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Abstract

* We examine the conditions for the existence of spectrally stable neutral modes in -
| a Vlasov-Poisson plasma and show that for stable equilibria of systems that have un-
bounded spatial domain, the only possible neutral modes are those with phase velocities
that correspond fo stationary inflection points of the equilibrium distribution function.

It is seen that these neutral modes can possess positive or negative free energy.



I Introduction

In this note we examine the possibility of a Vlasov-Poisson plasma supporting neutral modes
(i.e. undamped electrostatic plasma oscillations) and demonstrate the existence of a neutral
mode possessing negative free energy. A neutral mode is a mode with a phase velocity, v,,
that corresponds to a stationary point of the equilibrium distribution function. In spite
of the early work by Case! and others,> 3 a thorough treatment of neutral oscillations has
apparently not been undertaken. Previous analysis of neutral modes has concentrated on
modes where the phase velocity of the wave corresponds to a local minima or maxima of the
equilibrium distribution. We extend the discussion of neutral modes to the case where v,
corresponds to a stationary point of the distribution that is also an inflection point (which
we will refer to as a stationary inflection point). We show that stationary inflection point
modes are the only neutral modes that can exist in a stable, spatially unbounded plasma.
Neutral modes evidently suffer no Landau damping, a characteristic which makes neutral
modes possessing negative free energy of interest from the standpoint of nonlinear instabil-
ity. Free energy, 62 F, is the energy difference between an equilibrium and a dynamically
accessible perturbed state.* > ® Modes that have negative free energy can lead to instability
in two ways. Dissipation in a system where the spectrum contains negative energy modes
removes energy from these modes resulting in increased amplitude. For example, in finite
Larmor radius models dissipation, which has a stabilizing effect on the positive energy mode,
lea;is to instability if the model admits negative energy modes. Negative energy modes can
also result in instability through nonlinearities. The prototypical example is the Cherry os-
cillator.” This system is spectrally stable (i.e. linearly stable in terms of solutions of the form
e**) but a resonant nonlinear coupling between the negative and positive energy modes gives

rise to solutions that diverge in finite time for arbitrarily small couplings. The nonlinearity



transfers energy from the negative energy mode to the positive energy mode, causing the

amplitude of each to increase catastrophically. Nonresonant nonlinear couplings can also

lead to instability.?

The remainder of this note is organized as follows. In Sec. II we review the Nyqﬁist
method and use it to show that neutral oscillations at stationary inflection points are the
only ones allowed for stable equilibria. In Sec. III we derive the free energy of a neutral mode
and show that neutral modes are the only modes where the dielectric energy is the correct

linear plasma energy.® 1* We conclude with a discussion in Sec. IV.

II Neutral Modes and Stability

We consider a one-dimensional Vlasov-Poisson system with an equilibrium electron distri-
bution, f°(v), and a fixed, neutralizing ionic background. We assume perturbatidfg of the

equilibrium distribution of the form
§f(z,v,) = // dwdke®=1) £, (. v)
" ‘and a corresponding electric field perturbation
SE(z,t) = // dwdke == B, () .
After linearizing, Vlasov’s and Poisson’s equations become
~i(w = kv) fi — % E.f°=0

and

ikE, = —4ngq / dvfy :

Combining these equations leads to the plasma dispersion function



where w, = 4mg*ng/m is the electron plasma frequency, f° = nofo and, in general, the
contour is chosen to be that used by Landau in solving the initial value problem. This
ensures ¢ is an analytic function of w. The dispersion relation € = 0 provides the connection
between k£ and w. For neutral modes, v, = w/k is a stationary point of f, and thus the
integrand is regular; hence the contour can be chosen simply to be the real axis.

For an equilibrium to be spectrally stable, perturbations must not grow unbounded. This
means there must be no solutions of ¢(k,w) = 0 with Im(w) > 0, as such solutions would give
rise to exponential growth. W. il use the Nyquist method to show that, if the equilibrium
distribution is spectrally stable, i.e. ¢(k,w) = 0 has no solutions with Im(w) > 0, neutral
modes with phase velocity corresponding to minima or 1axima of f; cannot exist. In the

following, for the sake of clarity, we will suppress k in the argument of e.

femn

For any reasonable initial distribution, the only poles in the integrand come from the zeros

Consider®

of ¢, that is, from the roots of the dispersion relation; the residue at these poles is equal to
the multiplicity of the corresponding root. For example, suppose that ¢ has an n-th order
root at w = wy. Near wy,

€ = Constant X (w — wp)"

and
1 Qe n

— —— N

€ 0w  (w—uwp)'

which has a residue of n. Thus

1 1 e
ol gLy,
2w Jo € Ow
is the sum of the multiplicities of roots of € = 0 enclosed by the contour C. If we choose C

to consist of a semicircle enclosing the upper half of the w-plane and the real axis, then N



will be the number of unstable roots of the dispersion relation. Further, since

&u_ /d v-—w/k
we have

1 Oe¢

-=—|—0 as |w] = o0

€ Ow

and the contribution to N from circular part of the contour is zero. Therefore

N = wédwz%lo [——‘(“’=°°)J.

" 271 Joco Ow é(w = —o0)
Choosing the phase of ¢ so that ¢(w = —o0) = 1, we then have e(w = o) = €*"" and N =n.
Thus the number of unstable solutions is given by the phase change in € from w = —oc0 to

'w“ = oo. If we think of € as a curve in the w-plane, pa;amete:ized by w, then the phase
change in ¢ is given by the number of times €(w) circles the origin as w ranges from —oo to
oo. For stability N must be zero for all values of k2. To encircle the origin, e(w) must cross
the real axis at least once to the left of the origin. Thus we are interested in the sign of

Re(€) whenever €(w) crosses the real axis. For Im(w) = 0,

and

¢ = Im(e) = -7 =L f}

It is important to remember that, for this analysis, w and k? must viewed as independent

variables.

Let v, be the phase velocity of the neutral mode. Now €- can be rewritten, after inte-

grating by parts as,
Jo(vi) = fo(v)

2

W,
— P =77 s Z
e,._1+k2/dv (v—w/k)"’ .




For the neutral mode, the dispersion relation € = 0 gives two equations

| f (v) = /o)

that relate £ and w. The second is trivially satisfied since f}(v,) = 0. For the first equation

to have a solution,

b))

(v—v)? ’

since k* > 0. The central question is: Does the presence of t_he neutral mode admit unstable
solutions of € = 07 This can be answered by observing that there are two generic possibilities:
either fj, and consequently ¢;, changes sign at v, (i.e. v, is a maximum or a minimum of fo)
or it does not. Let us consider the first case. Here ¢; changes sign as w/k passes through v,,

that is, the curve e(w) crosses the real axis as w/k passes through v,. Further, there is some

value of k = k, for which e(w) goes through the origin. Since

/d ol v*)_fﬂ(v)

(v— v,,)2

for k < k. the curve will cross the left of the origin and for & > k, the curve will cross
the right. One of these values of k£ will result in the curve encircling the origin. Thus for a
system with an unbounded spatial domain, it will always be possible to find a value of k2
such that e(w) encircles the origin. For an equilibrium distribution where v, corresponds to
a minimum, this is the Penrose criterion.’® Hence the existence of this type of neutral mode
results in the presence of unstable solutions of the dispersion relation.

. The other possibility is that f§ does not change sign at v,. This requires that v, be a

zero of fy with even multiplicity. That is, for v near v,,
fo = Constant x (v — v,)*™

for some m. Here, although €;(v.) = 0, the curve €(w) does not cross the axis, since fi(v)

does not change sign as v passes through v, and the value of ¢, is unimportant. In essence
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the multiple root of fo at v, prevents e(w) from encircling the origin. Hence € = 0 does not
admit solutions with Im(w) > 0 Thus it is possible for neutral modes to exist at such points
of fo without losing spectral stability. Further, we see that the only possible neutral modes
for a stable equilibrium are modes of this type.
If the system is spatially bounded, the first possibility (i.e. where v, corresponds to a
minima or a maxima of fo) is not necessarily excluded. Even if there e#ist exponentially
‘growing solutions of e(k,w) =0 for k < k., it may happen that, the smallest value of k,
kmin = k. That is, the neutra.lv mode has the longest wavelength allowed by the system. Thus
‘no modes with k < k, exist and the neutral mode is not incompatible with linear stability.
For such systems, as shown by Case,! neutral modes with phase velocities corresponding to
" minima or maxima of the equiliBriuﬁm distribution are prbsisibrle. In what follows we will 6ﬁly

consider unbounded systems.

IIT Free Energy of Neutral Modes

Free energy expressions can be obtained from either the Eulerian or Lagrangian variable
~descriptions. In the Eulerian case, the free éﬂeréy comes from extremizing the Hamiltonian
constrained by certain constants of motion known as Casimirs, which embody conservation
of phase space volume. (Unconstrained stationary points of the Hamiltonian correspond to
the “vacuum,” i.e. where all particles have zero kinetic energy and the perturbed fields are
also zero and thus generally uninteresting). This éonstraint is equivalent to demanding that
the perturbation be dynamically accessible, since the Casimirs divide the phase space into
constraint surfa;mes (symplectic leaves) which cannot be crossed by the phase space flow.

Here 62 F' is given by*' 5

8 F = %/dzdv[Ho,g][g, o1+ %/dz&Eﬂg] .



It has the physical interpretation as the er.. .y increase due to such perturbations. This
expression is valid for any perturbation arising from a generating function g, according to
6f = [f° g], where f° is the equilibrium distribution function and [, ] is the usual Poisson
bracket. The argument of §E is shown explicitly in order to emphasize that §E is a (known)
expression that depends on §f and thus g through Poisson’s equation. Alternatively, the §2 F
expression can be obtained in the Lagrangian description starting from the Low Lagrangian
and restricting to canonical perturbations; i.e., those perturbation derived from a generating
functions

Using the linearized Vlasov equation,

0
fe = tkge f° = —iE; a_J

mw—kv'’

the free energy for a single neutral mode with phase velocity v,, corresponding to a stationary

inflection point of the equilibrium distribution function, is given by

1 m
S2F = — 2——/d 232 (10
Fe B =T [ dolgtetf

1 vfo
-5 (1B - [ o)
_ 1 2 wy
= gr- IEkl l{é(k,(d) Up~o k2 d’U(T_ UPT} .

Since €(k,w) = 0,
fo

(vp—v)? "~

§F = ——|E |21),,k2 /dv

For the distributions that we are considering, f3(v,) = 0, thus the expression for € can

be safely differentiated with respect to w, from which we find
£ F = L B2
87

It is important to remember that in the above, v, is the pha.se velocity in the frame where

the energy is a minimum, i.e. in the center of mass frame. Note that the integrals are frame

8



‘Vindependent: in a frame moving with velocity V with respect to the original frame, the new

velocity, 7, is

T=v-V, and fo(®) = folv-V)

giving
/d /d~f(;;iv— )2’

where ¥, = v, + V is the Doppler shifted phase velocity.!! If the variable of integration is
shifted, o — ¥ — V, we obtain the same expression as in the original frame. Thus the free
energy depends on the frame only through the phase velocity, i.e. 2 F = —v, X constant

and 62F = #,/v,62 F. The sign of 62 F is determined by

—vp/dv(v -v)2

and so depends on the precise shape of f;.

Consider an equilibrium distribution with a single maximum which supports a neutral

mode with phase velocity v,. In some frame
fo=—v(v=v,)2P(v),

where P(v) > 0 for all v. While this may not be the center of mass frame, the existence of

the mode is frame independent. Let P, denote the n-th moment of P. Clearly
P o > 0.
The wavenumber of the neutral mode is given by ¢, = 0, namely

= —w /dv
v — v,

=4/@@-mmq

= ‘:(val - P2) .

9



For the mode to exist, ¥ > 0 which means v,P, > 0 since P, > 0. In the chosen frame
8 F x v,,/dva(v)

= 'UpP1>0.

The velocity of the center of mass of the plasma, vap, is given by

vcm=;1-1; /dvvf0=—% /dvvzf(',

1 1
=§‘U3P3—’UPP4+§P5.

The requirements that the distribution function be normalized and vanish at infinity con-

strains the first and ird moments of P:

1
P1='272(1+3U:P2*‘P4)

and
1
P3—— Z—%(va2+P4—1) .
Using this in the expressions for k% and v gives

2 “’p2 2
k =%2-(1+UPP2—P4)
P

1
vcm=%"(v;2:P2—3P4_1)+§P5'

Transforming to the center of mass frame, the phase velocity of the neutral mode becomes
~ _ U 2 1
Vp = 2(3 + 'UPP2 - 3P4) -+ -2- P5
and
525 o 28 <3+vgp2 —3P4+2P5) :

4 v
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Since these moments of P are arbitrary, the free energy in the center of mass frame can be

either positive, negative or zero depending on f;.

We now specialize to the case where equilibrium distribution is symmetric in some frame.

In that frame (also the center of mass frame) f} has the form
fo=—v(v* — )’ P(v)
where P(v) is a positive definite, symmetric function. Here

Py, >0 and’ 'P2n+1=0,

giving
and

8 F x 202P, > 0.

For this class of distributions, all neutral modes have positive free energy.

-~ We see that of the distributions that have a “s;in'gle' maximum, those that are symmetric
can only support neutral modes with positive free energy, while those that are nonsymmetric
allow for neutral modes to have negative free energy. Further, for a symmetric distribution
with more than one maximum, P, and P, are not necessari.ly positive (since P is no longer
positive definite) thus admitting the possibility of the neutral mode having negative free

energy.!?

IV Discussion

Previous work on neutral modes, Casel (“Class 1¢”), only considered modes that correspond
to either minima or maxima of the equilibrium distribution. Such modes can only be sup-

ported by a linearly stable equilibrium if the spatial extent of the system is such that Fmin i8
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sufficiently large so that €,(w/kmin = v«) > 0. Stationary inflection point modes are the only
linear undamped modes that can be supported by a spatially unbounded, stable equilibrium.

Furthermore, we have shown that, only for neutral modes is

Je

7 Bl

the correct expression for the free energy.!? This energy expression is correct both for inflec-
tion points modes as well as the neutral modes of the type studied by Case. (The correct
energy of perturbations about stable equilibria that do not support neutral modes is not the
above but is given by an expression derived in Ref. 6.)

The nonlinear stability of neutral modes has previously been examined.!® Unfortunately,
this analysis did not take into account that neutral modes of the type described here exist
in linear theory and that the condition k* > 0 is necessary for their existence. The case
of nonlinear undamped plasma waves has been recently explored both numerically!* and
analytically!® for spatially nonhomogeneous equilibria. Inflection point neutral modes seem
to be a likely candidate for the linear limit of these nonlinear undamped waves in the sense
that a homogeneous equilibrium obtained by spatial averaging supports inflection 'point
modes with the same phase velocity as the observed nonlinear oscillations.

In a model that includes trapped particles, BGK modes with phase velocities correspond-
ing to the trapped particles beco.rne van Kampen modes in the limit that the trapped particle
density goes to zero, provided that the equilibrium distribution function has a discontinu-
ity..16 If f° is smooth then instead of a van Kampen mode, one obtains a quasimode,!” which
is subject to Landau damping. If f° has a stationary inflection point then in this limit one
obtains a neutral mode. The neutral eigenmode limit seems to be a natural counterpart to

the van Kampen (singular) eigenmode for the case of continuous f° in that both are true

eigenmodes and persist for all time.
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