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Abstract

Expressions for the energy content of one-dimensional electrostatic perturbations
about homogeneous equilibria are revisited. The well-known dielectric. energy, £p, is
compared with the exact plasma free energy expression, §2F, that is conserved by
the Vlasov-Poisson system [Phys. Rev. A 40, 3898 (1989) and Phys. Fluids B 2, 1105
(1990)]. The former is an expression in terms of the perturbed electric field amplitude,
while the latter is determined by a generating function, which describes perturbations
of the distribution function that respect the important constraint of dynamical aceessi-
bility of the system. Thus the comparison requires solving the Vlasov equation for such
a perturbation of the distribution function in terms of the electric field. This is done for
neutral modes of oscillation that occur for equilibria with stationary inflection points,

and it is seen that for these special modes §2F = £p. In the case of unstable and
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corresponding damped modes it is seen that 62F # €p; in fact §2F = 0. This failure of
the dielectric energy expression persists even for arbitrarily small growth and damping
rates since £p is nonzero in this limit, whereas §2F remains zero. In the case of gen-

eral perturbations about stable equilibria, the two expressions are not equivalent; the

le(klw)F |5(k,w)|2

o , Where

exact energy density is given by an expression proportional to
E(k,w) is the Fourier transform in space and time of the perturbed electric field (or
equivalently the electric field associated with a single Van Kampen mode) and e(k,w)
is the dielectric function with w and k real and independent. The connection between
the new exact energy expression and the at-best approximate Ep is described. The new
expression motiv@tes natural definitions of Hamiltonian action variables and signature.

A general linear integral transform (or equivalently a coordinate transformation)"is:

introduced that maps the linear version of the noncanonical Hamiltonian structure;: -

which describes the Vlasov equation, to action-angle (diagonal) form.




I. Introduction

Expressions for the energy contained in the perturbation away from equilibria are important
for, among other things, ascertaining stability. If such an energy is positive definite then the
system is stable, while if the energy is indefinite then either the system is unstable or there
exist negative energy modes. Negative energy modes are of importance since their presence
can lead to nonlinear (finite or infinitesimal amplitude) instability and if dissipation is added
they can become linearly unstable. Therefore, a precise understanding of the energy in a
perturbation is important to have.

Early work on such electrostatic instabilities in homogeneous plasmas [1, 2, 3, 4, 5] and
their relation to energy were based on the well-known expression for the energy of a disp ersive

dielectric medium [6, 7, 8] and generalizations thereof [9],

_ i/_ a(weR)
T 160 Ow

gD lE(k)w)lz ) (1)

where ep is the real part of the dielectric function, V is the volume of a periodicity box, and

E(k,w) is perturbed electric field amplitude for a mode with wave vector k and frequency

w(k). This expression is derived for general media described by Maxwell’s equations and the

dielectric fﬁnction. Tt is often believed that relation (1) is valid if the:imaginary part of the
dielectric function, €z, is negligible, but it will be seen below that this is not sufficient.

Another expression was discovered by Kruskal and Oberman [10] for the perturbed en-
ergy, which in the case of the one-dimensional Vlasov-Poisson systems with homogeneous
monotonic equilibria, is given by

_ my v f} 3, 1 2 3-
8K0——;—2—/V/afg/avdvd:c—l-S—W/V&E &, )

where v is the species label, §F is the perturbed electric field, f2 is the equilibrium distri-
bution function that is assumed to be a monotonic decreasing function of the square of the

velocity, and &, is the perturbation of the distribution function.
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In previous work [11, 12, 13, 14] we derived a general expression for the energy of arbi-
trary perturbations of arbitrary three-dimensional Vlasov—Maxwell equilibria, an expression
that does not suffer from having a singularity at extremal points of the equilibrium distri-
bution function. (The origin of this singularity is discussed in Sec. VIIL.) The derivation
proceeds from the general nonlinear Vlasov-Maxwell energy expression, which is expanded
up to second order in the perturbations in such a way as to preserve the constraint of dy-
namical accessibility of the system. Since it preserves this constraint we have called it the
free energy, and since it is a second order quantity we have denoted it in previous work by
§2F.

One purpose of the present paper is to compare §2F, specialized to one-dimensional
electrostatic perturbations of homogeneous magnetic field free plasmas, with the dielectric
energy expression, £p. Since the derivation of €p is not general, accordingly, it will be:seen
that this quantity is not in general correct. The correct expression is given by Eq. (98) below.

Expression (98) for §2F suggests a transformation to action-angle variables. A second
purpose of this paper is to introduce a general linear integral transform pair that accomplishes
this feat. This transform is a coordinate transformation that maps the linearization of the
noncanonical Hamiltonian structure (Poisson bracket) [15] that describes the Vlasov (and
other) systems to the action-angle variables, thereby solving the spectral problem for stable
equilibria.

In Sec. II a derivation of the dielectric energy is given, a derivation that is more complete
than usual. Section III contains a simple derivation of the exact Vlasov free energy expression
for the one-dimensional case, which is similar to Eq. (2), but is valid for arbitrary equilibrium
distribution functions; it does not become singular at velocities for which J f{9) /@y vanishes.
The crucial point is, as mentioned above, to impose the constraint of dynamical accessibility.
In Sec. IV we solve the linearized Vlasov equation for the distribution function in terms of the

electrostatic potential and the initial value of the perturbation of the distribution function.




Two choices of initial conditions and forms for the electric field are considered in Secs. V
and VI. First we consider a special kind of neutral (undamped) mode [17] that occurs at
stationary inflection points of stable equilibrium distribution functions. It is seen that the
energy of these modes is identical to the dielectric energy of Eq. (1). This is followed by
showing that for “real” damped and growing modes, as distinct from Landau modes, the
energy is identically zero. In Sec. VII we consider the energy of arbitrary perturbations
about stable equilibria by expanding initial conditions of the linear problem in terms of Van
Kampen modes. After reviewing the Van Kampen decomposition, in VILA, we calculate
the energy for such a general perturbation and obtain the new energy expression given
by Eq. (98) of VILB. In VIL.C we show the relationship between the new energy and the
commonly used, although at-best only approximate, dielectric energy. In Sec. VIII we discuss
dynamical accessibility; in particular, we show the consequences that arise if this condition
is not imposed. As noted above the new energy (of VILB) leads to a natural definition of
Hamiltonian type action variables, which is described in IX.A along with a discussion of
signature and bifurcations. The transform pair is introduced in IX.B and used in IX.C. We

conclude with Sec. X.

II. &p for One-Dimensional Electrostatic
Perturbations of Homogeneous Plasmas

In this section the energy is derived in a model where the electric field is described by
the appropriate Maxwell equation, while the “plasma” is described by a phenomenological
dielectric function. Comparison to a plasma described by the Vlasov equation is made.
Consider a gedanken experiment in which a current and field free plasma is perturbed by
an electric field in the z-direction. This field is assumed to result from a current éj. in the
z-direction that flows in an artificial medium that spatially coexists with the plasma. The

current does not arise from an electric field but is imposed by an external agent. The only




interaction between the artificial medium and the plasma is by means of the electric field.

The Maxwell equation that describes this situation is

OF 4 an(ts+8) =0 3)

Here §E and 67 are, respectively, the electric field and plasma current density of the pertur-
bation. Assuming

6je ~ e—iwt+ikz , ) (4)

where w = wg + i and, for now, g > 0 and —oo < t < 0. It is assumed that 6E and 67
are generated solely by d7.; thﬁs, their space and time dependencies are identical to those of
87e, and Eq. (3) becomes

— wdE + 4n (65 + 6je) = 0. (5)
According to usual response theory, the plasma is assumed to be adequately described by:a

dielectric function e(k,w),

SE +i3785 = e(k,w) S (6)
w
and hence,
) W
87 = Ee(k,w) SF . (7)

Now the energy absorbed by the plasma, €p, due to j., is calculated from the power
absorbed by the plasma. The latter quantity, which is equal to that liberated by the artificial

medium, is given by
. |
P=— [ (6jc+ 5;¥V(6E + 6E*) d°z = —%(53':‘5E +6j.6E¥) . (8)

Here, and henceforth, real quadratic expressions like the power are evaluated by inserting

real quantities, e.g. in this case

1. | .. 1
(8 + 65),  FOE+ SE*).




Upon making use of (7), (8) becomes

_ V1Bl

P=1

(w*e*(k,w) — we(k,w)) . (9)

Assuming e(k,wr) possesses real and imaginary parts; ie.

e(k,wr) = er(k,wr) + ier(k,wr) (10)
Eq. (9) can be written as
P= i%;l&EP (w*er(k,w*) + iw*er(k,w) — wen(k,w) — iwer(k,w)) - (11)

Also, assuming e(k,wg + i) can be approximated by

ek won + ) = el om) + in ) (12)
wr
yields for (11)
p= i—V—|6E|é 20 (wnen(h,wr) + wrer(bywr) ) - (13)
167 6wR
Since the power is related to the plasma energy by P = 2u€p,
V 0
SP = 1—6—7;l5E|2 (5& (wReR(k)wR)) + %?‘6[(k,&)R)> . (14)

In Eq. (14) no connection between k and wg was assumed; however, now such a connection
is established. Assuming e; # 0 the dispersion relation e(k,w r+i7) = 0 can be approximately

solved, in the so-called small growth rate expansion, as follows:

k,
er(k,wr) =0, v = —%ﬁ%{% : (15)

Recall 4 is a property of the current §je, while in light of the above  arises from the

dispersion relation. Because of the expansions used, both quantities must be small. With

(15), (14) becomes

_ 4 2 9 . v
€p = 75-|6E] WRBZEGR(]%WR) (1 - p) : (16)




For unstable plasmas one can take y = v and obtain the result £p = 0, a result that is
in fact correct for a Vlasov plasma, as will be seen below in Sec. V. In this unstable case
§E # 0 at t = 0 is obtained with §j. = 0; i.e. only the self-consistent 6F and 67 contribute.
This case could be called self-consistent “adiabatic” turn-on. For a mode with 4 < 0 one
can choose 4 < 0 and in this case the time interval 0 < ¢ < co is considered. The energy at
¢ = 0 is given by the energy that has been transferred to the artificial medium during this
time interval. If 4 = u then again 6, = 0 and €p = 0, again a valid result for a Vlasov
plasma, as will be seen in Sec. V below. This case could be called self-consistent “adiabatic”
turn-off.

It is important to point out that the validity of the above results, for both the growing and
damped modes, depends upon 7 being the imaginary part of a root of the dielectric function.
In the case of a Vlasov plasma such modes may exist, but these must be distinguished:from
solutions of the Landau problem where the contour of integration is deformed. In the latter
case the above analysis is invalid. For a stable Vlasov plasma a dielectric function e(k,w)
strictly speaking does not exist. The expression with the deformed contour used for obtaining
Landau damping is only asymptotically valid in the limit of large time where the electric
field decays exponentially, and one cannot self-consistently turn-off, as in the above case of
a stable mode, a perturbed electric field that is only asymptotically of the form 6F ~ e,

Several a,uthors_ [9] have attempted to obtain energy expressions by solving the linearized
Vlasov equation with the adiabatic turn-on assumption. Generally these expressions are
deficient in two respects. Firstly, they are not constant.s of motion so their use in energy
arguments must be viewed with caution. Secondly, the presence of resonant particles leads
to singularities. This is because a finite amount of energy is deposited in the plasma in each
wave period over an infinite interval of time. This behavior is recovered from Eq. (16) by
keeping v fixed and taking the limit p — 0.

The limit where x >> ||, but still small, is also of interest, since in this case Eq. (16)




reduces to Ep of Eq. (1). Although this limit can be appropriated for dielectric media, it is
only valid for a Vlasov plasma when there exist the neutral modes described in Sec. IV where
e; = 0. In the case of weakly Landau damped modes a self-consistent exponential adiabatic
turn-on (or turn-off) is not possible. In Sec. VIL.C we will discuss this point further.

We conclude this section by remarking that £p as given by (1) corresponds to the first
term of (14). This quantity is sometimes referred to as the wave energy, while the second
term, the one involving €, is sometimes identified with the energy of the resonant particles.
Such a distinction might be useful, but makes sense only for p = 7; i.e. in the self-consistent

case. With Landau damping this is not possible for the reasons given above.

III. 62F for One-Dimensional Electrostatic
Perturbations of Homogeneous Plasmas

Here we present a simple derivation of the Vlasov energy expression for homogeneous current
and field free equilibria. The unperturbed distribution function f(v) is general except for
the requirement that it allow purely electrostatic perturbations with the electric field vector
SE in the o-direction. Here the Maxwell equation that describes these perturbations is

O8E : '
W_HM(S] =0, (17)

where 87, as in Sec. II, is the current density of the perturbatiori in the z-direction. From
Eq. (17) one obtains
9 (6E)?

This relation is now integrated over the periodicity box of volume V, where the limit V' — oo

can be taken. The second term of the resulting equation can be expressed as

/V 668z =T e, /V o / PofM6E (19)

with

v = (vg = v,Vy,0;)

9




where f((x,Vv,t) is the perturbation of the distribution function. Introduction of

5f, = / £9 du, dv,

leads to
/VéjtﬁEd?’w:;ey/Vd"x/dvéf,,&E.

The quantity f{!) obeys the first-order Vlasov equation

ofWm o f(l) a f(O)
ot tv oz 8v ’

from which it follows that

asf,  86f, e . Of)
5 TV = m, T

In this equation we have introduced the definition

0= / FO dv, dv, .

(20)

(21)

(22)

(23)

(24)

Now the important condition of dynamical accessibility is imposed. This condition stip-

ulates that the initial §f, denoted by ¢ f,, must be producible by regular forces 6K, that

must be derivable from a Hamiltonian. The generation of § fl, by 6K, also requires an initial

condition, which by definition must be taken as 6 £, =0. It follows then from the first-order

Vlasov (or Liouville) equation with e, replaced by 6K, that

6f,,(;vvt—0)—5f,,(3:vs)—5f,,(:cvs—0 af /6]((:1:—{—1;(7—3) T)dr , (25)

where we have used a mock time s to generate the real initial condition, 6f,(z,v,t = 0), for

the dynamics under the self-consistent force e, 6 E.

In light of the initial condition 6 F,(z,v,s = 0) =0, Eq. (25) has the form

o]
£, = a0 )L
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where ¢,(z,v,t) is regular at the zeros of 0 f°/0v. This quantity ¢, obeys the equation

0q, 0q, _ &
—5{-}-'0 aw = mu(SE y (27)

which does not contain 8f°/dv. Relation (26) is a special case of the form for f) found

in Ref. [14] for general three-dimensional equilibria and general three-dimensional perturba-

tions:

f,sl) = [gu) fzso)] ) (28)

where the bracket on the right-hand side means the Poisson bracket,
[a,0]= — == — 5" —. ' (29)

The functions g,(x,v,t) are first-order generating functions for canonical transformations.

For g, = g,(z,v,t) one also finds that

1 dg, 0f2
— 01 _ _— v
5fl/ - [gl/7fu] - mz/ ax av 9 (30)
and therefore
1 9y,
q,,(a:,v,t) = T ’ (31)

which also follows directly from (25); since 6K, is a Hamiltonian force it must be derivable

from a potential. The generating function g, obeys the 0 f°/dv-independent equation

dg, 09, _
5 +top - = e,6¢ , (32)

" where 64 is the electrostatic potential associated with 6. Equation (32) is a special case of

the following general equation of [14]:

99y
% 4, HO) = 8, (39

where H(® is the unperturbed Hamiltonian and ¢H, is its perturbation. The derivation in
Ref. [14] makes use of Lie-type canonical transformations, that guarantee dynamic acces-

sibility in general. This method allows one to obtain the perturbations of the distribution
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functions to arbitrary order. Especially, the second-order perturbation is given by

(2)_[9(2) 0)]+ [gw[gw (0)]] ) (34)

where g(?) is a second-order quantity while g,, as mentioned before, is a first-order quantity.
This representation was used to obtain the following second-order energy from the exact

nonlinear energy expression, for arbitrary systems and arbitrary perturbations:
§F = Z / &z d [HD, g,] [0, FO] + / SE® Pz (35)

Expression (35) is a free energy since by its derivation the perturbed quantities are forced to
satisfy the dynamical accessibility constraint. One can show explicitly that the perturbations

given by Egs. (30) and (34) automatically preserve all the well-known invariants,

It = [ [ clf) dady (39)

to first and second order, réspectively. Therefore, writing the perturbations in the form of
(30) and (34) is a mathematical way of stating the Gardner [16] restacking principle to first
and second order, respectively.

For the present derivation, which is not possible in general, the second-order distribu-
tion function is not needed. Also, the representation (30) need not be used explicitly, but
knowledge of this representation allows us to solve the first-order Vlasov equation (23) for

8F instead of for 6 f,:

§E = m”<65f”+vag£”> L (37)

ot 7%/ dv

From (30) it is evident that there are no problems where df/0v vanishes. Insertion of

Eq. (37) in Eq. (21) yields

~ §f, 955\ 1
/6;5Ed3:c —Zmy/ Pz / dvv 6F, (— = ) 575 (38)

Since
o05f, lé’(6fy)2

oz 2 0Oz (39)

§fy
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the integration over = makes the second term of (38) vanish. In a similar way, the 06 f, /0t

term leads to
14 5 14
/ 5 6Bds = - Z‘ m / &Pz / dv ”gmf;a (40)
Combination of this result with the electric field contribution of Eq. (18) yields
' ‘ g 3 my 6f V)2 (6E )2
—_ =0. 4
3t/vdx( Z / dv af2/0ov + 87 0 (41)
Therefore, we have obtained the following constant of motion:
v v(6f)? | (6E)
§#F= [ & = . 42
p= e (S g+ )

According to its derivation this quantity is the energy of the perturbation. It is formally the

same expression as that of Eq. (2), but here 6f, is restricted by the condition of dynamical
accessibility. Thus, 8f%/0v is allowed to vanish at various velocities. Also, f2 can be any
function of v and is not restricted to depend on v? alone.

In Sec. VIII we discuss more generally the implications of dynamical accessibility.

IV. &%F in Terms of §E(z,t) and §f(z,v,t =0); Energy
Transfer During Landau Damping

Now we express the energy relation (42) in terms of the initial value solution of Eq. (23).
This is a first step in the task of writing the energy in terms of the field amplitudes and
will be of special interest for explaining the energy transport caused by Landau damping.
Henceforth, a single species and a constant neutralizing background are assumed.

The general solution of Eq. (23), in light of Eq. (26), can be written as

) =%:—; [cj(w—vt,v)—%/(:5E(cc+v(7'—t),7')cl7'] , (43)

where §(z,v) = ¢(z,v,0). (The hat notation is used throughout the paper to denote initial

values.) Inserting (43) into (42) yields

oo 0 t 2
52F:—%/Vd3m/_ dvv%iv{”z—{—ez (/0 5EdT)
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.~ 1 3 2
_ — 4
2eq/0 6EdT}+87T/Vda:5E (1), (44)
where the unspecified arguments of § and §F are given by
q = Q(.’I} - vt,'u)
§E = 6E(z + v(r — t),7) . (45)

Observe that Eq. (44) is only partially written in terms of 6, since it contains terms involving
the initial perturbed distribution function through ¢. Later we will fulfill the mentioned task
of writing 62F entirely in terms of 6E(z,t). That this is possible is somewhat surprising,
since there does not exist a unique perturbed distribution function corresponding to a given
initial perturbed electric field (as evidenced by Landau damping). This “paradox™ will be
discussed further in VILB.

Now we restrict to the case of a single plane wave perturbation:

5 1 /e ik 1 ik
§(z,v) = 5 <-T;Qk(v)e kg c.c> ;. SE(z,t) = 3 (Ek(t)e + c.c) . (46)
More general perturbations can be represented in terms of Fourier integrals by simply sum-

ming over these plane waves and taking the limit V' — oco. The energy for plane wave

perturbations is obtained from Eq. (44) upon insertion of Eq. (46),

v Vo, e 0
2 _ 2 _ 2
oF= 167 | 167 P /—oo dvv Ov
. 1 A ft . t )
x (16u - 5@ [ Bulr)emar +ee) 41 | B(r)d™arf) ,  (47)
0 0

where we have defined
FP=nofo. (48)

The form of the energy given by (47) sheds light on the energy transfer for Landau-
damped waves. The electric field perturbation Ex(t) approaches zero as t — co. Therefore

the first term, which represents the electric field energy, vanishes asymptotically. This energy
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then shows up in the terms containing time integrals that are zero at t = 0 but do not
necessarily vanish as t — oco. These time integrals are part of the particle contribution to
the energy; i.e., their kinetic energy. Kinetic energy is also contained in the constant term
involving |Qx|?, that represents the initial perturbation of the particle energy. Therefore,
the energy expression (47) provides a clear description of the energy flow, a description that
cannot be obtained from the dielectric energy £p. In Section VII we continue this discussion,
although in a different way.

In Appendix A we develop an expression analogous to Eq. (47) for general electrostatic
perturbations about general three-dimensional equilibria that possess action-angle variables

for the equilibrium trajectories. Similar arguments about energy transfer apply.

V. Energy of Neutral Oscillations

With this section we begin the investigation of special types of perturbations. First, the
neutral oscillations with real frequency w discussed in Ref. [17] are considered. These neutral
modes can occur for marginally stable equilibrium distribution functions that have a point
v, such that 8fs(v.)/v = 8%fo(v.)/Ov? = 0. We note here that there are other kinds of
marginally stable equilibria for which neutral modes do not exist. For these equilibria the
limit of vanishing damping is only obtained for k¥ = 0, but w/k nonzero and finite. Since
k = 0 there exists no perturbation. Nonvanishing perturbations of these equilibria are
Landau-damped modes, which will be treated later in Sec. VIL.

The frequency w and wave number k of the neutral modes are determined from v, =

w/k = u and
k? Jooo Ov v —u

e=1 =0, (49)

where the integral is along the real v-axis (as is the case for all v-integrals in this paper).

For complex perturbations proportional to e**~%! the quantities §f and 6F are uniquely

15



related by

5fe =i 61, O o/ (50)
mk v—u

The energy expressions require real quantities, i.e.

8f+6f SEy, + 6K}
2 ’ 2 '

The dielectric energy then becomes

fe V 5 wiw oo dfp/O0v , V 0
2 “ w167 S| k3 /—oo (v— U)zdv167r| Bl (51)

The first term in the energy expression (42) gives the following contribution to 82F:

m [ v|6fil’ w2 e Ofp/0v , 1 2
_omo e oS, W] X
Ing J-ee 8fofo0 ™ = TR L. CEmERTA (52)

where Ej has been introduced according to Eq. (46). Upon writing v as
v=(v—u)+u

the v — u contribution is seen to cancel the electric field energy in Eq. (42) because € = 0,
while the u contribution yields ezactly Ep. Thus complete agreement exists between the two
kinds of energy formulae for these neutral modes. This is possible because there exists a
unique relation between §f and §E at any time. Since ¢; = 0 according to Eq.(14) &p is
exactly Ep.

The energy of these neutral modes was previously obtained in Ref. [17].

VI. Energy of Growing and Damped Modes

The next type of special perturbations are growing and corresponding damped modes in an
unstable system. The perturbations §f and 6E are related to each other in the same way
as for the neutral modes of the preceding section. The relation is given by Eq. (50), but

u is complex since the dielectric function e(k,w) now has complex roots w/k = u, where
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w = wg + iv. Since € is a real function of w/k and k, there are always pairs of complex
conjugate roots u and u* and hence, corresponding growing and damped modes. It is worth
noting that such damped modes must exist for all unstable equilibria of Hamiltonian systems
like the Vlasov equation (see e. g. [13]), since for these systems discrete eigenvalues occur in
pairs or quartets; i.e. as fwg £ iy (see e. g. [18]) . We should like to emphasize that these
damped modes are normal modes in the strict sense and not Landau damped modes. Normal
modes are solutions that are valid for all times, while Landau modes are only approximate
solutions, valid in the limit ¢ — 4oo0.

Equation (44) with (50) now yields the energy

62F——|Ek|2 (1—— Ofo_ v dv) . (53)

k2 Joso OV | — ul?

With

v 1 ( U u* )
lv—ul? u—uw\v—u v—u*/’

Eq. (53) becomes

o 9 u Bfo/av u* afo/av
6O°F = —|Ek|( U — U*kz/oo +u u*kZ/ ) (54)

v—U oov—u*

. Since both u and u* satisfy the dispersion relation € = 0, it holds that

k2/ 0foldv , _ k2/ fofBv, _ . 55)

o V—1U o UV —u*

Hence, 6F = 0. Although this result was presaged in Sec. I, it could have easily been
ogtained without the foregoing calculations: for unstable and corresponding damped waves
62F must be at once proportional to 7, and time independent; in order for both properties
to be fulfilled simultaneously, §2F = 0.

To evaluate the dielectric energy the real part of €,

2

w/oov__ui%v:()’ (56)

—1_ﬁ o |v—ul|? Jv
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is needed, whence it follows that

d _ aéR BuR aGR _
R Jun o6 "ok (57)
Using (56) for er and €g = 0 one derives
56]:;_ 2
%k (58)
and it also holds that
Our _ l( —v,)
ok ke

where v, is the group velocity and v, = ug is the phase velocity. Combining the above yields

the known result [19]
wRSER =2 i

WR Up — VYg

(59)

Expression (59) is also valid for the neutral modes of the previous section, where eg:= € and
wp = w. It is non-zero and therefore £p is non-zero (except in a frame of reference in which
v, = 0). That €p is non-zero is true even for ¥ — 0, while the exact energy §?F remains
zero in this limit. As outlined in [13], the relevant frame of reference for homogeneous
unperturbed systems is the center-of-mass rest frame in which v, usually does not vanish.
The discrepancy between the exact and the dielectric energy has its origin in the fact
that e(k,w) is not analytic at v = 0. This is easily seen by shifting the path of integration

in the e-expression (49) such that

w? 1 0fo(v+u) . w2 9fo(u)
=1— -2 i A S 'S SN
e=1 k2P/v 5 dvi{:mkz Eva (60)

The upper sign holds when uy > 0, while the lower sign holds when uy < 0. The presence of
the two different signs displays the nén—analytic character of € as u; — 0.
The usual procedure for obtaining the small growth or damping rate, -, relies on the

nonanalyticity of e. Expanding ¢ , as in Sec. II, in the smallness of v,

Oerlkron) (61)

€ = ep(k,wr) + ter(k,wr) + &y oom
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results
€1 (k ) wR)
k = = 62
eR( 7wR) 0, ~ aeR/awR ( )
(Although € is not analytic at v = 0 one can Taylor expand on each side of y.) We emphasize
that e;(k,wgr) would be zero if € were analytic, as is the case, e.g. , for fluid theories or theories

that exclude resonant particles. When ¢ is analytic the above procedure is not sufficient to

determine «; one must expand to second order:

. Oer  7* O%er
e~e(k,wR)+z7@——2—aw12% ~0, (63)

which in contrast to the above would yield the result

) —aeR =0
7 aL(JR - ’
2 9%
6(]6,(.012) — 77 OT,;: =0. (64:)

Note, here degr/Owr = 0 determines wg, while the second equation determines . Thus if €
were analytic and unstable modes existed, deg/O0wgr = 0, and this would imply £p = 0, even
for arbitrarily small 7, as occurs for §2F. Also, note the discrepancy is evident from Eq. (14)
where it is seen that £p # Ep when €r(k,wgr) # 0.

This singular limit between growing and damped modes and neutral oscillations is not
peculiar to the Vlasov equation. It arises in general Hamiltonian systems; e.g. the energy in
a simple harmonic oscillator is a positive quantity proportional to the spring constant and
the amplitude squared. If the spring constant changes sign, purely growing and damped
modes with zero energy occur. The behavior of the energy in this transition, like that
discussed above for the Vlasov equation, is nonanalytic, although unlike the above the energy

is continuous.
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VII. Energy of General Perturbations in Stable
Plasmas

This section contains the derivation of the general energy expression for stable equilibria, an
expression that is written in terms of the electric field associated with a single Van Kampen
mode. We emphasize that although the equilibrium distribution function is stable it need not
be monotonic. In VII.A the Van Kampen decomposition [20] is reviewed and interpreted in
light of the dynamical accessibility condition. In VIL.B the new energy expression is obtained.
This section is concluded in VII.C where a comparison of the new energy expression and the

dielectric energy is made.

A. Van Kampen Mode Review

Consider again the linearized Vlasov equation

a6 f 85f af°
Bt mE e =" (63)
and Poisson’s equation
06F oo
—87—47re/_°°6fdv. (66)

Van Kampen’s procedure begins by deriving a two parameter family of solutions, labelled

by real quantities ¥ and u = w/k, of the form
§f(z,v,t;u) = X~ p(k,u,v), (67)

where the function h(k,u,v) remains to be determined. Inserting (67) into (66) produces

the electric field associated with a single member of the family of incipient solutions
6E(z,t) = E(k,u)eke—ikut (68)
Insertion of (67) and (68) in (65) yields
. 0 f°
ik(v — u)h(k,u,v) = —— E(k u) . (69)
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Since u and v are real there exists a singularity at u = v that is handled by solving (69) in

a distributional sense according to

hyu0) = < 520 p L4 Ok, — ), (70)

Bv v—1u

where P denotes the principal value, §(v — u) is the Dirac delta distribution, and C is yet to
be determined. Another singularity exists at k = 0, but this is resolved by simply requiring
E(0,u) = 0, a condition that removes a homogeneous perturbed electric fleld. The unknown

C is obtained by inserting (67), (70) and (68) into Poisson’s equation, giving

dv. (71)

Now, substitution of this value for C in (70) yields

h(mv)—@{”—% = +5('v—u[ P/ afs/8v' U]}

k2 Ov v—u o U —u

= ik——E(k u) G(k,u,v) , (72)

4re
where the Van Kampen mode is denoted by G(k,u,v).
It remains to show that G(k,u,v) forms a complete basis for expanding the general

solution as

Z/oo - E(k,u)G(k,u,v)e = *u gy | (73)

which requires that the G’s be capable of expanding an (essentially) arbitrary initial condi-
tion. [Note, the factor of 1/2 is consistent with our convention for representing real quantities
and the original field amplitudes E(k,u) have been replaced by E(k,u)du.] Therefore, it
must be possible to satisfy the following equation for the Fourier coefficients of an arbitrary

initial perturbed distribution function f (k,v):

Flk,v) = ZL% /_ °:° du B(k,v)G(k, u, v). (74)
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Given the initial value f (k,v) the expansion requires finding the amplitudes E(k,u). Since
the basis G is given by

Gk, u,v) = ex(k, kv) %P u—i; + en(h, kv) 8(v —u) | (75)

insertion of (75) in (74) leads to the following expression that must be solved for E:

f(k,v)zi’iw_g?fﬂp/” ___E(k’“)du+4’k E(k,v (1——P/°° 0fo/ 0V v') . (76)

dre k2 Ov o V—U o V' —v

The task of solving for E is accomplished by splitting the functions 8 fo /Ov and E, and the
principal value expressions into parts that are analytic in the upper and lower half complex

v-plane, respectively. Appealing to (B-3) and (B-4) of Appendix B yields

) =52 [(5) +(%) ] BB+ gromer B
i [(%L : (%ff)_] 42

ik dfo ik wy (9fo

Observe that + products do not occur, so that f is the sum of terms analytic in the upper

and lower half planes, respectively. Defining

ek, kv) =1—2mi fi (2@)
+

k2 \ Ov
_ 9fo
(k ]C’U) 1 —I— 271"& ﬁ (-a—’l)> B 5 (78)
and assuming f has the splitting described in Appendix B, yields
ik ik
f=fit+i= —‘“E+ +—E— (79)
Since the splitting is unique (c.f. [20])
R ik 2 ik *
fo=—Ees f-= 4—7”;E—6 ) (80)




and since the plasma is assumed to be stable,

ek, kv) #0 Im kv >0,

e*(k, kv) # 0 Im kv < 0 ; (81)
therefore
_Ame fy _4me f
A T (82)
The quantities E, and E_ are used to construct E(k,u):
4me f_,. f_
E(ku)=E,+E_= — ( ; + e*)
4re 1 A A A .
BRTACE (enlfy + f2) —ier(fy - 1))
= 47re| B (eRf(k u) — eI—P/ f v’)
_dme 1 3fo(u) f(L V')
=E TR (eRf(k )+ 5 L. o dv') . (83)

Equation (83) determines E(k,w) in terms of the initial condition f. Substituting this result
together with (75) into (73), one obtains the solution éf(z,v,t).

We note here that if the initial condition f is chosen to be proportional to 3fy/0v,
then 6f(z,v,t) is also proportional to 8fy/0v and hence fulfills the condition of dynamical

accessibility for all time.

B. Calculation of the Energy of a General Perturbation

Now we are equipped to obtain the energy of a general perturbation that is expanded in
terms of Van Kampen modes. The expansion of the perturbed distribution function, as
given by Eq. (73), is inserted into the energy expression of Eq. (42). The difficulty occurs

in the second term where there are several integrations that need to be performed. First
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consider the z-integration of this second term. Since Jfy/0v is independent of z,

© p(§f2 . 5 mV %0 v E\?
L. 37960 d”d”’“"Tz,;/_w dv duy dz 5575, (m)

x E*(k, u1) E(k, uz)G(k, uy, )G (k, ug, v)e *F1—u2)t - (84)

where we have used the reality condition E*(k,u) = E(—k,u), which follows from (73) since

G(k,u,v) = G(—k,u,v). The v-integration amounts to evaluating the quantity,

o G(k,uy,v)G(k,uq,v)v |
/ 8ol 0 dv, (85)

where G is given by (75). This integral is complicated because G possesses singular as well
as regular parts. However, the energy is time independent and one can do the evaluation

for t — oco. Terms that possesses bounded, integrable, absolute values must phase mix to

zero by the Riemann-Lebesgue lemma, while singular terms can give rise to nonvanishing

contributions. We denote the §-function portion of G by § and consider the three types of

terms separately. For convenience let

& (u) = ——P/ L Oy, (86)

0 V—1U 6v

where the k-dependence is suppressed.
Consider first the term that scales as the product of the two é-functions, the é — ¢
contribution; it behaves as follows: |

/_ ‘: (0 = w)8(v — w2)ep (wa)ep(v2) 72 / o dv = 6(u1 — uz)%%:% , (87)

which clearly gives rise to a nonvanishing term.

Next consider the two §-noné contributions. The first is given by

w2 1 dfy w : wh g (uy — )
B / De(v) k2P Us — v Ov Ofo/Ov dv = 11/% 6’)(“1)70-2- (ug —w)? + 12’ (88)

where the equality follows from the definition of principal value given by Eq. (B-4) of Ap-

pendix B, which amounts to

P1=

Ug —V

[ 1 1
Uy —V— IV Uy — U+ 1V

N =
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The second contribution is simply obtained by interchanging the subscripts 1 and 2,

. “p uz(uz - U1)
1];15% GP(U’Z) k2 (U1 _ uz)g + ) . (89)

Summing (88) and (89) yields

w? [ug€,(uy) — ugep(ug)](ur — us)
. Wy P P
L 72 (u1 — ug)? + 12 ’ ©0)

a quantity that is regular in u; and uy. Thus, when (90) is multiplied by the E’s, which
are assumed to be obtained from reasonable initial conditions and are thus integrable, and
multiplied by the factor exp(—tk(u1 — uz)t) and then integrated, it vanishes in the limit
t — oo.

Lastly, consider the noné-noné contribution:

wy 1 afowzp 1 dfo

v
/dvafo/avﬁ Up—v Ov k2 u;—v Ov (91)

Treatment of the principal values in this expression is somewhat delicate so several steps are
included:

p 1 P 1 =1{ 1 n 1
Uy —

Uy —v uUy—v 4 V=1V U —VF IV

1 1

Uy —V — I  Ug — U+ 1V

_l 1 1 1 1
4 lur—v—tw ug—v—w U -+ U—v+i

1 1 1 1
Uy —V—1W Upg—V+IW U —V+IW Uy —V—W

1

Ug — Uy

__l 1 1 1 +1 1 1
T4 |ug—v—iv U~V —t|U—u 4 |ui—vHtiw uy—v+iv

L1
4

1 1

U —V— IV Uy — U+ IV

1

Uy — Up + 20V
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1 1 1 1
+- - —. (92)

4 (ug —v+1v Uy —v—1tw| Uy —ug — 2w

After performing the necessary v-integration, the first two terms above are seen to be regular
at u; — uy = 0 and therefore yield vanishing contributions when ¢ — co. When the last two

expressions are decomposed by the well-known formula,

lim — = Pl Fird(z), (93)

the §-functions in these brackets lead to

r 1 %is 1
7 (Bl =v) 8 —v) ooy = Bl o) ¥ ol =l g

2

= % [6(uy — v) + 8(up — )] 8(uz — us) ; (94)

whence we obtain

4
W, 60
7r2—pu1 f

k* " Ouy

Finally, because of Landau dainping the electrostatic field energy vanishes when ¢ — oo.

5(11,1 - Ug) . (95)

Therefore the only surviving contributions are Eqs. (87) and (96), which yield

§F =~V /du1< ) |E(k,w)]?

8TL()
ur6p(u1)’ | o w_;f 9fo
X [af(,/au1 TR M Gy | (%6)
Using
0 k
kui = w, er(k,w) = g(u1), er(k,w) = "]‘:2 foé:/ ) ’ (97)

we obtain the following remarkable formula for the free energy:

2 le(k, ku)|? 2
5 F—32 Z/d uric oy 1B )

= Z [ dow E“k‘”u))'; Bk, W) . (98)
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The latter equality follows upon introducing the usual Fourier transformed electric field as

E(k,w) = ﬁE(k,u) .

Although this formula for §2F may seem similar to €p it is not. We emphagize once
again that unlike £p, §2°F is exact. The quantities ¥ and w that appear in € are real and
independent; they are not tied together by a dispersion relation, and the quantity E (k,w) is
the Fourier (not Laplace) transform of the electric field as described below, where k& and w
are independent.

An interesting feature that is brought out by the above derivation is that the initial per-
turbed distribution function determines uniquely the perturbed electric field for all times,
and conversely. Recall that E(k,w) is given in (82) by the initial perturbation of the- distri-
bution function. From E(k,w) one can clearly obtain 6 E(z,t) for ¢ > 0; however, in-addition
one obtains §E(z,t) for ¢ < 0. This artificial past history corresponds to solving the lin-
earized Vlasov equation backwards in time, which leads to Landau damping backwards in
time. Conversely, it is possible to arbitrarily prescribe E(k,w) and then obtain the corre-
sponding f by using Eq. (76). However, for dynamical accessibility E(k,w) must be chosen
proportional to 8f;/8u. Although the state of the system is completely determined by ¢f at
a single time, its determination requires §F for all time; §E at a single time is incomplete.

Equation (98) looks as if it would diverge or would not be well-defined at places where
er(k,w) vanishes for some w/k, i.e. at the zeros of fy(w/k)/0v. But this is not so if the
condition of dynamical accessibility is fulfilled, since in this case E(k,w) o dfo(w/k)/dv
[see Eq. (83)] and the integrand of §2F is proportional to dfo(w/k)/Ov. Also, it is evident
that the energy must be finite since (98) is numerically equal to §F as given by (42), an

expression that is well-defined for dynamically accessible perturbations.
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C. Deficiency of the Dielectric Energy - The Problem of
Landau Damping

In Sec. II it was argued that the dielectric energy in the case of Landau damping does
not relate in a well-defined way to the exact energy, or to what is commonly called the
wave energy. In this subsection we demonstrate this explicitly by comparing £p with the
exact energy of Eq. (98). This is done by considering various time dependencies for the
self;consistent electric field. '

According to Eq. (83), E(k,w) o €r/|e[® if the initial perturbation of the distribution
function f fulfills the condition of dynamical accessibility. Therefore E(k,w) has poles in the
complex w-plane at the solutions w = wy — i of the Landau dispersion relation; i.e. € =0

where now the contour is deformed into the lower half plane. This means that the main

contribution to the w-integral of Eq. (126) comes from the interval
wo—Y<w<wy+7. A (99)

Assuming now the small ”damping” rate ordering, we expand the dielectric function as before

[c.f. (61) and (62)] as
56R .

e(k,wo — i) ~ e(k,wo) — iy oo 0; (100)
whence it follows that
3}
er(k,wo) =0,  er(k,wo) =1 a%: . (101)
Taylor expanding eg(k,w) about wy ,
de 1 O%¢
er(k,w) = (w — wo) ?92% + 5 (@ —wo)’ 8w§‘ TR (102)
yields
2 N2 a2
lef [(w wo)” 1 ]] Ock (103)
€r 0% Owg
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It is then natural to choose an approximate form for F(k,w) that is in agreement with its

aforesaid propertys; i.e.

E(kw) =1 s w”’) 7 68k ) (104)

This corresponds to the following time dependent field amplitude:
E(k,t) = §E(k,wo)e~ ot~ | (105)

which reflects the time behavior of Landau damping, including the backward Landau damp-
ing mentioned above. This could be viewed as a sort of self-consistent turn-on followed by
a self-consistent turn-off. Of course, for physically reasonable f there is a smooth transition
from negative to positive time, since then E(k,w) vanishes for w — doco at a rate faster than

any power of w™!. Substituting (103) and (104) into the energy expression (98) produces

§2F = _V__wanR

o 16E(k,wo)|? , (106)

an expression that agrees to within a factor of one-half with the dielectric energy for ¢ = 0.

However, we note here two caveats. First, to obtain this formula a number of approximations

were required. If instead of (104) a form for E(k,w) that possesses a more realistic asymptotic

behavior at ¢ = 0 is used, then (106) is only reproduced to within a numerical factor. Such
cases are considered below and in Appendix C. Second, the approximate expressions so
obtained for 62F are, like the exact expression (98), constant in time, whereas the dielectric
energy has a damping factor e™*" on the right hand side. This damping factor must be
present in the dielectric energy expression in order for this quantity to describe Landau
damped perturbations. The presence of a damping factor pin points the principal deficiency
of Ep, for if £p were an energy it would be a constant of the motion. Also, we emphasize
that the discussion of £p of Sec. II shows that the derivation of this quantity is generally

defined only in terms of the initial value of the electric field.
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A phenomenon that displays the deficiency of £p in a striking way is the plasma echo.
Although the echo phenomenon is nonlinear, linear waves launched with a time interval are
of central importance. The two linear waves are Landau damped in turn, until the dielectric
energy of both of them is nearly zero and there is no “apparent” disturbance in the plasma.
If the dielectric energy were really the energy of the perturbations, then nothing further
could happen. But, since §2F is not zero, the two waves can still interact nonlinearly and
make a phenomenon like the echo, whereby it is possible to recover a significant portion of
the original dielectric energy.

To illustrate that the factor of one-half between §%F and £p seen above is incidental,

E(k,w) is chosen instead of (105) to be

1
E(k SE(k ; 107
, (k) = 4~ cosh[m(w — wo)/27] (k, o) ; (107)
hence,
e—iwot
B(k,1) = 5o 8B (k) (108)

The time dependence again shows forward and backward Landau damping for large [t|, but
now there is a smooth transition from negative to positive times. Because of the proportion-

ality between E and |e|*/er, Eq. (103) should now be replaced by

2
]i —7cosh[7r(w wo)/2'y]2€£. (109)
Using (108) and (109), one obtains
Vv 0
§°F = %37% 6R|6E(k wo)|?, (110)

which is smaller by a factor of 7/8 than (106). The proportionality constant in this case is
positive, but in general it is determined by the time profile E(k,t). Appendix C contains
an example where this constant can even have either sign. This is an important result since

it means that the sign of the wave energy is not necessarily correctly given by the dielectric
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energy, even when the damping rate v is sufficiently small. Hence the distinction between
positive and negative energy perturbations as well as the magnitude of the energy may not be
correctly given by the dielectric energy in the small growth rate limit. Also, if 7 is not small
the exact energy expression must be used in all cases. We emphasize, in addition, that the
dielectric energy is usually, especially for three-dimensional equilibria and three-dimensional

electromagnetic perturbations, much more complicated to use than §*F.

VIII. Dynamical Accessibility

It was emphasized in several places in the text that the condition of dynamical accessibility
is a crucial concept. First we describe here the ramification if this condition is not imposed.
The derivation of relation (42) for §2F indicates that the free energy may not be uniquely
defined. Now this ambiguity is discussed. We restrict to equilibria with simple zeros: v;, of
%%"—, although a similar treatment exists for higher order zeros.

The ambiguity in the derivation of relation (42) can be made explicit by writing

v v v
5700~ L ofafon T <_5fo/5v) ’ (1)

where the constants ¢, are arbitrary. Insertion of (111) in Eq. (42) yields

(6E)? v(61,)"
OF = / &z < 87 V P/ dv f°/8v>
™y, o 9 v _
+zk:Cu 9 /Vdsm Loo dvv(5fu) 5 (afo/a'u) y (112)

the integration over v in the last term yields

my Iviu
S Y g [, e 65w, 1)’ (113)
k iy au(u v )” =Viy v

For any differentiable function G;, (6f,(z,v;,,t)) it holds that

2 [ Bza = [ 9Ga 941, 5 86f, ,  98f,\ _
dt/vd‘”G‘”(‘sf”(”’”’"’t))“ v 06f, Ot /d aaf,,( i 8:1:)_0’ (114)
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which means that the total number of particles at v;, stays constant. The contribution (113)
to §2F is therefore also a constant of motion; of course, otherwise the constants ¢, would
not be arbitrary.

The “energy” expression (112) is therefore a mixture consisting of a genuine energy and
other constants of motion. The question is, whether one can separate out the genuine energy.
The principal value integral in (112) excludes particles with v = v;,. Since these particles
as a whole, i.e. integrated over , do not take part in the dynamics they should not be part
of the energy. Therefore, the energy should only contain the principal value contribution
and not that due to the é-function, and the genuine energy 62F is given by setting all the
constants ¢, = 0.

Although there is then an energy even without imposing the condition of dynamical acces-

sibility, violation of this condition would nevertheless mean that one has left the framework

of Vlasov theory.

As noted above initial perturbations that arise from Hamiltonian forces, such as the
electromagnetic force are dynamically accessible. This includes, for example, self-consistent
fluctuations in the plasma. However, initial perturbations of the distribution function that
violate the condition of dynamical accessibility are possible with particle sources and sinks,
such as, ionization, recombination, injection and losses through the plasma boundary. Dy-
namical accessibility is also violated if phenomenological friction (forces o< —v) and diffusion
in phase space are allowed. If such influences lead to an initial distribution fB,new and if one
can distinguish between new unperturbed forces and exact forces (see the example below),

then the time evolution of this function can be described by (see Ref.[14])

Fomew(%,V, 1) = e[g"’"e"’"]f,‘,),nm(x(()o)()c,V,t),v((,O)(X,V,t)) ’ ~(115)
where
x9(x,v,t) = const , v@(x,v,t) = const , (116)
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describe the “undisturbed” orbits of the “new system” and g, ne, is a generating function for
Lie type canonical transformations from exact new orbits to new unperturbed orbits with
Gumew(%,v,0) = 0. An undisturbed new system can, for instance, be defined by spatially

averaging. To first order the distribution functions f, ne. are
Fomew(3,V58) = F2e (803, v, 8), V5 (%, v, 1)) + [Gumews Fomen] - (117)

Now restrict to the case of an homogeneous undisturbed new system, for which the new

unperturbed forces vanish, introduce the spatial average of f,‘,’,new,
F)(V) =< fynew >o » k (118)
and define the perturbation 6f, by
8y = fumew = F) = fonew = F0 + [Gunew: Frpen]
= fun(x8” (6, v, ), ¥6 (%, V,1)) + [mews FL] (119)

Note that FO is allowed to deviate considerably from the original unperturbed distribution
0. but the new §f, must be small again.

The function f,; solves the unperturbed Vlasov equation, i.e.,

aft/h . afuh _ |
5 +v . =0. (120)
Therefore, f, drops out of the linearized Vlasov equation
067, 08f, S F°
ot " ox _—m_,,(SE v (121)
and one can solve this equation in the form
_my 1 a[gu,newaFB] [gu'n.ew;F ]
S = 5o ( o T ac (122)

The right-hand side has no singularities at the zeros of dF,/dv. Insertion of (122) and (119)

yields the new relation

/V5j5Ed3m -

33




_ s, [ 5 YV opy [ Ol9vnews ) Olgvnew; F7]
Sm, [da [ av arg fon + [g,,,new,F,,])( e . (123)
The Poisson bracket in the first parenthesis yields again (40) with 6 f, replaced by [g, new, F?]

and f2 by F?. Integration by parts of the f,pv 3[9”'”"”’Fg]mw"'"“”’F‘9] contribution with respect

to z transforms this expression into —[g,,,mu,,F,?]va—g—'a’;’l and because of (120) further into
[g,,,new,FB]v%;%. Hence, the total f,, contribution has %( furlgvmew, FY]) in the integrand

and therefore

/ 85 6E &z =
1%
0 —my oo v
- =T / B / 00 s ([9umews P2 + 2uimes F1 i) - (124)
v v T B
Combination with the electric field energy term yields the constant of the motion
m, o0 v (6E)?
/Vdsw {—Zy: D) /vdsm [oo dv 'a_a_? ([gu,newaFB]Z + 2[gu,new,Fx?]fuh) + S } = const .

(125)

This expression differs from (42) in that its initial value is given by the electric field energy

only because of g, ne,, = 0 initially. If f,n = [gun, F| then the missing initial particle energy

perturbation is just given by a term [g,4, FC]? in addition to the term (9 mew, Fio]? in (125),

leading there to a replacement of the quantity in parentheses by [gynew + guh, Fi0J?. This is

then again of the form (42) and a constant of the motion. If f,5 # [gur, F, ] one is confronted

again with the problem described above. The dynamically relevant energy is given by (125)
with f2, added in the parentheses and the integral defined as a principal value integral.

We point out that for general equilibria, where the equilibrium distribution function is

a function of the energy, analysis similar to that described in this section is possible. In

general the ambiguity occurs at critical energy surfaces.
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IX. Canonical Hamiltonian Description -
Action-Angle Variables and Signature

In this section we obtain action-angle variables for the linear Vlasov problem. This is done
in IX.A by appealing to the form of §2F of Eq. (98). Also, in IX.A the notion of signature is
introduced and a general discussion of the importance of action-angle variables and signature
is made by comparison with the case for finite degree-of-freedom Hamiltonian systems. In
IX.B a general linear integral transform is introduced, for which the Van Kampen mode
development of Sec. VII is a special case. New completeness and orthogonality type relations
that are needed in IX.C are proven. The transform transcends the application of this paper
and is of general utility for solving linear fluid and plasma problems in terms of singular
eigenfunctions. This is seen in IX.C where the transform is used to map the linearized
version of the noncanonical bracket structure of [15] to canonical action-angle variables.
Since noncanonical bracket structures of this form describe a plethora of continuum models,
the transform in effect applies with remarkable generality to a variety of linear problems.

The general treatment with additional examples will be presented in a future publication.

A. Discussion of Action-Angle Variables and Signature

It is of interest to compare the energy expression of Eq. (98) with the Hamiltonian for a stable,

nondegenerate, N degree-of-freedom system written in terms of action-angle variables:
N
H=) wala, (126)
where by choice the action variable J,, is positive and the sign of w, can be positive or
negative. Upon defining o = (k, u),
we = |kulsgn (kuer) (127)

and

Ja

Il

V1 |e(k,u))? 2 |
16 76- |€I(k7ku)l IE(]C,'U,)I ) (128)
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Eq. (98) takes the form of Eq. (126); i.e.
SF=3" ] du wa Ja . (129)
k=1

By its derivation this expression is valid for stable equilibria even though €; can have either
sign. If the neutral modes of Sec. IV are present then a discrete sum over these modes must
be added to (129). The definitions of (127) and (128) are somewhat arbitrary. The definition
of the action variable J, is incomplete since there is no guarantee that this quantity is a
canonical variable. Also, we have quite arbitrarily attached the signature to w, [for finite
systems it can also be determined from the Lagrange bracket of the linear eigenfunctions
(c.f. [18])], but this is not important so long as there is a unique sign attached to each mode.

Signature is known to be important for finite systems because it can determine the kinds
of bifurcations that are possible. Stable nondegenerate systems can always be written in the
form of Eq. (126), but if a parameter of the system is varied so that the frequencies move
along the real axis of the complex w-plane then a transition to instability is possible when
frequencies collide, at which point the Hamiltonian can no longer be written in this form.
Since for Hamiltonian systems real frequencies must occur in pairs fw, two types of collisions
are possible. A mode w can collide with its ma.fe —w at the origin giving birth to a damped
and a growing mode. The signature of the colliding pair is not important for this bifurcation,
since the signature of the Hamiltonian can change as the frequencies go through zero. If the
Hamiltonian was originally positive definite, and thus stable, it can change signature and
become unstable. However, signature is important for the second kind of bifurcation, which
occurs when pairs collide simultaneously on the positive and negative parts of the real axis.
The possible outcomes are described by a theorem due to Krein [21], which states that in
order for a transition to instability the colliding modes must have opposite signature. If the
Hamiltonian were initially positive definite then a collision of positive signature modes away
from the origin cannot change the Hamiltonian to indefinite, and therefore instability is not

possible.
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In infinite dimensional Hamiltonian systems such as the Vlasov equation [15, 22, 13,
23, 25], the situation is more complicated since in addition to discrete eigenmodes there is
continuous spectrum. Equation (127) assigns a signature to a Van Kampen mode. This opens
the possil;ility for interesting bifurcations. For example, two positive signature neutral modes
(whose presence requires a slight generalization of the formalism in this paper) imbedded in
a negative continuum could collide and become unstable, or perhaps unstable modes could
be born at the boundaries where negative and positive continua meet. Positive definiteness
of the energy does not rule out these possibilities. Classification of bifurcations with continua
will be the subject of future work.

In the remainder of this section the heuristic identification of the action variables above

is made precise.

B. A General Integral Transform Pair; Orthogonality,
Completeness and Other Relations

We introduce the following general linear integral transform:

fuost) = 1o [ B9 Gila, ) (130)

where
1
Gi(u,v) = ex(k,v) P u—i—; + en(k, ) 6(v — 1) . (131)

This differs from the Van Kampen decomposition since (180) is to be viewed as a coordinate
transformation between arbitrary time dependent Fourier amplitudes Ex(u,t) and fi(v,t).
Here the notation has been slightly modified for convenience and to emphasize the generality
of the transform. The symbol € = €g + i¢; has been changed to € = er + ter to emphasize
that the identities we are to derive are valid for general complex valued functions that do
not possesses zeros for real v. The choice for ¢ depends upon the problem at hand, since
one desires a Gf that diagonalizes the Hamiltonian for the linear dynamics. The prefactor

(ik)/(4me) has been retained for cultural heritage. From the development of VILA [cf. in
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particular (83)] and Appendix B it is evident that the inverse of this transform exists and is

given by
4dme

Ey(u,t) = —=

/_ Z Fulv,) Go(u,v) dv (132)

where
EI(]C,U) _1_ 1 + SR(,IC,’U,)
E(ka u)l2 T uU—-v Is(k, U)P

G (u,v) = | §(v—u). | (133)

In (131) and (133) symmetry in k is assumed.
The above transform is a general physical decomposition that may apply to a variety of
systems. The delta function represents free streaming or free particle propagation, while the

principal part represents the effect of interaction.

Insertion of (132) in (130) yields
Fulv,t) = /_ ‘: /_ ‘: Gt (u, v')GE (u, ) fu(v', t) dudv’ . (134)

Since the basis Gf is complete and since C;,i defines the inverse transform, the completeness

relation follows from (134),

/oo Gt (u, v")GE (u,v) du = §(v — v') . (135)

-0

Similarly, insertion of (130) in (132) yields,

/oo Ge(u,v)GE(u',v) dv = §(u — ') . (136)

Orthogonality relations similar to (135) and (136) appear in the works of Case [24].

In the remainder of this subsection two additional nontrivial orthogonality type relations
are obtained. These relations, given by (144) and (146) below, are needed in IX.C, to where
the reader can turn without loss of continuity.

Consider the integral
| Q) Gz(u,v)Gi(u,0) du = Qo)eh(o — v)
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1 P

TV —v

L ik, v)er(k, o) /_ ” Q) P

(Q)er(k, v)er(k,v") — Q(v")er(k, v")er(k,v))

P

uv' —u

du , (137)

where the equality follows simply upon inserting (131) and performing the é-function inte-
grals. The integral of the third term on the right-hand side of (137) is evaluated by again

decomposing the principal value product as in (92). This results in

" ew) PP = rQ) s —v)

—0 v—uv —u

+L(

vl -

(138)

oo'U'—U /oov’—u

Combining (137) with (138) yields the following identity:

/_o:o Qu) Gi(u,v")GE(u,v)du = Q(v)|e|*6(v — v')

D (7 S [ 9
1 P , , /
~————(QW)elk, v)er(k,v') - Qer(k,v)er(kv) . (139)

Now consider the well-known Kramers-Kronig relation for causal. complex-valued func-

tions,

Sp(v) =1+ P/ . (140)

This relation is valid for functions ®(u) that are analytic in the upper half complex u-plane
and obtain there the value unity for |u| — oco. A class of functions fulfilling these conditions
is given by

) =1+= / u_R(“ L v>0, (141)

v— v
where R(u) is continuous and satisfies condition (B-2). If R(w) is real and v — 40, the

Kramers-Kronig relations (140) for @ are the same relations as obtained directly from the
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definition of ®, which yields

Pr(v)—1= %P/_c: f—(_uldu , ®;(v) = R(v) .

v

Another Kramers-Kronig type relation exists for the function 1/®(v). This function fulfills
the above mentioned conditions if ®(v) has no zeros in the upper half v-plan, including the

real axis. Since

L_%r p,1__ % (142)

Beg =tap ™5 = "Top°

the Kramers-Kronig relations yield

P/ (DI /[®|2 (143)

|<I>|2 u—v
For completeness we mention that any function of ®(v) that is analytic in the upper half
v-plane and that is unity for ® = 1 can be used in the Kramers-Kronig relations.
Now choosing ® = ¢, Q(u) = ¢1/|e|* and making use of (143), Eq. (139) produces
oo k,
/ |Z](c 1;1)2 Gi(u,v"G5(u,v) du = er(k,v)6(v — V') . (144)

Another relation like (139), but involving §f, exists.

- G2 (u, v)GE(u!, v) dv = L ! u)le(k, w)|?6(u — o'
L QW) Gilw )i 0y dv = e o [Qw)le(k, w) 8w — )

ie;(k,u)ez(k,u’) /
2 u —u o U — 0 v u — v

1 P

Tu —u

+

(Q(uer(k, wer(k, w') — Q(w)en(k, uw)er(k,u))] - (145)

Upon setting @ = 1, ® = ¢, and making use of (140), (145) yields

e e Se(. 1 _ & (k>u) '
/_oo er(k,v) Gi(u,v)Gi(v',v) dv = mé(u —u'). (146)

This last expression is used in a transformation below; the inverse of this transformation

requires (144).
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C. Transformation to Action-Angle Variables

The Vlasov-Poisson equation is an infinite dimensional Hamiltonian system or field theory,
but because the distribution function does not constitute canonically conjugate variables the

Poisson bracket is of the following noncanonical form [15]:

(F,G} = / f[i? fsﬂ B o (147)

where F' and G are arbitrary functionals, [,] is the ordinary Poisson bracket of (29), and
6F/6f is the functional derivative. In terms of (147) the Vlasov equation is compactly
written as

of

= = 14

oF_ (1,8}, (148)
where the Hamiltonian H is the total energy functional,

(L s s L / 2 3
H—/2mvfcl:::dfv-}-g7r E*d°z . (149)

Two features of the bracket of Eq. (147) warrant mention: first, the form is obvioﬁsly not
canonical (note e.g. it is an explicit function of f) and second, the bracket is degenerate in
the sense that

{C,F}=0, (150)

for all functionals F', where C, the so-called Casimir invariants, are given by (36). Be-
cause of the degeneracy the bracket {,} can only generate dynamics in constraint “surfaces”
(sometimes called symplectic leaves) determined by the constants C'; hence the degener-
acy is tantamount to dynamical accessibility. For further details we refer the reader to
[26, 11, 22, 13, 23, 25].

The Hamiltonian description of the linearized dynamics of interest here is obtained by
expanding both the above noncanonical Poisson bracket and the Hamiltonian. Assuming

f = f°v) + 6f and expanding yields the linearized bracket

J[6F 6G]
(FGh=[f [56f 65f]d dv (151)
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in terms of which the linearized Vlasov-Poisson equation can be compactly written as follows:

86]‘

2 (152
Representing 6 f as a Fourier series,
5f(z,v,t) % Z (v,t) e | (153)

the functional derivative has the Fourier series (c.f. [27]),

66f k; (&Sf) e

2 & "
_2 gk 154
k_Zw 5f_ (154)

and upon insertion of (154) and the corresponding expression for G in (151), the bracket

becomes

(155)

o0 §F 6G 6G OF
{F,G}L—- Zk/ dv v <5fk5f_ 5fk5f—k) &

Note the k = 0 component vanishes; this is part of the degeneracy associated with dynamical
accessibility, which arises when one assumes the existence of the Fourier transform of the
quantities above.

In order to transform from the independent coordinates fj, and fi to Ej, and E_; as
defined by (132), the chain rule for functional differentiation must be obtained. Varying an
arbitrary functional F'[fi] = F[fi[Ex]] yields,

© o 6F
6F = k_zw / dv 5fk - k:z_:w [ du g 6B, (156)

From Eq. (132)
Bk, 1) = T 7 65w, 0)Gi(u,v)dv (157)

which, upon substitution into (156) and noting that ¢ fy is an arbitrary variation, results in

the following connection between the functional derivatives:

6F dre [ 4 OF
6fi(v,t) ik Jooo Gi(u,v) 8Ey(u,t) du

(158)

42




Inserting (158) and a similar formula for §G/6Ey into (155) yields,

4z (4re)? °° 1
{F,G}L = dv du du/ ——g (u, )G 4 (4, v)
Sl [ e [ 5y i,
SF 6G &G SF (159)
5Ek(u) 5E_k(u’) 5Ek(u') 6E_k(u)
Upon requiring
1k ) = gl ) = 280 (160)
I ’ — ¢I ] kz au
reverting to the notation E(k,u) = E;(u), and making use of Eq. (146), (159) becomes
167 & eI (k, ku) oF G G §F
{FGl=-3 2k [ PO (6E(k,u) SE(—F, %) §E(k, 1) 6E(—k,u))
(161)

It is clear from (161) that dynamics with 8f;/dt o 0f°/0v is impossible. This is the re-
maining part of the degeneracy associated with dynamical accessibility. It is now possible to

eliminate the degeneracy altogether and define the dynamics in terms of canonical coordi-

~ nates that lie within and span the constraint surfaces (that are sometimes called symplectic

leaves).

From (161) the time dependence of E(k, ku,t) is generated:

%—f ={E,§*F} = —ikuE , (162)

where the last equality follows from 62F of Eq. (98) rewritten as

eV ek, ku)l? \
5F~_Ekz:/ duu qk Gy (163)

Observe that the time dependence derived in this way is precisely that assumed for the Van -
Kampen mode decomposition.
The action variables given in IX.A, with their corresponding angles, follow directly from

the transformation
16|er]
kV |e]?

E(—k,u) = J, el
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16ler] - _; |
E(k,u) = ARE Jy e (164)

when ¢; > 0, and the following when ¢; < 0:

16|€[|
kV |e|?

16]e —
E(—k,u) = IQWGIIL;JQ e~ fa (165)

With the chain rule the Poisson bracket becomes

E(k,u) = Jy €l

X [® §F 6G 686G 6F
(FGh=3 [ (mzjg - EZE;)

The content of this section amounts to solving the complete spectral problem for a large

(166)

class of operators; the method can be interpreted either as a diagonalizing coordinate:trans-

formation to action-angle variables or as an integral transform technique.

X. Conclusions

One goal of this paper energy was to comprehensively consider energy expressions for pertur-
bations of homogeneous Vlasov-Poisson equilibria. To this end the dielectric energy and the
exact plasma free energy, which respects the important constraint of dynamical accessibility,
were compared in special cases. For the case of stable equilibria we were led to the general
energy expression of (98). Another goal of this paper was to obtain in an unambiguous
way the Hamiltonian action variables for stable linear Vlasov equilibria. This required the
introduction of the integral transform pair, which maps the linearized noncanonical Poisson
bracket for the Vlasov equation to the desired canonical action-angle form.

Several avenues for future work naturally come to mind. One is to obtain the gener-
alization of (98) for electromagnetic perturbations about homogeneous equilibria and inho-

mogeneous equilibria with various field configurations. Also, the action-angle variables are
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natural variables to use for perturbation theory. In the case of unstable equilibria Hamil-
tonian systems no longer possess action-angle variables, but other normal forms exist and
the techniques of [24] can be used to define a transformation to these coordinates. Since
the Poisson bracket of IX.C applies to a variety of fluid and plasma systems, the integral
transform pair is a most general transformation. One can transform a plethora of systems

to these variables for diagonalization. This will be the subject of a future paper.
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Appendix A: Electrostatic Energy for
Three-Dimensional Equilibria

Assuming f© = fO(H) alone, where H{®) = -m';—”z + e, ¢©, Eq. (35) can be written as
2 9f9 1
§F = — /d% Epo g,,,H(O)] o / SE? d% . (A1)

For convenience, below we omit the species label v and assume a volume of size 2.
Enroute to eliminating g in terms of §E we write g = ¢g(J, @) where (J, §) are equilibrium

action-angle variables for the particles, which are assumed to exist. Recall

1

Ji = 27r

pdx

where the individual components J; are defined in terms of the closed contours 7;. In terms

* of action-angle variables

HO — H(O)(J) :

i.e. all the angles conjugate to J are ignorable. The main reason for using these variables is

that Eq. (33) simplifies to
9
ot

where 6H = eb¢(x(6,7),t) and Q = %}O). The general solutions of Eq. (A-2) is given by

+ Q(J) = 6H (A-2)

9(3,0,8) = §(6 — Qt, J) + /Ot §H (x(60 + Q(r —1),3),7) dr . (A-3)

The perturbed distribution function is obtained from (28) as follows:

f(l) [g7f0] 8%00) [ ,H(O)] (A'4)
where
0, HO] =@- —g-g- - e/: KQ : a%) xJ . §E(x,t) dr , (A-5)
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where X is a shorthand for x = x(8 + (7 — t)Q,J). Inserting (A-5) into (A-1) yields
afo
2 34 BT -
§°F = 2/d¢d 500 {( ) (/5E Qd)

1 2 13
/5E ﬂdf}+87r/6E Pz | (A-6)

where the volume element transforms as d®z d®p = 430 d°J.
The existence of action-angle variables requires periodicity, and so we can expand as

follows:
56,3) =3 gm(T)e™0
x(8,3) = Y xn(3)e™Y (A-T)
m

SE(x(6,3),t) = 68(8,3,) = Y Em(3, )™ .

Inserting Eqgs. (A-7) into (A-6), and integrating over 6 results in the following energy expres-

sion:

af;
8F = —4n® Y / & 530 (m - )Plgu

—8r%e Y /d3 afo (2 -m)(Q-p)gmé(m+ £+ p)e -iQ2-(m+£+p)t
£Lm,p

¢ :
X [/0 Xp 'Ez(T)e’Q'(ZH’)T dT] +47% €? /d3 afo 'P)

. t .
% (Q-m)§(£+p+m+ q)e"(t“"P'l'm-*'g)t [ / % - Bxn(r) i ()7 dT]
0

0x
89

t ,
X [/0 xp-EE(T’)ezﬂ‘(ﬁ*'p)" dr ]—|-7r > En-Eil—| §(m+£+p), (A-8)

£mp

where §(m) = 0 unless m = 0 in which case it is unity.
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Appendix B: The f = f. + f_ Splitting

The method used by Van Kampen for solving the initial value problem requires a splitting of
a function f(z) of a single real variable into the sum of two functions with complex extension
that are analytic in the upper and lower half planes, respectively. In order to obtain this

splitting we represent f(z) as follows:

f@)=tm = [7 — L fa)ds (B-1)

v=0t T Jooo (¢ — 2')? + 12
The validity of this formula requires f(z) to be continuous and limyj—e |f(z)| < M|z|*
with @ < 1 and M constant. Jump discontinuities can be allowed, but the right-hand side
produces the arithmetic mean of the values of f on each side.

Assuming further that
lim f(z)=0, (B-2)

|z|—o0

Eq. (B-1) can be decomposed as

f(z)= hmi{/w M_/“ M/_}

v—=0t 271 | Jeoo &' — T — 1V —o0 T —x F 1w
= fe(e) + f-(2) - (B-3)
This defines the splitting needed in the text.

The extension into the complex plane of the function fy(_)(z) has several important
properties: (i) it is analytic in the upper (lower) half plane, (ii) it approaches fi(-)(z) as
y — 0, (iii) it approaches 0 as y — +(—)co. Also, most importantly, the splitting is unique
[20].

Similarly the principal value integral can be represented as

) -
/ = lim S S — f(z") dz’'

oo :1:’——:1; TS0t J—eo (z — )2+ v?

i [ e S
= (fy(z) — f-(z)) . (B-4)
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For this formula to be valid, the conditions on f(z) are the same as those required for
Eq. (B-3).

The above decomposition is introduced somewhat differently than that originally given
by Van Kampen, which begins with the Fourier transform of f(z). The comparison can

be made by writing f, and f_ in terms of Fourier integrals, making use of the following

identities:
L N S
z'—x—w 0
=t — =3 /0 eile—a'=w)p dp.
' —z+w -

Substituting these into (C-3), and then interchanging the p and ' integrations yields
f(z) = L / ” dp e*P® { / ” F(z")el= v d:c'}
27 Jo —00

1 /0 i © S
+ _2__7;/ dp e+sz {/ f(xl)e't(—x —iv)p diﬂl} )

Upon defining

L%, fla)e-== P da' = Fy(p) >0
F(p) = ‘ :
51,; oo f(x')e‘(“"*"’)p dz' = F_(p) p <0
we obtain

£&) = Fala) + (o) = [ dpe ™ Fuo) + [ dpet™ P (p) = [ dpet® F(p)

where it is seen that f, and f_ are the positive and negative frequency parts of the Fourier

transform, respectively.

49




Appendix C: Proportionality Constant of VII.C

In this appendix an example is given where the proportionality constant between §2F, in

the small v approximation, and £p can have either sign. To this end we choose

E(k,w) = (1 7 e"%(w_‘”"):)/”z) 6E(k,wo) . (C-1)

1
T (W — wo)? + o2 +IB\/2—’/T’)’
The first term on the right-hand side could also be replaced by any other function leading

to an asymptotic behavior
E(k,t) — e~“te~M§E(k, wp) . (C-2)

From (C-1)
E(k,t) = et (e7M 4 Be=77) 6 E(k,wo) , (C-3)

which also possesses the correct asymptotic behavior.
The requirements for |¢|?/er are

|e®

€1

_ Oeg e 1
—’Ya—wae—IOC’E‘- (C-4)

w=wp

From (C-1) one obtains

(P w ]
E(k,w) = (m n \/2_#7) SE(k,wo) - | (C-5)

One should therefore represent |e|?/¢; as

e _1 (1, B Ocr ]
e; E\x + V21 6E(k’w0)8w0 ' (C-6)
Insertion in (98) yields
|4 T Oer
21 2 _ _
SF = 1B (b o) (1 + T80+ Boges (7

The factor (1 + \/gﬂ)(l + B) obtains its minimum for f = B = %(\/g-i— 1). Its value there

is —%\/%(l - \/g)z Thus the factor ranges in value from some finite negative number to

400
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