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Abstract

Using the electron drift-kinetic equation and a hydrodynamic description for the
ions new nonlinear vortex equations are derived taking into account the parallel trap-
ping ofI thé eleetrons in the posiﬁve potential regioﬁs. it is‘shown thé,t the >Illsu‘a.1
integration procedure for finding the coherent vortex structures for the E x B flows in
the fluid description can be generalized to include the parallel acceleration eE) 8 f /0
producing the electron holes in the phase space. An example is considered in some

detail.



I. Introduction

In the usual weak turbulence picture, the fluctuating plasma state is described as a super-
position of finite amplitude waves with random phases in the lowest order, with the weak
interactions between the waves and with the plasma particles calculated as perturbations.
Relevant plasma transport properties, such as the particle and energy fluxes, the efficiency
of RF plasma heating, and other transport quantities can then be, in principle, calculated
from the spectra of such weakly turbulent fluctuations. In practice, however, the solution
of the wave kinetic equation for the turbulent spectrum is a difficult problem! even for the
simple two-dimensional description of drift waves.

However, if the level of the fluctuations is high (above a relatively low level), such a simple
picture breaks down, because of the strong correlations required to account for non-wave-like
fluctuations. Examples of such non-wave fluctuations are known in the hydrodynamics of
neutral fluid and in plasma from particle simulations. In fluid experiments?? it is well known
that the convective nonlinearities give rise to the presence of convective cells, or coherent
vortices, and some plasma simulations show a similar behavior. For larger moderate values of
the Reynolds number, fluid behavior is governed by the presence of eddies, which are localized
fluctuations of vorticity. Eddies can be regarded as dynamic, or transitional, elements of a
turbulent cascade, having a finite lifetime, but being constantly produced by some nonlinear
process.

Plasma counterparts of such fluid phenomena are known as plasma clumps, holes, and
vortices. Clumps* are the lowest order non-Gaussian correction to the energy distribution
of plasma fluctuations. They are localized in the phase space and their lifetime can exceed
the correlation time of fluctuations if they are spatially localized with the size smaller than

the correlation length of the fluctuations.



Holes,® or phase space vortices, consist of particles trapped in a self-consistent potential
well. They can be found as a spatially localized BGK solution of the Vlasov-Poisson system.
Since a local potential minimum can trap only particles whose kinetic energy is not exceeding
the depth of the potential well, holes are localized also in the velocity space. The estimated
lifetime of an isolated hole is longer tha.ﬁ the ion bounce time (for holes having negative
potential), see Ref. 5 and references therein, but in a system of many interacting holes the
lifetime may be shorter.

Magnetized plasmas allow for the existence of yet another type of localized structures. As
a result of the dominance of the convective nonlinearity, with the leading order fluid velocity
being given by vg = E x B/B? the plasma is expected to self-organize into pairs of vortex
tubes, which are strongly elongated along the magnetic field and propagating in the perpen- .
dicular direction with the velocity proportional to their amplitude. Such vortex solutions are
found for a large class of model equations describing plasma dynamics in various regimes and
plasma geometries.®~® Although they are not solitons in the strict sense,® possessing only a
finite number of integrals of motion, plasma vortices are remarkably robust objects, and it
_is though that the turbulent plasma state can be represented as a sﬁperp‘ositvion of weakly
correlated turbulent fluctuations and plasma vortices'® arising due to some self-organization
process. Such self-organization of flute modes in the presence of plasma vortices created by
external electroaes have been observed experimentally.!! Similar coherent vortex structures
are also found in the simulations of the drift-wave!? and Kelvin-Helmholtz!® instabilities.
Analytically, similar phase space vortex structures are predicted to develop in electron-beam
drives!® instabilities and parametric'® instabilities. |

In the presenée of spatially localized electrostatic potentials in magnetized plasma, pér-
ticle trapping in the direction parallel to the magnetic field is accompanied by the particle
E x B drift around the local maxima and minima of the potential. As a consequence, strong

coupling between electron holes and plasma vortices may be expected. The first attempt to



study such hole-vortex structures is reported in Ref. 14. However, the Terry et al.}* work
does not take into account the usual fluid convective derivative, and their results are appli-
cable only to holes which are not moving relative to the surrounding plasma. Furthermore,
the drift-hole presented in Ref. 14 contains a physically unjustifiable surface current at the
hole edge, and thus this structure is expected to be highly unstable.

In the present work we develop the theory of plasma vortices in low beta plasmas, ac-
counting for kinetic effects associated with the electron motion parallel to the magnetic field
line. In an earlier paper!® it was demonstrated that shear-Alfvén vortices may be efficiently
Landau damped by the resonant electrons, and as a consequence, the vortex speed is decel-
erated, and the damping also leads to the spatial spreading of the vortex. In other words,
the standard hydrodynamic vortices are unstable on the Landau damping time scale.

On the electron bounce time scale, however, we show that a new type of stationary
solutions become possible which are hybrid vortex/electron hole structures. In a simple
case, we find one such solution analytically in the form of a “rider” monopole electron hole,
superimposed on a hydrodynamic double vortex. Vortex/hole structures are expected to
be stable on the electron time scale, 74 ~ FIIT (mi>l/2 and to play an important role in the

ed

anomalous transport in open ended magnetic confinement devices.

II. Basic Self-Consistent Field Equations

We study electromagnetic fluctuations in a weakly inhomogeneous plasma with unperturbed
density no(z), immersed in a homogeneous magnetic field Bye,. We assume coid ions and

warm electrons, but the electron pressure is taken to be smaller than the magnetic pressure:

2720 Te < me

(1)

= ~ .
cteg B2 T my
Here m., m; denote electron and the ion mass, and 7, is the electron temperature.

For the perturbations which are both slowly varying in time, compared to the ion gy-
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rofrequency ;, and weakly z-dependent:

9
o

electron dynamics is described by the guiding-center approximation, i.e. by the drift-kinetic

0
< Qs 5;<<VL (2)

equa,tion.

In the low S regime, Eq. (1), we can neglect all the finite electron Larmor radius effects,
as well as the compressional component of the magnetic field. Furthermore, due to the small
electron mass we also neglect the electron polarization drift effects, which give a contribution

of the order &~ 4 <« e, Under these restrictions, the electron drift-kinetic equation is given

by'
af ¢ E-B 8f
ot +V VIt BT Ow

Here e(e < 0) is the electron charge, f = f (t r v||) denotes the electron d1str1but10n functlon
integrated for the velocity components perpendicular to the local magnetic field lme v is

the parallel electron velocity, and V is the guiding-center velocity:

B ExB
vu|§|+ Bz (4)

V =

--We also assume small perturbations of the electron density and the magnetic field:

dne = n, —ng K ng
()
|6B| = |B — Bo| < By

and rewrite the drift-kinetic equation (3) as

0 0 1

{'a"t'—l-v“a—z-l-a[erV(qS—v“Az)]-V}f | |

e df (|0 1 99| _ :
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Here the electric and magnetic fields are expressed in terms of the electrostatic potential ¢

and the z-component of the vector potential A:

0A,
E= —V¢ — €, W (7)

B-_—Boez—erVAz .

3

(3)



Note that the compressional component of the magnetic field 6B, = V. x A is neglected
due to the low 8 assumption, Eq. (1).

Ions are assumed to be cold, and we can describe them by the hydrodynamic equations.
Furthermore; we study modes whose parallel phase velocity is exceeding the sound speed,
and the ions can be considered as strictly two-dimensional, with their fluid velocity being

given by the sum of the E x B and polarization drifts:

1 1|0 1
= = - —|=+=(e. -V|Vér .
Vi =g {ez x V¢ o [67& + Bo(e x Vo) l gb} (8)
Substituting Eq. (8) into the ion continuity equation, we readily obtain to the leading order
0 1 én, e (1 1 20| _
it e VOV Jos e + e (g ) T =0 @

In the usual way, perturbation of the electron density én. in Eq. (9) is expressed in terms of

the distribution function f as
dne = /_o:o dvy f —no . (10)
Finally, system of equations is closed by the parallel component of the Amperé’s law:
di=e [ dvf= e Vi A, (11)
where we have neglected the ion contribution to the parallel current, being of the order

me/m;.
III. Stationary Solutions

We seek a solution which is time stationary, and z independent in the reference frame moving
with the velocity

Vo = U (ey +a7! ez> , akl (12)
i.e. we assume all perturbed quantities to be dependent only on z, and ¥’ = y + az — ut.
In other words, we have a two-dimensional elongated structure moving with the velocity u

along = axes, and making a pitch angle a to the z axes.
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" Using Eq. (12) we can rewrite the ion continuity equation as a complete vector product,

and integrate it, yielding

1 W 2
— -—2- W BO V4T + 67‘26 + (1 + Q2> v2¢ G(¢ BO Um) . (13)
Here p? = m—%? is the ion inertial scale length, vy = _E%JB%E log no(z) is the zero-order

diamagnetic drift velocity, and G is an arbitrary function of its argument.

Similarly, in the travelling case the electron drift-kinetic equation can be written as

af e ®
(e, x Vo) - Vf — 8—1)”(ez x V) -V e — (14)
where
U
U, = —
(04 .
Cpmdwd (15)

¢ = ¢ =Y Az + ('U” - Uz)CIBoCL' .

Equation (14) can easily be integrated®® if we neglect the contribution of resonant particles,
whose velocity parallel to the magnétic field is close to that component of the phase velocity,

v|| ~ u,. For nonresonant particles, satisfying |v)—u,| > Av where the width of the resonant

_ region Av is given by

o i (gl
Av = ‘——e _ |2ele (16)
Me Me
for ¢ > 0 and Av = 0 for ¢ < 0, we may apply the Landau-type linearization
af 0
o~ 2 17
6v|| 8v” fo(x, U”) . ( )
where
2
~1/2 v
fo(z,vy) = no(z) (27r v%e> exp (—ﬁ:) (18)

is the unperturbed electron distribution function, and readily integrate Eq. (14) using the

properties of the Poisson bracket, and neglecting small terms of the order dng di gz

f= foleyop) + — 6f0[ L +H<

Me 0'0” Yy — Uz

+ aBo"x — A, v”ﬂ . (19)

’U“ — U,
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Here, similarly to Eq. (13), H is an arbitrary function of its arguments. However, if the
potentials ¢, A, are adiabatically “switched on” at ¢ = —oo, the explicit v dependence of
the function H must be removed.

A complete nonlinear solution of the drift kinetic equation, which takes into account also
the contribution of resonant particles, vy >~ u,, can be found by the method of characteristics.
There are two integrals of motion (or characteristics) of the drift-kinetic equation (14), which

are found from
de _dy  —me(v) — u;)dy)

_3_15 % e(e, x Vi) - Vo

and they can be identified as the electron energy and parallel momentum in the moving

(20)

reference frame: m
W = 76(’0“ — uz)2 + e
P =me(v| —u;) — e(aBozx — A,) .

Any stationary electron distribution function can now be written in terms of the charac-

(21)

teristics (21) as f = F(W, P). The function F' is determined so that asymptotically, for free
particles, the electron distribution is given by Eq. (19).

Noting that for nonresonant particles we have

2 1/2
(=W) " 2oy = el + = 2 (22)

Me me |V — U]
we can readily write one particular distribution function, among many possible ones which

have the correct asymptotics:

F= RV, (o —u)? > 2l (23)

Me
where f, is the unperturbed distribution function, Eq. (18). The characteristics X, V)| are

expressed in terms of particle energy W and momentum P as:

[sig'n (v — us) (mi W>1/2 - _P_J

x= oflde e Me

(24)
: 2 12 ¢

Vi = u, + sign (v) — u,) (m_ W> + — H(aBy X) ,

€
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and H is the arbitrary function introduced in Eq. (19). As indicated in Eq. (23), in the case
when the effective electrostatic potential in the moving frame is positive, ¢ = ¢ —u, A, > 0,
expressions (22)-(24) are not defined for resonant particles, i.e. those whose velocity vy is

within the interval vy € (u, — Av,u, + Av), where the width Av of the resonant region is

given by Eq. (16), namely

_ 1/2
Av = [ 26(,0] .

e

Particles whose velocities lie within the above resonant region are trapped, and their
distribution may be taken independently of free particles, Eq. (23). We choose the trapped

particle distribution in the form of a hole, whose relative depth is determined by the param-

eter a: _
- 0h (e ) . Gmwl< @)
where
XRes —Qle;r% .
Vine = s o= H (B X | (2)

The value of the parameter a which defines the hole depth is determined by the mechanism
of the hole production at ¢ — —oo, and other physical processes not studied hefe, such
as collisiéns, turbulent diffusion, etc. The hole would be completely empty, @ = 1, in the
idealized case of perfectly absorbing boundaries at 2 = o0, and in the absence of processes
which contribute to its filling up (e.g. collisions, etc.)..

As it is stated above, the resonant distribution function, Eq. (25), applies only if the
potential in the moving frame is positive, ¢ > 0. Negative potentials, naturally, do not trap
electrons, and for ¢ = ¢ — u, A, < 0 electrons are distributed according to Eq. (23) for

all velocities. The distribution function defined by Eqs. (23) and (25) is continuous at the



boundaries of the hole, given by v = u, £ Av, which eliminates certain instabilities of the
electron hole.

Distribution function given by Egs. (23) and (25) allows us to calculate the electron
distribution én., and parallel current jjj, and to find the potentials ¢, A, in a self-consistent
way. The calculation for én. and jj can be done analytically in the limits of cold plasma

v1e € U, and of thermalized electrons, vy, > u,.

IV. Torsional Alfvén Holes

In the cold plasma limit vy, < u,, within the accuracy to first order of the small parameter

v4,/u? we can calculate the electron density and current using the distribution Egs. (23) and

(25)
2 2
bne = —— [qﬁﬂ b (¢-ud) (P14 ) (1 +3 ”7;>
meul | u vy, U u?
3 v%e 2 " m ¢ — U, Az
-3 " (¢ —u, A;) <H - H 3, —ny
. no 62 F 1 v%e !
iy = (¢—uzAz)<—+1+H> 143%) (¢ —u, A)H
Me U, U u?
2
—u, H (aBox -~ 5’-) - g ‘;f;(qs —u, A)2H" | ~ eu, np (27)

where H(™ is the n-th derivative of the function H, and nj is the density of the particles

which are “missing” from the electron hole:
np = 2a fo(u;)Av . (28)

In the standard vortex scenario, and in the simple geometry studied here (no magnetic

shear), arbitrary functions G, H are adopted in the form of linear functions

G(&) = (£ = &)G
H(¢) = (£ —&)H', G', H' = const (29)
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.allowing for different slopes G, H'®, and G°**, H®* inside and outside of the vortex core,
and &g is the value of the argument at the core edge.

We will further simplify our equations neglecting the density inhomogeneity (i.e. setting
vy = 0), since finite vy does not contribute to any new physical effects. However, we must
keep small thermal corrections of the order v, /u? for principal reasons, since they are of
the same order as the terms related to particle trapping, ns.

From Eqs. (13) and (27) we see that in order to have finite potentials ¢, A, for z — oo,
we must set H°% = G°* = 0.

Substituting the electron density and current, Eq. (27) into the ion continuity and Am-

pere’s law, Egs. (11) and (13), we obtain the following two coupled equations:

2 2 2 .2 2

Y & R T = A W B T UTe \ ¢ oA N eu,z e Eg_, ¢ N72h— Uz (A D o A\Yal ¢ )
(1+H" (1 +3 2 ) (o= uzAz) ) o, ny+ & o, Vg ) (¢ —Bouz — Dq)G"(30a)

C2 2 / v%’e eug B A i) :H-; b
;—ZVuzAz=(1+H) 143 " (¢—uzAz)—€owgcnhf( our —u; A, —®o)H' (30b)

where &y = (¢ — By uz),=pe) is the value of the stream function ¢ — By uz at the edge of the

vortex core. Equations (30) are readily decoupled yielding the following nonlinear partial

_ differential equation of the fourth order
(V2 + ) (V2 + £D)p —v(e1 + & V) = 0 | (31)

where » = ¢ —u, A;, and the nonlinear term ¢'/? exists only if ¢ > 0, i.e. when the electron
trapping takes place. Coefficients appearing in Eq. (31) are determined from the slopes of

linear functions G and H:

1 (=
mf+n§=-:\—2u—’;<H—




= LG (¥
A2 y? 4

2 1/2
us (2m,
=2a fo(u,)—= | —— . 32
v =2a s (22) (32
In the above, tildae denote that the appropriate thermal corrections are included in the

corresponding quantities:

— i - 1 - 2
B H , &= G ’ /\2=c2 1
147 14179 wrl+n

where

= 3%e (1 4 g
n= u2(+ )

and only leading order corrections in the small parameter vZ,/u? are kept.

Equation (31) has been extensively studied in Refs. 15 and 17, in the limit a = v = 0,
l.e. in the absence of the particle trapping, and it was shown that it possess a spatially
localized solution in the form of a double vortex. For the details of this solution and its
derivation we refer the reader to Refs. 15 and 17, and here we only present the expression

for its electrostatic potential ¢(*) (where the superscript “1” denotes the first cylindrical

harmonic):
L—&-al Jl(li‘q?")-f-ag .]1(/‘027‘) 3 r< R

E r>R.

r 3
In Eq. (33) we used r = (2% + y2)'/2, § = arctgy/z, the vortex core r < R(f) is adopted

¢V = ByuR cos - (33)

as a circle with the radius R, J; is the Bessel function of the first order, and the effective

wavenumbers k1, £, are related through the following nonlinear dispersion relation
Qq .]1(1131R) = Q9 Jl(KzR) =0 (34)

where a,,, if different than zero, is given by

_2(1 + Rz )1/
Jo(hlmR)

Oy =

: { (1432 R2)2 4 (14 X262)2)
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CA — Uy

usA%(k2 — K2,)

(14 N2g2)M2 m=1,2.

It is convenient to adopt q,4; as our free constants of integration, and then the slopes
H',@ are determined from ki, k2 using Eq. (32). The effective collisionless skin depth X in

Eq. (34) can then be expressed as

X— C2 1
T w2 1+
pe n
W2, P 1/2 ) 1/2
z pe pe

In the presence of the electron trapping, a # 0, nonlinear wave equation (31) is very dif-

— — — — - ficult to-solve-due to-the presence of the nonlinear term-v./p.. It-can-be seen, however,that. . ._.

a simple one-dimensional, cylindrically symmetric localized solution (monopole) is not exist-
ing. Namely, cylindrically symmetric solution is possible only if G' = H' = 0 on the whole

/2 is not strong énough to produce the localization

z-y-plane, but the nonlinear term, ¢
(nonlinearity of the power R 2 is required for that).
However, there is one particular case which can be treated analytically. For the following

choice of parameters:

K _jl,'n.
=20
R
2 42 2 2 (36)
E2=C_A]1_v“v_wpe 1_24 (1+7)
2 u? R? c? u?

where j; , is the n-th zero of the Bessel function, Ji(j1,,) = 0, and the thermal cofrection ]
is given by
=3== —k
U u? wge 1

the dipole solution, Eq. (33), has the potential in the moving frame equal to zero,

90(1) = ¢V — Agl) =0 (37)

13



and consequently it s not interacting with particles. This permits us to separate equations
for the dipole, and monopole parts of the moving frame potential ¢ and to calculate the

cylindrically symmetric (monopole) part ¢(® (assuming ¢ > 0) from

(Vi +£3)pO(r) —vp*/eO(r) =0, r <R

(38)
(V3 = p1)eO(r) = yp*/e@(r) =0, r > R
where «, is defined in Eq. (36), and
w2, c?
= (1—;2,-) (1+n) . (39)

Electrostatic potential ¢{®)(r) can be expressed in terms of the “moving” potential ©(©(r)

using Eqgs. (30), and for our choice of parameters 1, £, we obtain

0, r>R
2
C
#00) = zBZ 0+ B L, (5T o
: 1-—Y"R/ . _p.
JO(]I,n) "

Thus, if the function ¢(©(r) is continuous and smooth at r = R, the same continuity condi-
tions are automatically fulfilled also for the potential #(%)(r), owing to the following property

of the Bessel function Jy

0 LT
% ()

A numerical, cylindrically symmetric solution of Eq. (38) is shown in Fig. 1. It exists as a

=~ Ji(jia) = 0. (41)

T=

“rider” superimposed on the dipole, Eq. (33), which determines its radial scale length, and
the velocity of propagation.

It is instructive also to present an approximative monopole solution. Linearizing Eq. (38)

around ¢(® = 0 outside, and around 0 = % %:— inside the vortex core, we obtain
2
- *
SOr) = ¥ p—i- {w + pK1(pR)Jo(k*r), 7 <R (@)
W Ky | k*J(*R)Ko(pr) , r>R

14



. Eq.(42):

LT ‘2 S 5
0 9 [TMe € 1 u, U, —U,
M= ~ 16ma’, [— - — 4
BouR e m; wpeRa CA ’U%e P (21)%6) ( 5)

where £* = k5/v/2, and w is the Wronskian:
w = k*J(*R)Ko(pR) — pJo(k*R)K1(pR) . (43)

Monopole solution (42) exists only in the presence of particle trapping, a # 0. It has a good |

radial localization, p? > 0, k2 > 0, if the following condition is satisfied:

D CRR VL.
Nnpy > = 4
¥ R2 —_—

>0. (44)

Ch
The above indicates that the phase velocity u, bigger than the Alfvén speed c4 is required,
and that the radial scale R must be of the same order as the collisionless skin depth.

The ratio of amplitudes of monopole and dipole potentials can also be estimated from

The monopole may dominate, for —<5 R 1, provided the plasma is not too cold, i.e. that the
pe
resonant velocity v = u, is not too far in the tail of the Maxwellian distribution function.

From Eq. (45) we may also estimate the electron bounce period as

~1/2 |
The (% Qe azM) v S B . (46)

V. Drift-Wave Hole

In the domain of drift-wave phase velocities, u, < vre, electron density and current can be

calculated from the distribution function f, Egs. (23) and (25) as

dne= 228 (g A)1+ ) (1- “})—%[UZAZ+(¢_UZAZ);‘T§]}_M

Me Vi, UTe Te
. —ng €* A ! ! u';’
]“ = — (Bou:c—uz AZ)H - (¢_'U'z Az)(1+H) ’U%
vy u;
g = A | — e (47
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where the density dip ns due to the electron hole is given by Eq. (28).
In the purely electrostatic limit, A, = H' = 0, the first of Eqgs. (47) gives the usual
expression for the electron Boltzmann distribution, and after the substitution into the ion

continuity we recover the Hasegawa-Mima equation, but with a new nonlinear term ¢'/2,

which is existing only if ¢ > 0

v2 v2
(p*V? = 1)¢ — Bovgz + ;Tf: ag'/? = ;Tz— (¢ — uz — )G . (48)

Although similar to Eq. (38), the drift-wave hole equation (48) does not possess the same
kind of solution. Namely, finiteness of the potential at  — oo sets in the exterior region
the function G’ to G = ;u:f—e %4 but if we keep this value on the whole z-y-plane, it is not
possible to have a spatially localized potential, as discussed in Sec. IV. On the other hand,
allowing for a different value of the slope within the core, G'* # G°%, inevitably introduces
a dipole part in the potential, which prohibits the simple monopole solution, similar to
Eq. (38), which is existing for shear Alfvén perturbations.

The authors of Ref. 14 presented a localized monopole type of solution adopting G' =
;’?—e *d on the whole z,y pleine, which corresponds to the neglect of the convective nonlinear
term év ;- V in the continuity equation (3). However, they adopted a discontinuous hole
density (n, = 0 outside, and n, = const # 0 inside) which, naturally, lead them to a
localized structure. The same trivial solution is obtained also in the hydrodynamics, without
any particle trapping effects involved, but allowing for a discontinuous function G(¢ — uz).

However, such a choice of the functions GG, and n;, is not allowed, since it corresponds to an

unphysical surface flow at the edge of the vortex core.

V1. Conclusions

In this work we show how the well-known integration of the 2D convective or Poisson-

bracket nonlinearity for the hydrodynamic plasma motions extends to the drift-kinetic Vlasov

16



equation that includes the parallel 9 = (e/m.)E| acceleration of the electrons. For the finite
amplitude vortex solutions the positive potential regions form electron trapping in the z-v-
phase space. These phase space structures called electron holes then co-exist with the E x B
cross-field spati‘al‘trapping of the plasma in the Asolitary wave structures. |

New nonlinear vortex equations for these E x B drift-electron hole coherent structures
are given in Eq. (30). While no general solution is found, we develop the circular boundary
solutions of radius R. For finite plasma beta 8. S m,/m; the solutions change character
for RZc/ wpe due to electromagnetic screening of the finite mass electrons. For weak electron
trapping the usual dipole vortex construction is carried out.

In the presence of significant electron trapping the vortex becomes a mixture of the

_ dipole and monopole components. The ratio of the two components is estimated in Eq. (45). = _

The dipole component determines the scale size and the speed of propagation of the struc-
ture. The monopole component provides the self-organization from the parallel phase space

trapping.

 We suspect that these new 3D coherent, localized structures are robust and stable to

vortex-vortex interactions just as in the case of the 2D hydrodynamic vortices. Clearly, new

- hybrid ion fluid and drift-kinetic particle simulations will be required to fully investigate the

new vortex-hole structures presented here.
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Figure Captions

1. Radial profile of the shear-Alfvén hole potential (9 (r), Eqs. (38), in the case of

2

a) small vortices R? = 0.1 5
pe

2

b) large vortices R?* =10 5.

pe

In both cases the phase velocity is adopted to be u, = 1.25¢,4, and the dashed line

indicates the edge of the core.
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