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l.. Int:oduction
§ 1.1 Overview

‘The traditional method for obtaining a Hamiltorian
System is by ﬁa& of a Lagraﬁgian,'fhat is 5btéiﬁéd by
physical considerations."The'éystem is thénliegendre'
transformed (if possible)‘fé obtain Hamilton's equations
in canonical form} a form .that is conveniently repréSéntable
in terms of the Poisson bracket. Canonical transformations
preéserve the form'bf the Poisson brackét; the‘idea of
canonical cbﬁjﬁgady is.méintained. "An éfbitréry coordinate
+transformation ddés not presérVe‘thé»fbrm of the'Poissdn”
bracket and consequently the Canohiéél‘fbrm of Hamilton'

is obscured. Conjugate'variables cannot be discerned and

 the Poisson bracket may dépeﬂd exbiicity on the'djnamical
. variables. In spite of the obscured form, certain algebraic
properties of the Pbiésdn braékeg are maintained: biiihearity,~
antisymmetry, and the Ja¢Obi.cohditioﬁ fc.f.; below). This
motivates an alternaté definifion of'Hamiltoniah: A system
is Hamiltonian iflone'can:find a PoisSbn'bracket,fwiﬁh these
‘algebraic properties, and a Hamiltonian, such that together
they_genefateiﬁhe time'eVolution-of the‘system. For the
case of éVeﬁ—(hondegenerate?'finite4dimen3ionél'systems, the
thééfem’of Dérboux;fz prbvides'an algorithm for locally
‘cthtructiﬁg cénonical variabies. Also;_thére'éXists an

extension of Darboﬁx's thédrem3 for the case of infinite

dimensional systems. (The'situation here is subtleéﬁﬁggauge

conditions may be necessary.for a canonical description.)




~here are the usually encountered physical variables. These

In this:paéer we present noncanonical yé£ Hamiltonian .
descriptidnsvof maﬁy of the'non—dissipative field equations
that govern fluids and plasmas. Thé'dynaﬁicél variabies
descriptions have the'advantage'that.gaﬁgé conditionS'are -
absent, bﬁt at the eXpénsé 6f introducing‘peculiar Poisson
brackets. Clebsch—iike’potential[descriptiohs that reverse
this situation are/aiso introduced..

In the remainder of Sec. 1 the ideas sketched above
are considered. The presentation here is admitﬁedlyvnon4

rigorous. The reader who is. interested in- a more rigorous

formulation of some of these ideas is directed to Refs. 4 -

11. Section 2 deals with the ideal three-dimensional
compressible fluid. 'Tﬁe_ﬂohcaﬁqnicéif?biééen bfackét‘for
ideal magnetqhydrodynamicsl2 is.préSented; Véiiéué fluid
descriptions are seen to bé repréSéﬁEed"bY'portions of'ﬁhis
bfaéket. The plasma eqﬁations'of Chew, Goldberger and Low
are considered. The constants of motion for MHD are

discussed and the bracket is shown to generate the infini-

~tesimal tranéformations of the ten-parameter Galiléah.group,

This section is concluded by'preseﬁting a canonical formalism.

Various potentialvdecompositidns of the fluid velocity and
the magnetic field are discussed. Section 3 deals with the
Hamiltonization of the equations of two-dimensional vortex

fluids and guiding center plasmas.l4'~TheVSOle'nonéanonical
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'dynamical variable in tﬁis caée is the scalar vorticity:‘
The canonical déscription ié given. Section 4 is conceined
With.the equatidns that'gbveranully nonlinear ion-acoustic
waves in plasmas. . This is-tﬁe'$ystém from which the
KorteWeg*de.Vriés-equation,iS'bbtainéd by éppfoximation.

Sectibn'S covers the MaxWeIl—Vlasovls—lB

equations. The
noncanonical -Poisson bracket is preSeﬂted. .The Way tb'

; "canonize"-this forml9 is indicated at the end of Sec. 6.
The body .of Sec. 6 deélé with thebVlAéoV—Poissdn equations.
it.is observed that theée'équatiohs:pésseés the same noﬁ;‘

- canonical Poisson bracket"as'ﬁhat for two-dimensional VOitex

19 ’A Ciébsch¥like>§otentiél dédéﬁpriEiOn is seen

) 19

fluids.

to yield a canonical Hami%tonian description.

§ 1.2 Generalized Hamiltonian Field Theory
Consider the fdlloWing system of autonomous evolution
equations:

uil_.—(t,§) = FY(U,x) i=1,2,...,m-  (1.1)

' Here, eachf u' " is a function of time t and -x , where

- ) . .. . . » : o . .
x €V €RY for some integer - n... The e are general
nonlinear partial differential or integral operators on dq .

Specifically the FT . may bé any functions (with a finite

number of arguments) of the followihg:
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where the . xi's are the components of X ,

k = |k =4zk.-
: i=1 +

_and nK has components ki' which are positive

integers.

R el BT, '

iii) /‘ R(x|x')£(4)dr ‘where
. v ' .

£ is soﬁe function and the Kernel K- is
independent of 1 .
We denote this class of operators by L. (I.e., e,
We are not concerned with specific{euXilia;y'conditionsyv
neeessary.for existence and uniqueness of solutions, but

suppoee solutions do exist and are elements of a vector space
w (over R ) that is equippea with the inner product
<flg> = [fgar , : (1.2)
v
where dT ie the volume element for .V C R .

Chstomarily in field.theory eertain integralé or
functionals arise. For example, the integral of the
Hamiltonian density is that particular“functional that

generates the evolution. Here the evoiution will be generated

via‘generalized Poisson brackets that operate on functionals.

To this end we define a vectorzspaee' Q (over R ) of

I
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differentiablé'functionals‘thét have'the form
G{E] = ~.f(}ic;(ﬁ,%);..aam 1 (1.3)

where G € £;riS~an operator,on W . ‘We’define differentiation
of functionals in the usual way

.5F ., \ .
= — 1w ), (1.4)
’<:5u4 :>

where the variation is taken with respect to functions W

e=0

that vanish at the boundary of . V. Equation (1.4) defines the

functional derivative- SF/su* Which is in‘genéral a non-

linear operator of the class £ that opérates on w .
Before proceéding, consider the following examples of

functional differentiation:
. h [ 27 .
i) Suppose Ffﬁ] = /6 F(x,u,ux,uxx,..f)dx
where the functibn u is defined on (0,2ﬂ) and

F is C° in all its (finite number) of

arguménts. By Eq. (1.4) we observe

SF _ o _ a o, &% aEr

Su du | . dx aux dx2 Buxx

. s : > R . .

ii) Suppose Fld] = u (x")., i.e., the functional

composed of functions ut evaluated at the point

-> . : .
x' . Using the Dirac. delta function 6(§) ; we

the—form-of -Eg.(1l.3) -as

PR -

— . T '
canmrepresent—this—in




FIal = wleyed - Enar,

%

then from Eq. (1.4) we obtain

|

Ll :
6u-(§') L= 6‘6(§ _ §|)
sad (3) 37 ,

r
where

i
ij

Contlnulng now, we recall that the usual Poisson brackets20

of fleld theory have the form
:E: 5G OF
- . drt
/ 6nk dTr Gnk GTrk }

[F,G] (1.5)
where the dynamical equations generated by some Hamiltonian,
H , .arer

o

_ | Te |
e [”k'H] ’ FEE [Wk’H] )

(1.5) is antisymmetric and. it

Bnk
at

Clearly the operator of Eq.
is well known that it satisfies the Jacobi condition.
(cf. below). We_generalize this form by defining the

following'generic bilinear product on Q :

[F,6] = <f£ﬁ; 03 &6 :> , (1.6)
su™ su’
where repeatéd'index notation is used and 07 € ¢ We

desire our form, Eg. (1.6), to possess the same algebraic

(1.5), i.e.,

properties as Eq.

TT 11




iy [F,6] = -i6,Fl for F, 6 € Q
ii)'thé Jacobi conditidh o

LELF,@l + [F,16,8] +[6IEFAL = 0o ]

for every E, F; GEQ .

The first éoﬁdition iequifes that the operator. Oij be
anti—self—adjoint With.fespéct to the_inner product on w .
The second condition is more strinéént and will bebdiscusséd
in ‘the next.suBSeétibn. We.note'that a brackéﬁ of the form
of'Eq.;fl.B);”With properties ‘i) and ii),fdéfinéd:on Q o ' %

defines a Lie Algebra of functionals. We now define what we °

-~ . -

mean by Hamiltonian.

Definition. A system of equations of the form (1.1) is

Hamiltonian if there exists an operétor 03 €L and a

functional H such that Eq. (1.1) can be cast into the form
N1 -
du” [ i ]
-l H

where [,] makes. @ a Lie Algebra.

§ 1.3 The Jacobi Condition
We now pinpoint what is required of an anti-self-

adjoint 0'J)  in order for the Jacobi condition to be

satisfied. Since the Jacobi condition involves nested

Poisson brackets we-réquire the functional derivative of a

TTIr




Poisson bracket. To this end, we first obtain a properfy

of second variation. We conclude this subsection by
considering two general classes of Oij‘} those that are
independent of'-z -and those that are- llnear in- Z in-a -

particular way.

Recall Eq. (1.4)

a;.F{u + ew]

SF .:> _
= _— | W = G
<:6ul-

G as defined here is clearly an element of § . Differentiating

€=0

again, we obtain - - L
In Gj[uj, + le:l = <—-——-IZ w>~ . (1.7)
n | st su . | o

Equation (l1.7) defines the operator '52F/6u36ul € £ that

- n=0

. L : : . . ’ : .
operates on u as well as operating linearly on z.. Since

the order of differentiation is immaterial, we must have
the following:

' ' i 1.8)
<6u Gu-’ Z> ( :

Since the P01sson bracket of any two functionals is-

also a functlonal formally we have -

o << S[F, 6]
' Guk

é%—[F;G][ﬁk + ew)

€=Q

T

TT 1T




By Eg. (1.6) we also have

_ 4 /sF_
- de ‘ 6ui
13 86 :> <i

lj 826 :>
.——————k jW.
Sdu Su
5013~“ e

(w) ——%—- . (1.10)
Guk : su’l / .

oid 86 >[u +ew:|

. <i 6F_
' \ su’

The first two terms of Eg. (1.10) come from the d/de acting

on 6F/6ul and . 6G/6uj. respectively. The last term arises

- from the dependence of the operator 0Y3 on 1 . This term

l

is compllcated in that the symbol dolj(w)/su E £ is used
for an operator that acts on -3 ' llnearly'on 'w , and also on

6G/6uj to its rlght We require that this term be written

<K]J;j (_—‘SF. ———‘5~G.>' w> (1.11)
’ §ut  su’ ! :

where w is now isolated from the‘pperator. - (For the case

as follows:

when 033 ohlyfihvoiveS'ﬁertial differentiatien, this is
obtained by integration by ?arts.)"Usihg Egs: (1.8);'(1.9),
(1.10), and (1.11), the antiLSelf—adjointhess of Oij, and
the fact that these relations hold for arbitrary - w within

a wide class, we strip away the integration to obtain

2 . 20 . o/ oap
§1F,61 _ §°F_ i3 86_ _ 86 oid ggT + xi (GF . 86 ) )
\ /

k J—l 5 j-—k
Su sudu du sdu- ou U
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Using Eq. (1.12) in| the Jacobi condition yields

1E,[F,G]] + cyc =<§% Om’& sz(ﬁ— , §__G__)> + cyc .

Su sut su’

(1.13)

Here - cyc means cyclic permutation and we observe that the

i

only surviving terms are those thatAinvdlve the KZ . The

terms that involve the second variatibn cancel by virtue of
the anti-self-adjointness of 0°J and Eq. (1.8). The

following theorem is apparent.

Pl

‘

Theorem I. Tf 07 ié'indépehdent”éf ;G (including any

operator of class £ on ﬁ Y, then,anti—self—adjointness

-

is sufficient for the Jacobi condition.

. . s 14 .
Now we consider a special case where. . ( J depends

linearly on A . We suppose Olj has the manifestly anti-

self-adjoint form

iy _ Z | Lidek jik . -

0 = 2 [ar. ukar +az’” .maruk] (1.14)
_ _ |

where k = 1,2,...,m; r=1,2,...,n; &rﬂ=_3/axr; and

r

quantity .éolj(w)/éuk of“Eq._(l.lO) is seen to be
ij .
60k (w) = E (aij'k woy + agl’k BEW) .
su A\

r

ai3/k ¢ 2 for all i, j, k, and r .  With this form, the




ii

el (SF 86\ _ §F  _ij,k . &G 56 i,k . oF
x (Gui' 3) 'Z(ﬁiar' ar"‘j""f—j-ar’ a0

From this we obtain the quéntiﬁy Kij by iﬂﬁegration by

parts

u

T gl

| | (1.15)
Inserting Eq. (1.15) into Eqg. (l.l3)'yiélds a complicated
expression that vanishes if the coefficients aij’k satisfy

certain properties.

Theorem 2. Poisson brackets made up of operators 0t of

the form of Eq. (1.14)'satiSfyithe Jacobi condition if

b Yt e e )

A = = 7
k
and

ii) }E:Cafk'm aij’k’+ aﬁl’m aij’k‘— aﬁk’m agi’k
k

_ _kj,m £i,k) L
at ar = 0

for all r, t, £, m, i, and j .

We conclude this section by noting that many of the
Poisson brackets presented in this paper are of the forms of
Theorems 1 and 2. The Jacobi condition for the others can

similarly be established by the procedures discussed here.
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2. The Ideal Fluid and Magnetohydrodynamics
(Double Adiabatic Equations)

The equations of ideal magnetohydrodynamics are

2 v .
= - _ .V } > > - -1 2 _ -1 .<'>
Ve = \Y <~§-) + v x (V x v) o “Vip Up) p 7V TB (2.1)
o = =V+ (pV) | (2.2)
S¢ = -V.Vs | | ' ‘ (2.3)
B, = -BV-V + B-Vy - ¥-VE . j (2.4)

{ .
~ The variables of Egs. (2.1) - (2.4), p, §,V§ and s, are

functions of three spatialicobrdinqtes and one time coordinate.
Equation (2.1) is the equation of ﬁotion for a fluid with
density p and velocity ¥. The magnetic body force term
is represented in terms of a symmetric stress tensor

T, =(8%/2)T - BB where B is the magnetic field. The
symmetry of ?ﬁ precludes the'existencerf internai torque
densities; the equation obtains é=symmetry;with6ut the use
of the initial condition v-B = 0.  Also in Eq. (2.1) the
internal energy per unit mass, U(p,s), is a prescribed
function of p - and the entropy per unit'mass; S... The
intensive variable, pressure p and -temperature T, are
obtained from. this functiqn P ;,szp , T ='ds . Equation

(2.2) is mass conservation and Eg. (2.3) expresses entropy

advection. Equation (2.4) is Faraday's law aséuming

E+vxB = 0 . It is written in a form which is manifestly
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Galilean invariant. Below we obtainfthe Poisson brackets for
specific subsets of Egs. (2.1) = (2.4). The equations of

Chew, Goldberger and Low are also expressed in Poisson

, bracket,form.,

§ 2.1 Néncanonical Poisson Brackets

The MHD equations are know£ to possess several
conservation.laﬁs. In édditién to p , the momentﬁm denéity
pg and the energy density %évz + pU + (B2/2) are densities
of conservation laws. The>éYﬁmetry of %ﬁ assures that the
angular momentﬁm aénsity (& Xi%}p_, is conserved and also
one can show thétv p(§.— vt) is conserved.zﬁ»’similarly, the
entropy per gnit volume 0 = sp . is cdnserved (more generally
pf(s) for arbitréry functiohv.f).  Aléo  §, A-B (where
B =V x K) and »§;§ “are COnseredidensities if VB = 0.
Below we will discuss these constanﬁé in the context of our

Poisson structure.

The natural choice for the Hamiltonian is the energy

functional

o 2 .
M= j(%- pv2 + pU(p,s) + 32 )dT . (2.5)
"V
With this as Hamiltonian, the following Poisson bracketl?

produces the Egs. (2.1) - (2.4):

T




]

i

[F,6] = ,

(2.6)

—/- %fv~§§-+§f--v—a—g (2.6:1)
AN ‘ ‘ "

oy p—l(v x 3) . (ﬁg X ﬁé); (2.6-2)
L v v/ ]

+ o7ty (—6—56—3-—53—(11§§)W (2.6-3)
L s Ov s Sv /]

Pev 6B Psv - B
+§r.(vi§§)--5—§—(vl§§)-'6§: dt (2.6.4)
LY Pev/ T 6B P sv/ B!

The first term, Eq. (2.6,})) is a natural extension_to higher
dimension of the K=dV bfacket‘obtained-by Gardner.4
Considered as a binary operation on functionals of . p and e ’
Eq. (2.6.1) satisfies the Jacobi condition. If Eq. (2.5)

with EE set to zero and the s dependence of U %suééféssed,
is used as Hamiltonian, one obtains the ideal fluid equation
of motion with Aﬁ.x v = 0 . and the continuity equation (2.2).
The inclusion of Eqg. (2.6.2) with the same Hamiltonian produces
Eg. (2.1) with thé Uxv term. The sum of these terms
satisfies the Jacobi'condition.  If Eg. (2.6.3) is added to
the previous fwo, then the resulting bracket considered as an
operator on functionals of p, v, and 's can be shown to

with the s

If Eg.(2.5),

dependence of U included and B = 0, is used as Hamiltonian

then Egs. (2.1) (with B = 0), (2.2) and (2.3) are produced.
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The remaining term, Eq. (2.6.4), accounts for the magnetic

field.

The last two terms here are |doubly contracted

| dyads, i.e.,

B

(v

1
P

!

O |Or
4¢Ln
RS

8): (2
\ P sY 8B

| 3

N g5 36 4.
|
1 i, 3=1 ]

o ov

1 9F ) ,

If one considers a bracket composed of this term added to

 Egs. (2.6.1) and (2.6.2), then Egs. (2.1), (2.2) and (2.4) are

produced with H = /kpvz/z + pU(p) + B%/2)dT. ‘Tt can be shown

that this satisfies the Jacobi regquirement. (We note that the

Jacobi condition in no way depends<upon the initial condition

>
VB =

then as noted Egs. (2.1)-(2.4) are obtained. We summarize'}

0).

Finally, the entire bracket, Eq.

the above paragraph in Table (1).

them

(2.6) satisfies

the Jacobi requirement. If Eg. (2.5) is used as Hamiltonian

'Let us now. return to the constants. We divide

into three‘groups, the first we call.generators~

1

/

v

oV dt

X x pv At

1 .2 , B
f (-_-2- pv™ + pU(p,s) + ==

2

Jar

(2.7)
- (2.8)

(2.9)
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G = jﬁp(Q - veydr . | (2.10)
v

These constants together with the Poisson bracket defined

by Eqg. (2.6)‘generaté'the infinitesimal transformations of
the ten parameter Galileanlgroup. H, of course;.genefateé
time translation, while 7 and E..generate'infiniteSimal

changes due to'space'translations and rotations respectively.

‘For exampie; using the k?h..component of P we obtain

[es Py ] =.:_8kp_

[verPicd = ‘.ék"g
| [S,Pk] = -3s

[BE,,P]{] = 4-3]{31’ :

The remaining constant, G , physically corresponds to ﬁniform'
motion of thé centerwof mass of the fluid,‘i.e.}

zcm =~$cmt + const- ‘It can b¢ interérétéd as an embodyment of
Newton's third law; all internal.fo£ces occur in action-
reaction pairs; The only forceé that can be imparted to the

center of mass occur through surface terms that here are

assumed to vanish. This constant generates changes due to

Galilean transformation. We obtain

[ple] = takp

[verGd = ¥y = dp
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[‘S’Gk'] = tJ.s

The Kronecker delta term of [Vﬂ’Gk] allows for the béostzin~
velocity.
The second group of constants commute with jany functional

, of the dynamical variables. That .is, for

]
o
Q
~

M (2.11)
y

S = ].ps dr (2.12)
V ,

we have

[x,M = I[x,8]1 = o

' for arbitrary ¥ .

J

The third group of constants is composed’ of the magnetic

constants

B o= f§ ar (2.13)
v | ,

T o= [ X8 (2.14)

: Yy - ;

W = f-?z-is’ ar ) | | (2.15)

-r**fff*ﬁ“THESe functiqnals'commuté~With the Hamiltonian - [Eg. (2.7)]

only for the initial condition V+B = 0 .  The constant W

also requires constant entropy per unit mass.

T

T
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The double adiabatic equations of Chew, Goldberger and Low
can also be produced from the bracket Eg. (2.6). Thesé
equations account for the presencebof a strong magnetic field
ﬁhroughvanvqnisqtrppic pressure tgnspr._-The‘pressprg parallel
to the direction of the magnetic field ﬁ” differs from that
perpendicular, pl. If the internal energy depends on B, the
magnitude of the magnetic field, in addition to p and bs,

then our bracket produces the double adiabatic equations, if

we make the following identifications:

p” =p%
and
_ .2 38U 2u
pl =90 50 + pB 5B .

To conclude'this subsection we present. an alternate, more
symmetric form of the bracket defined in Egq. (2.6). If we
transform to the set of dynamical variables'{p,c,ﬁ,ﬁ} , where
o'=ps is the entropy per unit volume and o= p% is the
momentum density, then Egs. (2.1)-(2.4) become eight conservation
equations.@fﬁone-adjdiﬁs,V¢5=;d); The ?ressure is now déterndned by

2 o= ~ |
p=2>p (Up + 0p l-UG) where U(p,0) = U(p,s). As a result of

the transformation
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together with similar transformations for the other variables,

Eg. (2.6) becomes

;
| ol s sM i
+ o %.-v—%—ig-vr% + B- -Q;E-v-@g-—fg—g--v%
oM 81 M B sM 8B
+ B [ (v %) 86 . (v %) St dt . (2.16)
si /) oB sM/ 6B

Notice that each term of Eg. (2.16) is linear in one Eulerian
variable and there are no terms, like those of Eg. (2.6), with
the density ¢ in the denominator. This feature facilitates
evaluating the bracket when polynomial:or Fourier representa—

tions are used for the dynamlcal varlables.' Also we observe

that Eq. (2.16) is of the formrdiscussea in Theorem 2 of

§ 1.3
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§ 2.2 -Potehtial Répresentations

The.use of potentials to reprééehtHGéctor'fiélds has a
history that transcends the'fémiliar poténfial dédbﬁpbéition”
of electricity and magnetism. 1In thig subsection, we discuss
poﬁential:répresentations‘that pertain to our.PoiSSOn‘braéket
[Eq. (2.6)]. (We note that the historical account presented
© here sﬁould'not‘be‘taken as complete. Such a task is hampered
| by avgréat deal of.re&iscovery in this area. The interested
reader is direCtéd‘to}Refs. 22 - 29.)" In particular, our
main goal is to represent the fluid velocity field. in a form
that facilitates a béhbhiéal Hamiltonian description, and to
Show hqw this form transforms to Eq.”(2;6). Various forms
of pbtentiél_repreSeﬁtatibﬁs'"canénizé” the subsets of the
MHD equatiohs discussed in §2.l.v The magnetic field( of
course, cah also.befsubjeCted.to potential‘decompositioh.
We édnéiude'this subsedtién'with»a highly'symmeﬁric'déSCripei;g
tion where ‘this dedomposition,'iﬁ,addition to.thaﬁ for the
-velocit§ fiéld;fi§ done;' | |

Euler (1769) in his investigation of fluids, represented

the solenoidal vector field‘vg , where 'V‘$ = 0 , in the form
¥ = VF x VG . (2.17)

This decomposition in terms of the "Euler potentials" ¥ and

G can be shown to be iocally_general.r This contravariant

representation manifestly assures Vev = 0 . Locally, F

aﬁd G 4muét define independent surfaces. The intersection of
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these surfaces defines flow lines. (In.plasma physics it is
common, as we do:below; tovrepresent the magnetic field in
-this form; the ihtersection of these surfaces in ‘this case
défines field lines.). This representation is clearly not
unique,xsinée any function of G may be added to F (and
vice versa) without changing ¥ . More generally any two

functions 'a(F,G) and B(F,G) can replace F and G provided

the Jacobian: B(Q;B)/B(F,G)w=_l .,f[Note{'oﬁe'caﬁ add the
gradient of an arbitrary harmonic.function, ¢ , to Eq. (2.17)
without destroying the solenoidal property. In the case
where V°$'% 0 and ¢ is notjharmonic, we have a form, in
the same vein as the Helmholtz representation, which was
preseﬁted by Ménge'(l784).] |

We now present (as a stepping stone) a representation

7m’_due”té5ClébSCh”11859)}thiéh'y1éIdé”éAﬁafiéti6hal“déééripfidﬁmm'””””

of the incompressible Eulerian fluid eguations. If.
+ .‘ : ! .
Vo= oV + Vo, - (2.18)

where ¢' is‘chosen_suéh that v-3,=jo,‘£hen Epler!s:equatibns
can be represented in.Hamiltoﬁian form. The potential o is
seen to be canonically conjugéte; in the'usﬁal sense, to the
potential B

A generalization of Eg. (2.18) that includes density

e

EAT— e

oy ‘Q'fAVu,+ ove . (2.19)

T
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This decomﬁosition allows (at_thé’expense of obtaining gauge
conditions) a Hamiltonian description for a compreSsiblé ﬁluid.
The density p - is seen to be conjugate to the potential ¢
and similarly,‘_k ‘and .ﬁ aré_qanpnically conjugate. The

Poisson bracket’in‘ﬁerms of these potentials is

o SF 66 8G-SF [SF 868G SF\|
ro- [lEe-ga)@me-gae,
- f (2.20)

where F ahd G are functionals of p,4¢ ,A and p . If
the Hamiltonian H =‘IE%pv2 + pU(b)Tdf' is represented in
terms of these variables by making use of Eg. (2.19), then

the equations of motion are obtained in the usual manner .

(e.g., o4 =11¢,H]). Now suppose

- Flpsosn,ul = Flo, 91 | o

then the chain rule for functioﬁalvdifferentiation yields

5F §F- SF SF” A o . SF”

F .
e = Vo, S o 8 A gy . (2.21)
¢ 8Y _ Sp Sp p2 Y

and similar expressions for A and'Ll; Substitution of
these expressions into Eqg. (2.20) yiélds a porﬁion of our
Poisson bracket, Eqg. (2.6.1) plus Eg. (2.6.2). [Note by
Eg. (2.21), exclusion of A and u yields the irrotational

portion of the bracket Eq. (2.6.1).] .

T ~——T

—Similarly, entropy advection—is—alloted—for-by the———

inclusion of an additional potential. Consider the following

covariant form :

T 1T T T°

T 1T
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AR+ pVo + OoVY . (2.22)

-~

Here V-, the additional potential, is canonically conjugate
to o the entropy per unit volume. As above, the chain rule
for Eq. (2.22) yields the Poisson bracket that is the sum of

Egs. (2.6.1), (2.6.2), and (2.6.3).
Consider now a form that includes the'magnétic field

pv = ]—§ x (Vv X%)'l'vq) . (.2-23)

L . o) S ST . -
Zakharov and KuznetsoVTgu(l97l) presented a Hamiltonian
description for MHD. (with constant entropy/mass), where the
vector potential '%' of Eg. (2:23) is seen to be conjugate to

B in additioen to maintaining the " p,¢ conjugacy. We

emphasize that this form cannot be transformed into our

bracket. The appropriate form, Which;;espeQLamthe_disﬁi_gL;g“mmmm______

o o s o
between the initial condition V*B = 0 and the dynamical

symmetries of invariance under Galilean transformation and

rotation, is
pv = (VD) B o= BevF oo BB xopvemi o

The following Poissoﬁ bracket:

[F,G] =VJ/'(SG~6F _ SF GG) + (iﬁ-ﬁﬁ._ §g4§£> dt
| v{ 8 o0 S0 5 58 6T 6B oF

yields with Eg. (2.24) and the chain .rule,. the .Poisson_ bracket..
Eg. (2.6) with the exception of the entropy term [Eq. (2.6.3)].

The entire bracket is obtained by adding GV¢ to Egq. (2.24)

TT 1T
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and cdnsidering the canbnical strucﬁufe thaﬁ'includeé o
conjugate to ¥ .’ |

- To conclude this sﬁbsection, we present a formulation
that entails a decomposition of B as well as v . If we

expand B in terms of Euler potentials as in Eqg. (2.17)

B = va xvg |,
K . . o -> .
then the ‘appropriate expression for v is
ov = aVa +-bVB + pVé R (2.25)

In this repréSeﬁtatioh the advected field labels o and B
are seen to be conjugate to thevpotentials a and b . The
) >

initial condition V + B = 0 is,nbw inherent to the dynamics.

The connection to the‘formulation;of'Eq, (2;23).is easily

seen to be made ‘through the following:
a = -V - (VxT , b o= Vo (VvxT .

We note that the entire canonical formﬁlation is obtained by

appending - OV . to Eq.-(2.25). - These results -are -summarized -----

in Table 2.

TT I
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3, 'Two-Dimensional Vortex Fluids and Guiding Center Plasmas

The equations for vortex advection in two spatial dimensions
are used to model large scale motions that occur in atmOsphefes
and oceans. The same equations have arisen in the study'of
plasma transport perpendicular to a uniform‘magnetic field.
if we assuﬁe the usual @uclidéan coordinate system with uniform-
ity in the 2 direction then the scalar vorticity is
w(X,t) = z-V x v(x,t), where v is the fluid velocity such
that v-z = 0. For the guiding center plasma,w corresponds to
the charge density and v to the E.x B drift velocity. The
equations under consideration are the following:' |

w, = =VVw | (3.1)

V'Y =0 . | | (3.2)

Fox an_unbounded"fiui&fv—tan—be—eiiminated—from"Eq1"%Stif—by“—-—4*--“~—-—-

v = jb(%f) ME %) ar' | S (3.3)

where we display only the arguments necessary to avoid

. e > I - < T =S Y= T = e e
sonfusion. THere TMTETZURCVK(XIX )Y and k(xIx ) T is T the Green

function for Laplace's equation in two dimensions.
1 . . :
KZIE) = & alix—x) 2+ y-yn2 .

The integration in Eg. (3.3) is over the entire x-y plane;

dt—=—dxdy+——Observe Eq:—(3+2) it manifestly satisfied by

Egq. (3.3). Eg. (3.1) becomes
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W, =.'-fw(§') HXIXHar' - v . (3.4)

Equations (3.1) and (3.2) are.known to possess conserved»
densities, e.g. any function of w is'consérved. In addition,
the kinetic ehergy, which is the natural choice for the
Hamiltonian, is conserved. With the density set to unity

we have
2 v2 1 > ! >1! > '
Hlw] = - dt = - 5 kixlx ) w(x ) w{x) dr dt . (3.5)
The functional derivative of Eg. (3.5) is

% = - /’k(?;l

The Poisson bracket}4 that produces Eg. (3.4) is fthe

following:

—~
w
.
o)}

~

where {f,g} = (8f/8x)(3g/8y)w-(Bf/ay)(ag/ax); We note that

the bracket defined by EQ. (3.6) is precisely that for the

o019 (see Sec'. 6)

one—dimensional Vlasov-Poisson equation
if one replaCesvthe vortiéity by the phase space density and

and the phase space (x,y) by (x,v). Also Obéerve'thatlany two
functionals composed of functions of w alone are in involution

with respect to Eg. (3.6).

TT 1T
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We conclude this section by transforming Eg. (3.6) to
canonical form. The discussion of potentials in §2.2 indicates

the following representation of the’vorticity
w = {o,B} .- : ' (3.7)

The chain rule for functional differentiation yields

>

SF SF 5F | oF
m = {Blm} ’ ) _{?STJ’OL} (3.8)

where on the left F is now regarded as a functional of o and

B. The canonical Poisson bracket for o and B is

_ | [sF 56 sF sc\ .
1F, 6] —f(mm - wm) ar (3-9)

which upon substitution of Egs. (3.8) yields the bracket
Eq. (3.6). (This is easily accomplished by making use of

the relation _[f{g,h} dr = ;/g{h,f} dt and the Jacobi




28

4. Fully Nonlinear Ion-Acoustic| Waves
In this section we present the Poisson bracket for a
particular approximation of the two-fluid equations of plasma

physics that models nonlinear ion—acoustic'waves.Bp

_intthe
limit that the electron temperature greatly exceeds the ion
temperature, the ion dynamics are governed by the cold fluid

momentum transport and continuity equations,

(4.1)

N =‘—(NV~);;X . | (4.2)

Here, v is the ion fluid velocity, normalized to the ion

sound speed Cq :1/52752_ where Te is the electron temperaﬁure

and ﬁi the ion mass, N is the ion density that is normalized
______ton, the quasi-neutral electron or ion density, x and t are

expressed in units of the electron Debye - length
-AD = Té/4wno;§‘ Fand ion—plasma frequency wpi =w/4wnoe2/mi
respectively.» The electrostatic potential. ¢ couples the ion

. __ _ _dynamics_to _the electrons through Poisson's equation ___ _ _ ________ |

by = D(O) = N . | (4.3)

Here, ¢ is normalized to e/T, and the electron density, n(¢),
is. assumed to be a function of ¢. Typically, since the

electron mass is greatly exceeded by the ion mass, electron

inertial terms are neglected and the approximation of

TTIT
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isothermal electrons is justifiable. In this case n(¢) = &.
The structufé that we present makes no restrictions on n
except that it be a function of ¢.

In the case n(¢) = e¢, since ¢X =}nx/n , .1t is customary

to envision the electrohs aé supplying the ion pressure.
Alternatively with n(¢) specified the constraint equation (4.3)
can be interpreted as supplying a non-local equation of state
for the ion pressure. It is through this non-local equation

of state that dispersion is introduced into»the dynamics.

It is well-known that in addition tg shock wave solutions
these'equations possess solitéry wave solutions. Equationé
(4.1) - (4.3) are the starting point for the reductive perturba~'
tion procedure which yields t@e‘ K~dV equation for ion-acoustic

spl.itons.31

~ The three known integral constants for Egs. (4.1) —= (4.3) .

are

=
I

'?' Nv2 ' |
(== + LN) ax ' (4.6)
2

N

{
1

where in Eq. (4.6) £ is a nonlocal operator determined by

Eg. (4.3) such that
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LN = X +f o' 2ml0 ) g4 | (4.7)

aq)'

Equation (4.7) represents a nonlocal internal energy function.
The obvious choice for the Hamiltdnian is, of course, the
enerqgy, Eg. (4.7). (We note that in terms of the Poisson

bracket presented below Eg. (4.9), P.and N are in involution.)

Observe

and subsequently we will show

2 . .
L A . | (4.8)

SN

The following bracket, which is the one-dimensional restriction =

of the first term of Eg. (2.6), yields'the equations of motion:

@

_ 86  &F _ SF . G
[F,G] = f ( -9 3% - 5v 0 I ),dx (4.9)

. O

where 3 = d/dx. Clearly.

N, = IN,H] = - (Nv)

and assuming Eg. (4.8),
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To justify Eq. (4.8), suppose P[¢] is some functional

of ¢, i.e.,

Pl¢o] = ./. P(¢)dx.

R

Varying this we obtain

5P (65 6¢) =/ g%cw ax . (4.10)
R

To see how a variation in ¢ is related to a variation in N we

linearize Eq. (4.3) and obtain

2 on _
(3 Ty (¢0 o = -0N ,

which upon formally inverting yields

e YON 69 BEE / K(d)xx) SNy ax' T w1y
/R

where K satisfies

e (32 —@—“—)‘K = S(x=-x') . - o 412y

3¢

Here, §(x) is the Dirac delta function and we seek solutions
with asymptotic charge neutrality and vanishing electric field.

Substituting Eg. (4.11) into Eg. (4.10) yields

...... Y [

N
O

-~
o)
v

|
|

o>
=
o)
=

[ e de'} SN dx = 0
AEANARES
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For our special case where

-,
¢ v, .
Plo] = /—ZX—+/ ¢ %f,%,-w ax

R ’

we obtain

sp | (.2 . on »
E-N——‘[R(B ¢+¢(X)aj¢—)KdX ’

which with Eq, (4.12) implies

To conclude this section we obtain a canonical form for

the bracket Eq. (4.9). With the substitution
oo _,,,,,.,¥,,AA,,,,‘,V_.z_q),xn e

where Y now replaces v as a dynamical variable, and the chain

rule for functional,differenﬁiation

Eq.'(4.9) becomes

| [sF 6 sF §G
[F,G] = / (W W - W N ) ax .
R

'(ObsérVéfﬁhéf the subtitution N = &gVWiii élé6‘a¢hiéVe the

same end). Clearly the substitution (4.13) makes Egs. (4.1) -
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variational in the sense that we can construct the action
J=/ /Ntwdx-dt—/ HIN,y] at
R 7T T

which upon variation with respect to N and ¢ produces

the dynamical equations.

TTIT
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5. The Vlasov-Maxwell Equations

If a plasma is sufficiently hot and tenuous, then

collisions become unimportant. When this is the case, fast
time :scale plasma phenomena is decribed by the following ;

set of equations:

EL G = S =8 L . o (5.1)
Vi = TVe I — * .
at X mu 83
B, (¥,£) = -Vx B R | (5.2)
Et(X,t) = VxB e, /v £, &V . (5.3) ‘o :
o JR : ;

Equation (5.1) is the evolution equation for the single

particle distribution function; £, , ‘which is a function of

the six §hase—§§acé~éoordihafeéxtgééther Withitime; Here o
désignates species and ey aﬁd m, are the signed charge
and mass resﬁectively. Equétion (5.2) is Faraday's law

— —— ——-——relating the :—'mag—netic—rfrf—iei—d—r—r .—B}r———a—r—id4fthéf——él—evetr—ief field B v
Equation (5.3) is Ampere's law With thé.inclusion of the
displacement current. (We use rationalized Gaussian units

.with'the‘épeéd'bf iight-seﬁtto~unity.) |
It is Well“khown that this system, Egs. (5.1)—(5;3),

conserves energy. The natural choice for the Hamiltonién

functional is the following: %

' 5o Z 1 2 3.3 1 2 2 '
H[fa,E,B] = ) j[ 5 m, v fa d " xd v + 5 j[(E +B )d3x . (5.4)
a “D : 'R
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For this Hamiltonian observe

N
gg B % muvzr’ §§'= E §§ =B
o ' . SE $B

With Eg. (5.4) as Hamiltonian it is not difficult to show that

15-17

the following Poisson bracket produces Egs. (5.1)=(5.3) :

[F,G] = - | - o (5.5)
(5.5.1)
(5.5.‘2)
adyv (5.5.3)
a3y (5.5-9)

In the first term, Eq. (5.5.1), the curly brackets are used
to indicate the usual particle Poisson bracket of two phase
functions {g,h} = 3g/d% . dh/3V - 3g/3V - 3h/0% . This

term with Eg. (5.4) produces'Eq. (5.1) without the terms

which couple in the electric and magnetic fields. It can be

“shown to satisfy the Jacobi requirement. (In Section 6 we

present a construction where this bracket is the entire

T
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bracket for the Viésov-PoisSon system.) The second term,
Eq. (5.5.2), produces Maxwell's equaﬁiohs in vacuum.. This
term was apparently first written down by Born and Infeld.->?
Tt satisfies thé‘décobi-éondition. The next two terms,

Egs. (5.5.3) and (5.5.4) Supply'the poupling betWeen

Eqs; (5.1) ané_(5.3). Obse;ve'the' é&/md multiplying each.
The first of these yields the"eledtficlfieldlcoupling'tefm.

The last term,'Eq.'(5.5;4), completes the c6uplin§.. This

term is due to J;'Marsden'and'A. Weihsteiﬂ?ﬁ,.who obtained it
through conéideration‘of the‘underlying Lieggroup; 'Tﬁe Jacobi
Cohdition is sa%iéfied for this term énlylif the>épaée’6f
functionals,'bn wﬁich the bracket acfs,'isvréStricted to
vector fields B fhat saﬁisfy .ﬁrgf%30'. For arbitrary .

! functionals E, F, and G we obtain

[E,[F,6l] + cyec =" [ £ VB € ot Too Bv v d~v d:x ;
. 2 s t :
where - € _ . is the Levi-Civita tensor.. If initially Vjﬁ =0

'then:thé Jacobi condition isvsatisfied for all time.

| We conclude this section by pointiﬁg out a recent
motivation > of the bracket, Eq. (5@5))(see'Ref;.18)5 Here,
the relativistic generalization is made and the.generators

of the full Poincaié»groﬁp are pointed‘out. Table 3 summarizes

the above.

TTT "1T°7T
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6. The Vlasév—POisson Equations

- In this section we write the Vlasov-Poisson equations
in a erm%?”lg'vefy similarfﬁo that of the twb4dimensipndi
vortex fluid equations of Sec. 3. We will observe ﬁhat'these
sets of equations possess the'Samé:noncanonical and.canonical

- formulations. The Vlasov-Poisson equations are

9, | E. e of

- Kve) o= v 2y 20 o (6.1
. 90X o - 9x ov

L (X = -5 e[ £ a3 S B ' oy

A¢(X1t) = EO:L ea Jfocd v . . (6.2)-

- Here the only symbol not defined in-Sec. 5 1is ‘¢, the
electrostatic potential. If wé seek sqlutions where ¢

is defined on R, and if we.éssume'asyﬁbtotid.charge
neutrality and Qéniéhing éléctric field; then the Laplacian

operator A can be inverted. -Equations (6.1) and (6.2) can

be written compactly as follows:

Bfa ' _
e % _wa . vpfq . : | . (6.3)
Here Vp is the six-dimensional phase—spaceﬁgradient

(8/8§ , 8/93)v and wa is defined by

o= MCREER K(+|+')'£ a3xr | (6.4)

Observe vp-@a_= 0 . In Eq. (6.4) K(%|X') _is the kernel

for the inverse Laplacian; e.g., in one-dimension

K(xix‘) = %|X = X' . The Hamiltonian for this system is .
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Ho o= 3 % m, fvzfdd3z - %—2 S fK(%}SE')fd(z)fB(z')d3zd3z' .
' o of : : ‘
(6.5)

Here we have used 2 (§;§) . The Poisson bracket is the

first term of Eg. (5.5)

(£ (2) : i
= o 8F SG 3 _ -
o O o ¢

o

- where the bracés are as defined in SeCi 5. It is not

difficult to seevthat
Q- £ =A_’. :
—_— = [fa,Hl _ wa V_ £ .

To obtain canonical form we consider the three-dimensional
generalization of the potential representation of Sec. 3,

— li '- . - / “ V
£, = EE—{wa,xa} . : : (6.7)

With this substitution, ¢ ~ and x_ become canonically

conjugate variables. Weinote,ixiconclusion, that the eritire
bracket of Sec.<5, Eqg. (5,5),’can be put into canonical”form
by the substitution of Eq. (6.8) together with the usual

canonical description of .the fields in terms of the vector

‘potential X and its conjugate E.
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SATISFIES JACOBI

COMMENTS B

Eg. (2.61)

| With H = ijV2/2*+ oU(p)ldrT

Defined on functionals of p & V.

Il
o

produces Eq. (2,1) with VXV

and B = 0, and Eg. (2.2).

Egq. (2.61) + Eg.(2.62)

Defined on functionals of p & Vv.:
With # = {[pv2/2 +oU(p)]dt
produces Eq. (2.1) with B = 0

and Eq. (2.2).

Eq;(2.6l) + Eg. (2.62) +

Eg. (2.63)

Defined on functionals of p,v and

s. With H = f[pv2/2 + pU(p,s)] dr

| produces Eg. (2.1) with B = 0,

Eq. (2.2) and Eq. (2.3).

Eg. (2.61) + Eg. (2.62) +

Eq.(2.64)

Defined on functionals of p,%_and
B. With H = f[pv2/2 + pU(p) +
B2/2] dt produces Eq. (2.1),

Eg. (2.2) and Eq. (2.4).

_Eq.(2.61) + Eg. (2.62) + .

EQ. (2.63) + Eq.(2.64)

Defined on functionals of p,$,§
and s. With H = _[[pv2/2 +

pU(p,s) +‘B2/2]‘dr producés .

TABLE 1
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SATIFIES JACOBI

COMMENTS

with H = ZS d[%_m v2E a’x a3y
‘ S (0 o

produces Eg. (5.1) with

Eg. (5.51)
‘ T > >
. ’ E =B = 0.
with # = [2 (8%+8%)a’x
| EQ. (5.52) - produces Maxwell's equations

“in vacuum.

Eqg. (5.51) + Eg.(5.52)
+ Eg.(5.53) + Eqg. (5.54)

‘with Eg. (5.4) as Hamiltonian

produces the Vlasov-Maxwell
equations. Requires the

constraint V{§_= 0 .

TABLE

3




