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Abstract

By systematically doing the higher order theory, the predictions of the conventional
ballooning theory (CBT) are examined for non-ideal systems. For the complex solvabil-
ity condition to be satisfied, radial variation of the lowest order mode amplitude needs

to be invoked. It turns out, however, that even this procedure with its concomitant

modifications of eigenvalues and eigenstructures, is not sufficient to justify the predic-

~ tions of many CBT solutions; only a small set of the CBT solutions could be put on a

firm footing. To demonstrate our general conclusions, theoretical and numerical results

are presentéd for system of fluid drift waves with non-adiabatic electron response.

PACS Nos. 52.35Kt, 52.35.Qz



In an axisymmetric toroidal pinch, like a tokamak, the turbulence due to high toroidal
number (n) modes is generally considered to be responsible for anomalous plasma transport.
In order to understand the nature of this turbulence, one begins with investigating linear
instabilities of the high n modes. In toroidal geometry, a proper understanding of these
modes necessitates solving a two dimensional (2-D) eigenvalue problem. The first reasonably
successful analytical method consisted in devising the so-called ballooning transform,'~® a
consequence of the translational invariance of the lowest order system with 1/4/n as an
expansion parameter. It is this translational invariance (the ballooning symmetry) that
reduces the intrinsic 2-D equation to the one-dimensional (1-D) ballooning equation.

For the solutions of the ballooning equation to be meaningful, the perturbative techniques
of this kind requires that a well defined solvability condition must be satisfied.*® This
constraint should normally determine the radial stationary point rqg, at which the plasma
parameters occurring in the ballooning equation are to be evaluated. For a non-ideal system,
however, the solvability condition is complex (two real equations),® implying the need for one
more free parameter for a possible solution. The fact that th_is additional freedom can indeed
be found in the framework of the ballooning theory, has been appreciated for some time.”
The sought after parameter is the symmetry breaking, or amplification factor A7, Im6, of

Ref. 7], which allows for a zeroth order variation of the poloidal Fourier mode amplitudes.

To clarify our notions, we go back to the 2-D ballooning transform®

8(z,1) = f{d/\dk explik(z — 1) — iM]@(k, A) (1)

where ¢(z,!) is the Fourier coefficient in the expansion of the physical mode ®(z,8,() =
exp(in¢ —1mb) ¥, exp(—ilf)¢(z, 1) with z = n[g(r)—q(ro)], ¢(r) as the safety factor, and m =
nq(ro). One can see that the variable A may have a parametric imaginary part A, which can
1)
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Notice that A; is yet to be determined, and the 2-D ballooning transform [Eq. (1)] for é(z, ) is

be naturally introduced through the symmetry breaking ansatz: ¢(z,{) = exp(Arl)é(
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on the real variable A. For non-zero A; (henceforth, the analytical continuation A — A, +1i);
with a parametric Ay is understood) the translational invariance of the lowest order mode
amplitude in the radial direction is immediately destroyed. Taking @(k,A) — @o(k,A) ~
§(A — A*) in the lowest order,® where A\* stands for the localization in X space, we readily
find that for an arbitrary m,®y(z +m, 0, () = exp[—im(\* + 0)]¢o(m, 6,(), resulting in radial -
amplification of the (lowest order) mode amplitude by exp(7iA;). Notice that A;(= Im \¥)
as well as Re A*¥ must be determined by the hig;‘her order equations of ballooning theory.
To explore the effects induced by Aj, let us consider a 2-D eigenmode equation which
resembles the fluid drift wave equation (in a circular flux surface equilibrium) described in

Ref. 6. The non-ideal feature of the system is mainly characterized by the non-adiabatic

electron response. The relevant equation is

C? 2 Wye

‘where V)= [q(r)8/3¢ + 8/00)/aR, Vi = (1/r)(8/9r)r(9/dr) + (1/r*)(0%/66%), GF =

i(Tec/Bengr)(dno/dr)(0/88), ¢¢ = T./m;, &g = —i(Tec/BeRr)(sin 97‘5/87" + cos 60/09),

 p? = T.c/eBw. with w the mode frequency, T. the electron temperature, ny the plasma

density, B the magnetic field, é(> 0) the electron charge, R the major radius of the torus,
r the radial position, m; the ion mass, ¢ the speed of light, w,; = éB /em; the ion cyclotron
frequency, and . stands for the non-adiabaticity of electron response. For simplicity B and
R are assumed constant throughout the note. This model is appropriate for the present
purpose, because the drift wave has essentially the characteristics of a ballooning mode.®

The 2-D ballooning transform (defined by Eq. (1)) of Eq. (2) in the k — A representation,® is

2 -
n9 + @2 + L@ 4 higher orders| @(k,\) =0, (3)

1, (
L1753 E3%

where LO) = TI{92/ 0k + I{ k2 + I + cos(k + MY + sin(k + VIPk( = 0,1,2,1), and
Hgo) ~ 0(1), Hg-l) ~ O(l /n), ng) ~ O(1/n?) are independent of k, )\, determined completely
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by the local parameters at ro, and HP': f(k) + g(k)0/0k ~ O(1/n). Expressions for all
II’s can be derived in a straightforward manner for a given equilibrium.® The existence of
non-zero L), L) ... reflects the fact that the translational invariance of the operator holds

only approximately.

The lowest order of Eq. (3) with all [(1/n)8/8)]’s neglected, is the ballooning equation

09X

LOM)X = 10 X

+ [TV k2 + cos(k + NI + sin(k + NI ] X(k, A) = ~TI(A)X(k, )
(4)

where II()) is the ‘ballooning’ eigenvalue parametrically dependent on A via cos A and sin A.
The reflection symmetry of Eq. (4) in ¥ — —k, A — —A\ indicates that a cosine Fourier
series Iy + II; cos A + II; cos 2\ + - - - can serve as a good representation for II(A). The next
step in the process is to express the 2-D wave function as @(k, A) = ¥(A)X(k,A)+ higher
orders, where W()) represents the fast variation in A. It is now clear that the conventional
ballooning theory (CBT) corresponds to the most localized ¥(A) with A; = 0.

The solvability condition with a finite A; can be obtained by solving Eq. (3) perturbatively.®
Provided II5,I15 . . . are small, the solvability condition for thé most localized ¥ ~ exp(—n,/pA?/2)

becomes

F =n (XL®X) - illy sinh Ar//p = 0 (5)

with p = I coshA;/2n?[(XL®)X) +(XLW,)], where (...) = [ dk.../ [ dkX?, and B, is the
inhomogeneous solution of the equation L%, 4+ (L") ~ <XL(1)X>)X = (0. For an ideal system
with a priori A\; = 0, the solvability condition Eq. (5) reduces to <XL(1)X> = 0 [Eq. (8) of
Ref. 6], and is likely to be satisfied by merely adjusting ro. This is the situation investigated
in Ref. 7, which concludes that the CBT? applies for circular flux surface equilibria. This
conclusion should be accepted with caution, because Ref. 7 deals only with the marginal
stability situation (8, = 0), which is operationally equivalent to an ideal system. In addition,

it does not explore the consequences of the full solvability condition. If dissipation is essential



to plasma instability, it is almost impossible to have a purely real system. Then, one has to

| solve Eq. (5) with Eq. (4) to determi‘ne ro and A simultaneously. It follows then that the
eigenvalues of the ballooning equation with finite A\; may have an O(1) correction to those
from CBT. Notice that a complete determination of the 2-D eigenvalue will require solving
the equation for \IJ()\) [Eq. (9) of Ref. 6]. But this will merely yield an O(1/n) correction to
the eigenvalues of the ballooning equation with A;. When this small correction is neglected,
the above manipulation correct to O(1/4/n) is sufficient for determination of the eigenvalues.
In this brief communication, we examine in detail the fluid drift wave [Eq. (2)] problem
within the framework of the theoretical model [broken balloo}ling symmetry] just discussed.

The equilibrium is characterized by a constant density scale length L., a constant electron

- 7&132315&?40;1 ge,:x?“;-proﬁle TeZp) =T.(0)(1 ;55)2, and a qr—rproﬁrlék(_lf(p) 7;_77&074-7(4;:-2&0),02+(;Zic<)fi’4,7 o
where p = ro/a is the radial position normalized ﬁo the plasma minor radius . In sofne limits
the problem can be solved analytically by using the explicit perturbative solutions of Eq. (4).
The procedure is straightforward, but is very cumbersome, and will be presented elsewhere.
Here, we present only some typical numerical results. The numerical procedure consists in

" ‘solving [using a shooting code] Eq. (4) for X‘(k;'){)’aﬁd'ﬂ()\);frdm‘. Whiéh"c,—ol‘aﬁd:th_e‘ related
integrals [sﬁch as <XL(1)X>, <XL(1)¢1>] are calculated numerically. The present investigation
is limited to the case where II()) is very well approximated By I+ II; cos A, which may not
be always true. For some values of ry and certain branches, ‘H()\) can have very different
A-dependence. Our results indicate that the solvability condition Eq. (5) can be satisfied
mostly at small rq (p < 0.35), and then also with p2k3 ~ O(1)! A typical examplé leads to
the stationary point p = 0.19 fof the following parameters: bgo = Te(0)cn?/ échiaz = 0.04,
6. = 0.15, L,/R = 0.2, g0 = 1.0, ¢, = 3.0 with A, = 0., Ay = 1.3, yielding the eigenmode
ffequency w/w¥ = 0.344, and the growth rate v/w* = 0.0228. We point out that even though

Ar > 1 for this solution, there is very little modification to the eigenvalues (A; = 0); the

small shear at p = 0.19 makes the eigenvalues of Eq. (4) quite insensitive to A. A different



set of parameters: bgo = 0.2, 6. = 0.8, L,/R = 0.2, go = 1.0, g, = 3.0 result in the solution
p =03, )\ =0, \; = 1.1, the eigenmode frequency w/w¥* = 0.258, and the growth rate
v/w¥ = 0.0608. The corresponding values for no A; are w/w¥ = 0.243, and the growth rate
v/w¥ = 0.0518.

In the ballooning k-space, the mode structures pertaining to the above two examples are
shown in Figs. la, 1b and lc, 1d for two different sets of parameters. It is readily seen that
a finite A; has significant effects on the mode structures exhibiting a strong asymmetry in
the ballooning space. The radial envelope of the physical mode ®(z,,() is also modified
by a finite A;; the peak of the envelope is shifted from ry to a radial position r()\’ estimated
as q(rg") ~ q(ro) + Re(,/p)A1 for the localized ¥ ~ exp(—n,/pA?/2). The width of the
envelope is still order ro/v/n necessary for the validity of the ordering. If g(ry’) is well
beyond the range of the safety factor within the plasma, the corresponding mode is not
physically interesting. The finite difference between ry and ro! seems to reflect a global
feature of the localized modes. This observation would be significant for understanding both
the numerical simulations and the experimental measurements.

For p > 0.5 we found that the solvability condition Eq. (5) is generally not satisfied
for the above equilibrium model, even if a finite A; is allowed. A typical search is shown
in Fig. 2, where the function F(p,\;) defined by Eq. (5) is plotted for b9 = 0.04 with
p = 0.5 — 0.9 and various A;. It seems, therefore, that there does not exist a one to one
correspondence between stability predicted by CBT and stability pertinent to the physical
2-D system. Among others, some of the most unstable ones (e.g. p2k7 < 1, which also are
the physically most interesting modes) are excluded. The preceding discussion, by no means,
implies that there are no unstable modes with p,ks < 1, it merely points to the limitations
of the present ballooning theory that is based on the assumption of the most localized ¥(A).
The higher harmonic solutions in A-space, which are less localized, are not explored in this

study, and are beyond the scope of this brief communication. At this stage we would like



to emphasize that the true expansion “parameter” of the (generalized) ballooning theory is
(1/n)(0/0X). As a result, the eigenmode structure in A space is crucial in determining the
effective expansion parameter. It is only for the most localized modes (/80X ~ /n), that the
expansion parameter becomes 1/4/n. On the other hand, the localization of wave function
in A-space, is not necessarily a general feature of the high-n ballooning type of modes. For
example, ¥()) for the high-n toroidal Alfvén eigenmode’®" does have a A spread, revealing
another aspect of departﬁre from the CBT.

In summary, we have shown that the cbmplex solvability condition [Eq. (5)] for a non- -
ideal system can in principle be satisfied by introducing a symmetry breaking factor; Az, i.e.,

the ballooning solution may describe a class of solutions for the non-ideal 2-D eigenvalue

problems. In practice, we find that for a typical equilibrium (used in this brief communica-
tion), it is impossible [even with A; # 0] to satisfy the solvability condition unless n > 1.
Thus, we must be careful in accepting the stability predicted by a ballooning analysis for

moderate n, i.e., the range of n characteristic of the experimentally measured fluctuations.
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Figure Captions

1. (a) Eigenmode structure in the ballooning k-space for Ay = 0, and p = 0.19,6910 =
0.04,6, = 0.15.

(b) Eigenmode structure in the ballooning k-space with the symmetry breaking factor

A7 = 1.3 for parameters of Fig. 1a.

(c) Eigenmode structure in the ballooning k-space for /\I = 0, and p = 0.3,b50 =

0.2,6, = 0.8.

(d) Eigenmode structure in the ballooning k-space with the symmetry breaking pa-

rameter Ay = 1.1 for the parameters of Fig. lc. - T

2. The complex solvability condition F(p, ;) for scanning p and A; at by = 0.04, 6. =
0.8, L,/R = 0.2, A\, = 7, o = 1.0, and g, = 3.0. The curve q, b,’ ¢, d, e, f represents
p = 0.5,0.6,0.7,0.8,0.9 respectively. The symbols O, I, O, @, £, A represent A\; =

~0,-02,-0.4,-0.6,~0.8, ~1.0 respectively. |
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