathing vortices”.) In Fig. 1(a) we see
that the open contours of Hamiltonian (6) are localized in the z direction and extended in
the y direction.

In the low-amplitude limit, 5 & 1, the phase of the perturbation changes much faster
than the particle passes the distance k~! ~ 1, hence the long-range topography of the
potential is irrelevant. The simple, heuristic estimate of the diffusion is then D ~ v?/w = ¢?
(for € >~ 1). This quasilinear result, which should be valid for an co-wave Hamiltonian
with random phases,® was numerically found?® to also hold for Hamiltonian (6), although in
principle, due to the possibly complicated result of the high-frequency averaging, an effective
potential with nontrivial diffusion regimes can occur.?

In the large-amplitude limit ¢ > 1, which is the subject of our main interest, we have

the z displacement of the order of k™! ~ 1 in time w™! ~ 1 and the fraction ¢ of diffusing

particles, hence

Diz~e, ¢>1. (10)

Eq. (10) is the diffusion in the z direction. Due to the openness of the orbits in the y
direction, the particle displacement Ay ~ v/w ~ ¢ is much greater than the that in the z
direction, assuming the y-diffusion D,, ~ ed?.

If the perturbation is extremely small, ¢ <« 1, one should take into account the logarithmic
correction to the velocity on an open orbit. Due to the logarithmic divergence of the passing
time near a saddle, the average velocity on an open orbit is somewhat decreased, v, ~
v/|logel, leading to the somewhat lower diffusion coefficient Dy, > e4?/ log?e.

The above arguments suggest that for ¢ > 1 and ¢ < 1 all particles can be divided

into two distinct groups. The first group includes diffusing particles i.e., those lying close

8



enough to the separatrices and undergoing the periodic crossover between localized and
extended orbits. The second group includes trappéd particles, whose closed orbits do not
‘reach the breathing separatrices, and hence remain trapped exponentially long due to the
well conserved adiabatic invariant (the area within a closed orbit). However, in the limit of
g ~ 1 (the “deep breathing” of separatrices) there may be no trapping at all.

Estirﬁate (10) suggests an asymptotic saturation of the diffusion D, in the Horton model
also in the limit ¢ = 1, which is the marginally applicable case of the above qualitative
theory. The slow-down of the diffusion Du(q;) build-up reported in Ref. 3 may be in fact
the transition to this saturation.

The phase portrait of the Kleva-Drake (k = 1) model (7) [shown in Fig. 1(b)] is quali-
tatively different from that of the Horton Hamiltonian [Fig. 1(a)], because some contours.of
the Kleva-Drake (k = 1) Hamiltonian are extended in both the z and the y directions. In the
quasilinear limit ¢ < 1, this topology apparently makes no difference in terms of diffusion
(D x 52) However, in the strong turbulence limit ¢ > 1, the particles lying on the extended
orbits (with number fraction €) are carried to a large distance Az =~ v, /w ~ ¢/|log €| >>. k-1
before the phase of the perturbation is changed. Fig. 1(b) shows that the diﬂ‘usi.ng parti-
cles periodically undertake long “North-East” (or, with the same probability, “South-West”)
flights during the first half pérturbation period. During the second half period, the flights
become SE or NW. This cléarly leads to the approximately isotropic diffusion with the

coefficient

Dw:Dyyzs(Ax)%glgiE&?, §>1, e<1. (11)
(0]

This quadratic behavior of stochastic diffusion was reported by Kleva and Drake?, who also
explicitly computed the SW-NE-SE-NW-like flights, although for ¢ = 1. The quadratic
dependence (11) is due to the exact periodicity of Hamiltonian (7) tha leads to the a.véra.gely
straight phase space orbits. Iﬁ the case of incommensurate wavelengths, £ # m/n, the

potential is no longer periodic and one can expect fractal orbits with a slower growth of
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D(4), which can be in general a fractional power function®® of é. The golden mean p =
(v/5 — 1)/2, which is “the most irrational” number (ac. rding to the slowest convergence
of its continued fraction representation), was used in Ref. 2 and a significant decrease in
diffusion was observed at k = 1 + 4 and 3 — p, compared to the case £ = 1. Unfortunately,
no scalings for D(@) were reported for irrational k’s. We provide such scalings in Sec. IV.

For the Kleva-Drake Hamiltonian with £ = 2 [Fig. 1(c)], we notice that the phase space
orbits are closed in all directions which implies the same saturating, and isotropic, diffusion
as in . (10). The square-root deper "»nce? D 56'5 is likely to be transient towards
this : uration. The explanation of the measured logarithmic behavior of the Kolmogorov
entropy is presented in Sec. IV.

The apparently similar diffusion saturation of Eq. (9) for Chernikov et al. Hamiltonian
(8) stems, however, from a different motion pattern. The peculiarity of Hamiltonian (8) is
that all its extended streamlines have the same (say, East) direction during one half a period
[Fig. 1(d)]. Hence, almost regardless of the initial condition, a diffusing particle makes a fixed
long flight in the z direction, Az ~ v/w > k™!, during its extended-orbit phase. To first
approximation, the particle is then trapped to a closed orbit, which has the same adiabatic
invariant as that before the flight. On the second half period, the direction of all flights
is changed to an opposite (West) and the particle returnes back to its original convection
cell. However, due to the random phase of particle rotation at the moment of trapping or
release, the particle enters/exits an extended-orbit channel at a random point within one
convection cell. Thus the particle return may probabalistically happen to the original cell, as
well as to one of its nearest neighbors, hardly farther. This leads to the saturating diffusion
behavior as in formula (9). Of course, there would be no stochastic diffusion in the system,
were an additional integral of motion (the adiabatic invariant) exactly conserved. In fact,

the adiabatic invariant change for passing particles is not exponentially small, due to the

mentioned randomness in the particle rotation phase during the separatrix crossing.® To:
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accurately evaluate the numerical constant in expression (9), the change in the adiabatic
invariant must be calculated, as demonstrated by Chernikov et al.®. Another example of

saturated stochastic diffusion for the Hamiltonian*
H = §(sinzsint 4 cos z cost)
is of quite the same nature.

ITI. Kolmogorov entropy

The Kolmogorov entropy serves as a measure of stochastic exponentiation and is usually

defined as
. . 1 (d12(2)) ,
_ L jog {d12(2) (12
K tl-l-.rglo dnl(lcl)?_.ot o8 d12(0) ! ( )
where di3(t) = [x1(t) — X5(t)| designates the distance between two neighboring particles

following their orbits, and the average over the initial condition x;(0) is taken. Without this
average formula (12) would define [for almost all orientations of the vector d(0)] the largest
Lyapunov exponent A;(x;) > 0, which is a function of the initial point. In a dissipative
system, the Lyapunov exponent is constant in the basin of attraction of a chaotic attractor.
Iﬁ a Hamiltonian system, A; can be an intricate function of Xl. The Komogorov entropy
(12) appears to be merely the maximum value of A;(x;) over the considered region of initial
conditions, because in the average of (d;,(t)) the fastest growing exponent should ultimately
dominate the terms with slower exponentiation.

We are not aware of any analytical methods of the direct calculation of quantity (12) for
non-quasilinear chaotic flows. Instead, we use the method first proposed by Gruzinov et al.,’
where the set of infinitesimally close particle pairs is replaced by a continuous curve advected
by the phase-space flow (2)-(3). The stretching rate of the “liquid curve” is also a natural

measure of stochasticity; it can be shown!® that the growth rate K = lim,_., dlog L(t)/dt

11



[where L(t) is the appropriately averaged curve length] is the same as the K in expression
(12).

Consider, for example, the Kleva-Drake (k = 1) Hamiltonian (4) shown in Fig. 1(b).
The dominant feature of the liquid curve behavior is that the curve drapes over the saddle
points of the flow and gets stretched in the extended channels lying between the separatrices
(i.e., the streamlines coming through the saddles). The stretching process is schematically
shown in Fig. 2. During the first half period of the perturbation, 7 = 7/w, the curve
length is stretched approximately kve./w = ¢/|loge| > 1 times leading to a “fish bone”
structure [Fig. 2(a)]. During the second half period, when the direction of the open channels
is changed by 90°, each piece of the primary fish bone is stretched into a “secondary fish
bone,” so that the liquid curve pattern becomes quite intricate [Fig. 2(b)]. The process will

continue, thereby leading to an exponential growth in the curve length,

t/r
L(t) ~ L(0) (k;)’) ~ L(0)exp(K1t) , (13)
where the expression
kv é ~
v 25 Al [ A—
K~r log<w>_r log(|10g6|>’ p>1, exl, (14)

yields the desired scaling of the Kolmogorov entropy. Notice that the symbol “~” refers

! understood as the

only to the expression under logarithm; the prelogarithmic factor 7~
reciprocal period of the contour topology change, is exact.

In the above argument we have omitted the discussion of the pieces of the curve lying
outside the channels — that is, in the cells of unchanged topology of the streamlines. Obvi-
ously, those regions will contribute only linearly growing terms in the curve length L(#) that
will become altogether negligible in comparison with the exponentiating part (13).

It is easy to see that the above result (14) holds for all periodic flows shown in Fig. 1

because the openness of the channels is of no special importance for the considered process

12



of the curve stretchiﬂg, provided that the topology change (separatrix reconnection) occurs
after each period of the perturbation.

The logarithmic dependence K(4) is consistent with the numerical findings of Kleva
and Drake.? For the Hamiltonian (7) with & = 2, the topology changes occur each time
7 = n/k = 7/2. Hence the Kolmogorov entropy should scale as K = (2/7)log(C@) for
6 > 1. Kleva and Drake report the Lyapunov exponent A; = 0.14log$ + 0.33 for the
initial point x; = (—1.18950,1.22560) that corresponds to approximately one-quarter the
maximum Lyapunov exponent given by K. One can imagine that there are regions in the
phase plane sufficiently far from the unperturbed separatrices, where the topology ch#nge
happens rarer, only once a perturbation period 7 = 27, which corresponds to the A, scaling
as (27)7! log(C¢). The initial point taken by Kleva and Drake seems to belong to-this
category.

Interestingly, the dependence of the Kolmogorov entropy K on the perturbation strength
£ < 1 is very weak (only doubly-logarithmic), because the narrow widths of the reconnecting
channels by no means prevent the fast stretching and folding of a liquid curve. -

It is emphasized that behavior (14) is typical for only spatially periodic Hamiltonians
or for those possessing only a finite number of saddle points. In a disordered, nonlocalized
Hamil_tonian, the saddle points can be distributed continuously over the energy level leading

to much faster contour reconnection rate (a reconnection occurs when two saddles cross the

same energy level) and hence to a different scaling of the Kolmogorov entropy,®

K o ¢?log d . (15)

In the next section we find that this square-root scaling of the Kolmogorov entropy is indeed

observed in a generic E x B drift Hamiltonian.
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IV. Diffusion in a six-wave Hamiltonian

In order to go beyond the degenerate models of periodic four-wave Hamiltonians, we study
numerically the stochastic diffusion and exponentiation in a quasi-random Hamiltonian

H(z,y,t)=¢ Y sin(wit + &) sin(k; - x + 6;) . (16)

i=1 )
To introduce randomness, we choose the directions o; of the wavevectors k; = (k; cos oy, k; sin «;),
as well as the phases ¢; and 6;, at random and uniformly distributed in [0,27]. After the
random numbers are drawn, their values are fixed for all simulations. All amplitudes are
taken the same, A; = ¢. To avoid the periodicity in time, the frequencies of the waves are set
incommensurate, but of the same order, w; = (1 +1/5)}/2. We notice that the absence of the
time-periodicity makes the KAM theory not directly applicable, which in turn implies the
absence of invariant tori and an unconstrained chaotic transport. Similarly, the wavenum-
bers k; = w; are taken to model a linear wave-dispersion relation. The potential contours of
(16) are shown in Fig. 3.

We measure the diffusion coefficient solving the equations of motion (2)~(3) and using

the usual rule
D(t) = 55+ D lzi(t) — z:(0))?, (17)

where NV, is the number of particles. Like in earlier studies?3, the turbulent diffusivity D is

determined as the late time average from the time series of D(¢),

1 Tmax
D= g /T D(t)dt (18)
with the standard deviation
1 Tmax 1/2
_ P2
6§D = [——-—Tmax — /T (D@ - D) dt] : (19)

where Tj is the time when convergence is visually observed.

14



The variation of D is shown in Fig. 4 in the amplitude range 1 < 5 < 120. The observed

@092004 i appreciably steeper than the one predicted by percolation

dependence, D o
theory,®® D  ¢/1°% The discrepancy may be due to the presence of long-range spatial
correlations in the Hamiltonian (the correlator Cy(x) = (H(x'+ x,t)H(x,t)),, does not
vanish at x| — oo) that may affect the geometry of isopotential contours (the particle
orbits at ¢ > 1). Indeed, for a three-wave potential (the lowest number of waves without
spatial periodicity), these correlations result in essentially straight open streamlines.!! Sé
the presence of the correlations, due to the finite number N of waves, tends to result in
more extended isopotentials and hence a steeper D(cZ) dependence, as compared to the
short-range-correlated random flow. Another reference point is given by Ottaviani'? who
has computed the diffusion scaling D o ¢%80£094 which is closer to the percolation-theory
prediction, for N = 64 standing waves and somewhat different time-dependence. One may
expect that the percolational “7/10” scaling becomes asymptotically valid for an infinite
number of waves, when the long correlations are irrelevant due to a sufficiently fast fall-off of
the wavenumber spectrum at k& — 0. This kind of spectrum is referred to as “monoscale.”*°

In addition to diffusion, we compute the Kolmogorov entropy using the definition (12) in
a straightforward manner. We average the interparticle separation di5(t) over one hundred
pairs of particles, with the initial points distributed randomly in the (—107, 107)? square and
the fixed initial separation of d;2(0) = 10~%. The Kolmogorov entropy K is then calculated
as the average slope of logdiz(t) versus time, until dj2(t) reaches unity. The dependence
of dy5(t) (Fig. 5) shows a high degree of intermittency, especially at large ¢: most of pairs
exhibit a poor separation for a sufficiently long time, and then suddenly diverge to a distance
of order unity upon encountering a saddle point of the flow. On the average, however, this
divergence of neighboring trajectories is well described in terfns of an exponential separation.

The amplitude-dependence of the Kolmogorov entropy (Fig. 4) is approximated by the

power law, K o ¢*%6£017 Thus we find that, unlike the scaling of diffusion, the computed
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Kolmogorov entropy is consistent with the theoretical prediction (15). We ascribe this ob-
servation to the fact that the scaling (15) is based® on fairly rough properties of the random
velocity field and is insensitive to the the presence of long-range correlations in the stream

function H(z,y,t).

V. Velocity correlation function

In this section, we try the approach of the Lagrangian velocity correlation function that seems

to promise the possibility of the analytical calculation of diffusion for a general Hamiltonian.

A. Theory

Whe: al stochas' ity is set up, the behavior of the system of test particles can be
describeu by the diffusion process. The basic assumption for the diffusion approximation is
that the particles experience a short correlation time along its trajectory. This correlation
time is typically given by the reciprocal Kolmogorov entropy K. The definition of the

diffusion coefficient follows from the formal integration of the equation of motion
t
2(t) = 2(0) = [ e (a(t),y(t1), 1) dt (20)

where vg is shorthand for —0H/0y = 2. Introducing the average (...) over the initial

conditions (z(0),y(0)) in the phase space, the relation

((2(t) - 2(0))*) = lim otdtl /Otdtz (vp(t)ve(t)) ~ 2D, as t—oo,  (21)

t—00

defines the diffusion coefficient.

Thus, we are led to study the nature of the two-time velocity correlation function,
C(r) = (ve(t)ve(t + 7)) , (22)

where we assume that the average over the initial conditions is time translationally invariant,

thus eliminating the ¢ dependence of the velocity correlation function. The definition for D
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can be developed further using the time translational invariance of the average to give

N >
nggﬂémﬁﬁwm-m=ﬁd%W% (23)

where we changed the integration variables from (t1,t2) to (7,¢), where 7 = t; —t, a,nd'f = t,.
That is, the diffusion coefficient is the time integral of the velocity correlation function, which
is a well established result.!®

It should be noted that because our approach is not a self-consistent tﬁfbulence theory
_ that is, we start from the given waves — the velocity correlation function must be known
in principle. Since the system is not integrable, however, we cannot evaluate the correlation
function exactly. But we do know the derivatives to any order at ¢t = 0, although the algebra
becomes extremely complex as the order of the derivatives becomes large. For illustration,

we compute
C(0) = (vp(0)vs(0)) a e

and

dC(’iE-T). = <vE(0) ([?E(T‘),H] + ang(T)» (25)

where [f, g] is the Poisson bracket defined by

_9f0g _999f
frol= dy 0z Oy Oz , (26)

Thus we can evaluate dC(7)/dr|__, explicitly. Recursively, we can compute the higher

derivatives
artic(r)

dTn+1

= (v&(0)D™*'vg(r)) (27)

where

D*tlyg(r) = [DMvg(r), H] + 3% D™vg(r) and Dvg(r) = vg(r).

17



From these derivatives of the velocity correlation function at 7 = 0, we can form a Taylor

series expansion about 7 = 0:

(28)

Although this expansion is useless for the evaluation of diffusion coefficient, since the series
is not in a closed form, we may hope to infer the time scale of the correlation function as ¢
varies. We explicitly computed the first few low order derivatives with help of the symbolic

manipulator MACSYMA for the Horton Hamiltonian (6) with € = 1. The result is

~ (5 95¢%+ 128 93914 + 270724 + 8192
_ 425 _ 2 4 .
¢ =94 (4 60 24512 T

We note that for the 5 & 1 limit, the time scale is independent of gg, but that for the $ >1

(29)

limit, the dependence is on (57')” and thus 7, ~ 1/ #, where the correlation time 7. is the
characteristic time scale of C(7).

We consider this approach more systematically. First, it is noted that the derivatives
in Eq. (25) consist of two terms, the contribution from E x B convection and from the
explicit time dependence of the drift velocity. It is noted that the convective contribution
is O(¢°) and the contribution from the explicit time dependence is O(¢?) in Eq. (25). For
low fluctuation amplitude ¢ < 1, we may keep only the contribution from the explicit time
dependence. In this case we can calculate the derivatives exactly to the infinite order. Then

the Taylor series reduces to
C(r) = ¢ (i + cos(27’)> . (30)

In this limit, the correlation function is simply sinusoidal oscillations with period =, which
is just the period of the driving Hamiltonian. Also we can see that as ¢ — 0, the Taylor
expansion of Eq. (29) agrees with the expansion of Eq. (30) confirming our calculations.
From Egs. (23) and (30) we note that the quasilinear scaling D o« @2 is far from a self-

evident result, and in order to obtain diffusion in a this system one has to account for space
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dependence of the Hamiltonian, i.e. to keep Lagrangian derivatives in Eq. (28). In the

space-uniform velocity field approximation, a time decaying correlation function C(7) can

result only from an infinite number of waves with random phases, as actually assumed in

the quasilinear theory.®
For the other extreme, where ¢ >> 1, we keep the contribution from the highest order
terms. In this case it is immediately seen that C, (= d"C(7)/d7"|._,) has the leading term

proportional to #™*? from the convective derivative. Thus we may write

Co = C(0) (ap8" +al_y 8" + al_,4"7?) (31)

and
C(r) =Y 2= C0)| S 2 @) +2 Y —am )+ = X a3
_n=0 nt " = nl " 5 — n! n—1 52 ~ nl n-1 e

If we scale the time variable through 7' = ¢7 and if we define

Ri= Y S oy, | @)
then we may write
C(r) Ny Lpon, 1 /

From this we infer
_ ® — 5 7 ® A 1 oo / ! L= / /
D _/0 C’(T)dr—zé[/o Fy(+')dr +3/o Fy(r)dr +<_57/0 R(r)dr'| . (34)
In the above expression (34) we note the following:

1. Fo(r) is the highest order contribution in @, which results from the summation for the
convective contribution only. In other words, if we ignore the time dependence of the
Hamiltonian, we should get Fy as the exact velocity correlation function. Therefore,

we may say that the correlation Fp(7’) is the integrable-motion contribution of the
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Hamiltonian system, since 9; = 0 implies the integrability in a 1D Hamiltonian (2D
phase space) system. For this reason we suppose that Fo(7’) represents a zero-integral

function and does not contribute to the transport coefficient.

9. The above argument predicts that the diffusion coefficient in the limit ¢ > 1 should
scale as &0 or, if the integral of F; vanishes for some reason, as 5‘1. As discussed
in Sec. II, the first of these scalings is realizable. However, the correlation function
expansion fails to yield the extended-orbit scaling D 52, as well as more sophisticated
fractional-exponent dependences®® on the amplitude 6. This is due to the limited
applicability of the above series approach, since the regrouping and the truncation of
terms in an intrinsically asymptotic series is unprovable. Thus the analytic properties
of the turbulent diffusivity D((}g) still pose some general questions to be addressed
in future studies. Unfortunately, the Kalugin et al.'* approach for steady peribdic
flows with finite collisional diffusivity D.n is not easily transferrable to our case of

time-dependent flow with D,y = 0.

B. Simulation

We measure the velocity correlation function for the Hamiltonian (6) through numerical
techniques. Since the problem is periodic in phase space with period 27, we replaced the
phase space average by the average over the reduced phase space of [—n, 7] X [, 7]. For
the measurement of the velocity correlation function, we locate NV, particles randomly in
[—m, 7] X [—7,7]. We integrate the equations of motion of these particles with given initial
conditions. During the integration we compute
1 X
Cr) = 5 3 (v6(0)vs(r)) (35)
P oi=1
and take this as an approximation for the velocity correlation function. In this work we

take NV, = 128 ~ 1024 particles and the integration of the equation of motion was done by
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a 5-6 order adaptive Runge-Kutta method (DVERK from IMSL). The truncation error er
per step was set between 10™* and 107° and the effect of integration error was controlled by
varying er so as not to resuit in erroneous values of C(7). In Fig. 6 we show the effect of
the finite number of test particles, which can be regarded as the effect of the Monte-Carlo
(MC) simulation. For this case we have 5 =3, er = 107, N, = 1024, and 5 different runs
are superimposed. We note that although there is a finite difference for the runs, the error
seems to be small and the structure of the velocity corre;lation functions is obviously not
affected. We also see that the correlation function decays to zero while oscillating from the
maximum at 7 = 0. This is a general structure of the computed correlation functions, and
it is physically appealing. Also note that the velocity correlationvfunction.is normalized to
its 7 = 0 value. The Cpmc(0)/C(0) is 1.025 showing an error of few percent cornpared. with
the exact 1.

In Fig. 7 we show the velocity correlation function for the ¢ < 1 limit. In Fig. 7(a),
$ = 0.01, 0.02, and 0.03. The plot shows a steady oscillation. As qZ becomes smaller, the
correlation is more nearly periodic in agreement with Eq. (28) in Sec. III. Also we note that
the oscillating time scale is the same for {5 = 0.01, 0.02, and 0.03 and the period of 'the
oscillation is estimated to be 3.1 agreeing with the period 7 of the driving Hamiltonian.
Té obtain diffusio;i in this small amplitude regime there must be a finite decay rate of the
two-time velocity correlation function. In the linear limit 5 — 0, this does not occur and the
time integral of C(7) oscillates without converging. At finite 5 — 0, there is a siow, finite
decay rate as shown in Fig. 7(a). For a weak power low decay ¢7% (§ > 0), the value of the
time-integral of the cérrelaﬁion function is independent of ¢ and the correlation time may be
defined as the period of the Hamiltonian.

The decay of the velocity correlation function may be also caused by a small intrinsic
diffusion D, due either to collisions or small scale turbulence. We now add the effect of

Dcoy giving small random kicks to éz, §y each time step At. The resulting decay of the
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two-time correlat’on function is shown in Fig. 7(b) and the time integral converges giving
D~ $*f smal ».

In Fig. 8, we plot C(7)/C(0) as a function of the non-scaled time 7 and the scaled time
7' = ér for different ¢. From Fig. 8(a) we ;:an guess that the correlations may resemble
each other if we rescale the abscissa. That is, if we compress or stretch one of the curves,
the correlation may show similar behavior. The result of scaling by 55 is shown in Fig. 8(b),
where we may say that the velocity correlation function contains a dominant contribution
which does not depend on ¢ when regarded as a function of 7/. Therefore we suggest that

the correlation function may be written as
C(1)/C(0) = Fo(r') + O(7Y) (36)

where Fy(7') is independent of ¢ when @ > 1. The possibility of this self-similar scaling is

anticipated from the power series expression (29) of the velocity correlation function.

VI. Conclusions

We present a scaling theory of the stochastic diffusion in spatially-periodic drift Hamiltoni-
ans. We show - ‘e possibility of two distinct diffusion scalings in the high-amplitude limit
6> 1: D« ¢%in the presence of open isopotentials and D « ¢° if all isopotentials are
closed. In the subclass of space-periodic models, the both possiblities are generic. This the-
ory reveals the differences in the geometry of particle orbits between the previously-studied
models and predicts both the turbulent diffusion and the Kolmogorov entropy scalings in a
qualitative accordance with the existing numerical results.

We also discuss, and numerically test, an alternative approach to studying the stochastic
diffusion by computing the particle Lagrangi- ' velocity correlation function. We develop
a scaling theory of this correlation function t! .t predicts the saturating diffusion behavior

D x4 a scaling realizable for Hamiltonians with closed isopotentials. To generalize this

22



approach and incorporate other diffusion scalings, further work is needed.

We compute the diffusion and the Kolmogorov entropy in a quasi-periodic six-wave
Hamiltonian that is designed to cheaply model the random potential of real plasma tur-
bulence. We find the diffusion scaling D o FO-92£004  which is appreciably steeper than
the percolation-theory prediction D o #°7. This descrepancy is ascribed to the presense of
long-range space correlations in the six-wave Hamiltonian H(z,y,t), which definitely does
not belong to the universality class of the random-percolation model.’ In fact, the spatial
correlations in the six-wave Hamiltonian are similar to those of quasicrystals that are known
to exhibit many properties of perfectly ordered media.®

On the contrary, the Kolmogorov entropy is found to scale as K o ¢%-%£017 _ that is, in
a good agreement with the theory.® This is well understood as the theoretical derivation of
the scaling (15) is not built, unlike that of diffusion, on the knowledge of the uncorrelated-

percolation-theory exponents.
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Figure captions

1.

The phase portraits of four periodic Hamiltonians: (a) Horton Hamiltonian; (b) Kleva-

Drake Hamiltonian with k£ = 1; (c) Kleva-Drake Hamiltonian with £ = 2; (d) Chernikov

et al. Hamiltonian.

The exponentiation of a liquid curve (the dashed line is the initial position and the
solid heavy line is its final position) in a periodically changing shear flow during the
first half period (a) and during the second half period (b). The flow corresponds to
the Kleva-Drake (k = 1) Hamiltonian with the cells of closed streamlines not shown

for simplicity. Compared to Fig. 1(b), the pattern is tilted by 45°.

The contour plots of the six-wave Hamiltonian (16) at several moments of time. The

area H(z,y,t) <0 is hatched.

The dependence of D(4) (shown by error bars; N, = 1024) and K ($) (shown by broken

line; NV, = 100) in a six-wave potential.

Time dependence of the interparticle distance for one hundred pairs at é = 10 in
linear (a) and logarithmic (b) scale. The slope K of the least-square fit of log d;a(t)

versus ¢ is plotted in Fig. 4.

Superposition of 5 different runs for the Lagrangian correlation function in the Horton
Hamiltonian with the same parameters to show the effect of numerical simulation for

parameters ¢ = 3, ey = 1074, N, = 1024.

Measured correlation for 5 = 0.01, 0.02, and 0.03. Here N, = 1024 and er = 10~%.
(a) Pure Hamiltonian flow; (b) Hamiltonian flow with small background diffusion from

Dcoll = <6$2) /(2At)
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8. The correlation function C(7)/C(0) as a function of 7 (a) and as a function of 7/ =

ér (b), showing that C(7)/C(0) =~ Fo(r') + O(¢™") for ¢ = 20 and 30.
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Diffusion and Kolmogorov Entropy
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