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Abstract

‘Ina nﬁmber of fluid systems; overall fluid expansion has a retarding effect on the
growth of Rayleigh-Taylor (RT) ipstabilities: the growth of RT instabilities relative to
the expansion of the fluid is slowed énd is often sub-exponentia,i. We give two new
analyticé,l examples of tilis phenomenon of reduced growth or stabilization: one with
incompressible fluids é,nd oné with an adiabatic fluid. Confirmation of this phenomenon
- is also obtained from a. new MHDmco‘de cqnsrt‘rrl_lcte-d -spec_i}ﬁcvally_ for modelling fluids un-
dergoing nearly homogeneous (but not necessarily isotropic) expénsion or contraction.
In the code, expansion is included by making each point of the computational grid
co-moving with a predetermined overall expansion, which is equivalent to using an

expanding metric.



I. Introduction

Many physical fluid systems of interest undergo overall expansion or contraction. Examples
include inertial confinement fusion targets [1,2,3], supernovae [4,5], the plasma of the early
Universe [6], Z-pinch plasmas undergoing Felber oscillations [7], and, probably, D-T ice
crystals in muon-catalyzed fusion reactors [8]. It is to be expected that such global motion
will affect the character of many fluid processes such as the propagation of waves and the
growth of instabilities.

In this paver, we concern ourselves with the effect of homogeneous expansion on the
Rayleigh-Tay  (RT) instability. This topic has been addressed for several particular sys-
tems. A perusal of the ! ratu. will show that expansion has a slowing effect on the
instability: the instability growth, relative to the (growing) size of the fluid system, is sub-
exponential. This is to be expected since the quantities driving the instability, namely the
gradients in pressure and in the magnetic field strength, are depleted by the expansion.

We present two new analytical studies of expanding fluid systems undergoing RT unstable
motion. In both of these systems, we find sub-exponential relative growth of the instability.
"Ne also-present a numerical algorithm for simulating expanding (and contracting) fluid
systems. Simulation results obtained with this algorithm show a marked retardation of the

growth of a Rayleigh-Taylor instability in an expanding fluid.

II. Analytical Studies of RT Instabilities in
Expanding Fluids

A. Incompressible Flow

We look first at expansion in an R-T unstable, two-fluid, incompressible system. We take

gravity to be in the y direction. The fluid interface lies in the z-z plane (y = 0). Zero-order



motion in the z direction is given by

1 (1
'Uzo=i(“2'z.

a(t
Of course, we cannot have purely expanding motion in an incompressible fluid. To satisfy

incompressibility, v, and v, can be taken to be

vzo=—a@m : vyo=(oz—l)é£Q

a() a(t)

where « is a constant.

We assume that po = po(y). Solution of the zero-order momentum equation shows

e st == [Ta)-o) (0 (2) -a(8) )
- [ [plsdie = vy (a; 5+ () )+ ot w-

[l (& (9)+ (g) 2) dz + po(0,0,0,2) .

With this in mind, we perturb the fluid velocify field with §v = §v,Z + 6v,7 and linearize

*the equations of motion:
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where Eq. (1) is the mass conservation equation, Eq. (2) is the 2 momentum equation, Eq. (3)
is the y momentum equation, and Eq. (4) is the equation of state.

To solve this system, we first eliminate §v, from equation Eq. (2). This is accomplished by
substituting from Eq. (4), then operating on the resulting equation with 8,, then substituting

Eq. (4) again. The result is
p P a
oo (—Btay&)y +aso, (xayavo)) ~(@=1)2yp o, + a0, s,

+ 0z (bph(a,z,a)) + 82 6p = 0 (5)
where A(a, z,a) = (a2 (g) — ad; (g)) z.

Now we operate on Eq. (5) with 8, and on Eq. (3) with 0%. We then get two results for

92 9, 6p. Equating them gives
i i, i
Oy {,00 (—& 0y bv, + « - 0x(x 0, 6vy) — (e — 1)y - 0, bvy + « - 0, &:y)}

—po 02 {5t5vy —a%m@xc?vy-!-(a-— l)gyay(?vy + (a — 1)%5%}
+0, 0 (6p h(e,3,0)) = 0 [(n(a, y,a) + g) §p] = 0 (6)

where n(a, y, a) = ((a —1y2 (3)2 +(a=1), (g)) y.

Thus far we have assumed: incompressible flow, v,0 = g Z,Vz0 = —a g T,Vyo = (a—l)E Y;

a a ' a
pressure to stabilize against gravity and to produce the above zero-order flows; po = po(y);
and v, = 0. We now specify the system further. We assume two fluids with a sharp interface

at y = 0. Each fluid has a constant density:

{P0+ y>0

po- y<0.

py) =



Equation (6) is now greatly simplified. Away from the interface, 8, po = 0. Also, 6p =0

except near the interface. This can be seen from the mass conservation equation
Op+v-Vp=0— 3t5p+'5v-Vpo+vo'-V5p=0 -

In an incompressible fluid, density perturbations can arise only from advection or from some
insertion of density fluctuations as an initial condition. As long as ép = 0 everywhere
' initially, it will, in this system, remain zero everywhere except near the interface.

S0, away from the interface, Eq. (6) becomes
2 a 2 G oy a A
=0, 0, bvy +a58,,(w0y bvy) — (a — l);Byévy o C 1);ya§5uy +a58y5vy
2 G ng @ a2 Gong '
—0,0; 6vy + a - 0y(2 0z bvy) — (a0 — 1) e 0, 0y bvy + (a — 1)5325'03, =0. (7)
Inspection will show that it is solved by any v, such that
92 6v, = —02 v, .
Now we go back to Eq. (7) and integrate it across the interface
+

[Po <—at0y5'vy+a%0m(:c8y6vy)+ag-8y6uy] = 0?2 Spgdy . (8)

What we would eventually like is a solution of the form vy = 6vyo(t) f(z,y,t). If this can
be obtained, the final equation for bvyo(t) will have no z dependent terms. So, we eliminate

them here, if possible.

This is possible if 6v, = eXe%2 50 0(y, t), for then
—0; 0, bv, = (iika"‘% axe**eTg §y o 4 exikaz, Oy 6vy0>

and
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So Eq. (8) becomes

- . + €
gEikas [,,0 <_at 8, 6050 +20:59, 5vyo)] =8 [ bpgdy.

—€

We assume the same = dependence for §p, so
a + €
[po (—8t Oy 8vy0 + 2a p 0y 5vyo>] = —k*a®* | bpogdy . (9)

1o 92 Sy, = — 32
Now, remembering 87 §v, = —32 6v,, we see

Svyo = 6vyo(z‘)eik“ay .

If dv, =0 at y = £o0,

§vyo = Suyo(t)e~ kel

So Eq. (8) is now

~(por + po- )kl (=04 + 202 (laIovyo(t)) = —K*a* [ Spogay

—€
Lastly, we eliminate §p by making use of the mass conservation equation Eq. (1). The z
dependence of ép causes the = dependent terms in the equation to cancel. We then integrate
* over the interface:

€

a €
O i 0pody + (o — 1); ] y 8, 8po dy + 6v,(t)(pos — po-) =0 .
Since the interface is at y = 0:

y 0y bpody = /_ 9y(y bpo)dy — [ Spody = — [ bpody .

—c —€

We see

[0~ (@~ 2] [ 8p0dy = ~Em,0(t)(pos = o) (10)
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So

alfl a o .| Po+ — Po-
[at - (a - l) ZI,_] [aﬁ (—81,' + 2a E) (IG l(s'l)y)] = —dg k m&’vy s (11)
or .
a1r 1 ay . — po-
o= @-1 ] [ (8 =202 (lo vso()] = glk| 2220 u(t) . (12)

This equation is exactly solvable for certain cases of @ and a. For instance, if we assume
no z direction expansion (@ = 0), and we assume y direction expansion proportional to time

along with corresponding z direction contraction (a = t¢/t) then

(9 = 1/2) (91 bvyo(2)) = glk

Po+ — Po-
—————— bvyo(t) .
ot + po— yO( )

This equation is solved by

dbvyo(t) = ey I1(7) + o7 K (7)

where 7 = \/ glk| Pot — Po- t, and I; and K; are hyperbolic Bessel and Basset functions
o Po+ + po- ‘ ' o
respectively. o
The function 7'1'1(7') represents the growing mode of the instability. Asymptotically, I;()
__approaches e”/+/277 so bvyo(2) ép_proaches_ c;m e”. The instability growth. relative to
the overall expamsion is o Svyo/ T & €7 /4/T. In absolute terms, we have super-exponential
growth. Relative to the expansion, however, we have sﬁb-exponential growth. The relative
growths of the RT instability for a static fluid and for the expanding fluid we have studied
here, are plotted in Fig. 1. It might be said that the expansion causes a “relative stabiliza-

tion” of the fluid. A similar relative stabilization of the RT instability has also been found

for incompressible, spherically expanding fluids [9].
B. Adiabatic Flow

Similar phenomena occur in compressible fluids with overall expansion. Bernstein and Book

[5] derive eigenmodes and growth rates of Rayleigh-Taylor instabilities in a spherically ex-
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panding compressible system. Their system is RT stable. That is, all density gradients point
in the same direction as the pressure gradients. We will study a system which is unstable
to RT perturbations by generalizing the adiabatic equation of étate to allow for a spatial
dependence in temperature. First, we review some of the results of Book and Bernstein.
They require self-similar expansion and an equation of state p = p(p/p)" where p, 5, and ~
are constants. These conditions fix the density profile:

p0=ﬁ[1__lo(’7—1),’,2

1/(v-1)
2pvy? OJ

and lead to an equation for the expansion rate

.

ff1+u('y—1) = 72

where v is the dimensionality of the expansion and 7 is an arbitrary constant, the choice of
which will fix the zero-order expansion rate and fluid quantity profiles. The perturbation

equation of motion is found to be:

g — v {['”;2 _ ‘21)"2] v. g} —r-VE—1x(V x¢§) (13)

where £ is the Lagrangian perturbation and all r’s and V’s refer to the initial positions of

each fluid element.

If we perturb the fluid in an incompressible, irrotational manner, then Eq. (13) is sim-

plified to
[l = —r. Vg, (14)
Solution of this equation leads to § = VX(r,t), where X(r,t) solves the equations

X =Y [Xe(0)rt + X_ Or~* Ym

and



O X =[3/2F (L +1/2)] X

Bernstein and Book then show that all possible modes (compressible and rotational included)
'grow no faster than. the rate of overall expansion when 'y # 1. When v = 1, only the A
incompressible, irrotational modes grow faster than overall expansion. In this case, X/ f
. and X_/f diverge as t — co, but they diverge extremely slowly. '

Of interest here .is the behavior of R-T modes in a decidedly ‘unstable system; i.e.
Op/0r < 0 and acceleration points inward, slowing the expansion. Such a system can be

described by a more general equation of state:

p=p(r) (%)7

where 7 is a constant and r is the initial position of a fluid element. In other words, p is the
same for all fluid elements, whereas ﬁ can vary from element to element but D fei'”;;gvi‘ven
element never changes. We now have the freedom to choose initial conditions such fhat we
‘have a dense ﬁUId surrounded by a thinner fluid, with higher pressure in the thmner fluid,

thus slowing expansion of the system. The equation of expansion then becomes
Jl"f1+u('y—1) — ___7_-2 ) : (15) »
The equation of motion of the perturbations is

f2+”(7_1)é=_V< giov §>+rx(VX£)+r Vé - 2i0V EV inp

where again r and 'V refer to the initial positions of each fluid element and Po are the original

unperturbed pressure and density of each element.

We find. f(t) from Eq. (15). Reduction of order of this equation gives

df\*  (df\’ 2/ ias vy L
<E> “(a?>t=o:“r37(f33“)‘f33“’”5 for 7#1.



If we choose f(0) = 1 and df/dt — 0 as ¢ — oo (“minimal escape velocity,” speaking

figuratively) then

_ =T
= (g +))
If we look at incompressible irrotational modes again, we find
Xy = (E-1)Xy /7
X =(0—-2)X_/r.

- t
A change of variable ¢ = —[-2(3?77/—731)]1? = + 1 gives

. -1
t,2X+ = ( dz )X+ (16)
. (—£—-2)
tlZX_ = —az—X_. (17)
where o = W;Y—:;)T/—z Egs. (16) and (17) are solved by X = ¢'™ where n solves the
equations :
- {2
n(n—1) = Zazl or nn-1)= l;ﬂ .

Note that, for £ —1/a® > 0, X, has one growing mode (t,n > 0) and one decaying mode
(t™,n < 0). So, we have unstable modes, but they grow as power laws of #'. The instability
growth rate is sub-exponential, both relative to the overall expansion and in absolute terms.

Should (¢ —1)/a® < 0 or, as is always the case, (—€ — 2)/a? < 0, the solutions to the
equations take the form 2+% and 2. It can be shown that a = 1 so the real solutions that

can be constructed from these solutions are:
tcos(bln(t)) , tsin(bln(t)) .

We have analytically studied two different fluid systems undergoing overall expansion
(with necessary contraction in the incompressible case). In each case, the growth of the R-T

instability is sub-exponential relative to the overall expansion. This qualitative conclusion
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is an initial test which we have applied to our algorithm for simulating expanding fluid and

MHD systems. We review the algorithm and the simulation results in the next section.

III. Computational Results
A. Algorithm

Our simulation model is a non-resistive, adiabatic, two-dimensional MHD-plasma. We sim-
ulate the plasma with a Lax-Wendroff-type algorithm used by Nakagawa, Steinolfson, and
Wu [10], and first developed by Rubin and Burstein [11]. |

To facilitate studying the R-T instability in an expanding plasma, the algorithm is altered
iso that each grid point becomes a co-moving point, tracking a predetermined zero-order ex-
. _pansién of the plasma. The advantage of this approach is that, if we deal with an expanding
- system, it will prevent an expanding system from growing beyond the computational bound-
aries. Conversely, it will prevent a contracting system from shrinkihg to a size smaller than
the grid spacing can handle. |

To see how this alteration is made, we first look at how the MHD equations can be
‘ fgwrir’p‘tgn.jnc fe:ms of variables co-moving with a hpfnogeneou_s expansion.
Our static coordinates are rz,ry,'rz, and t. They can be expressed in terms of the co-

moving coordinates z. v, z. t':
7 b] b]

re = ag(t)z

ry = ay(t)y

T, = a,(t)z
t=t

The a;(t) are functions of time chosen beforehand, and are not unlike the elements of a time-

depende_nt metric in general relativity. Since what we are doing here amounts to a simple

11



change of variable, the a;(t) can be, in principle, anything we like. However, the most useful
a;(t) will be functions that lead to spatial coordinates which track, or nearly track, the overall
expansion of the system. So we determine the a;(t) beforehand by first solving the zero-order
fluid or MHD equations of motion. If these equations lead to a homogeneous expansion of the
fluid, i.e. a fluid element at (r;,7y,7.) at t = 0 moves to (fo(t)rz, fy(t)ry, fo(t)r,) at t, then
ai(t) = fi(t). If the fluid equations return an expansion which is not quite homogeneous,
then we can still make some use of the algorithm by choosing the a;(t) to be large enough
for the computational boundaries to always contain the entire system.

The velocities u,v, and w can be expressed in terms of velocities relative to the local

motion of expansion:

u(rx, TyyTz, t) = 'U:c(l'y Y%, tl) + dl‘(t’)x

U(rmryarza t) = vy(m’yaz7t,,) -+ ﬁy(t')y
’Ll)(’f‘_r, Ty, rza t) = 'UZ(‘T, y7 Z, t,) + &Z(tl)z *

So, for example, if (vz,vy,v.) is equal to (0,0,0) at some point (z,y, z), then, at that point,
the fluid is moving exactly with the expanding coordinates.

The derivatives are rewritten

1 4

O. = az(t) Oz
1 0

8,, = —
Y ay(t) Oy

1 0

O = a,(t) 0z
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The MHD equations then become

9

af+v (pv)+Z—p—0 (18)

0 Vi 1 1 i

) )+ 0+ = [(V, x B) x B, +

> =L pvit+ 2 pvs + piis ;= 0 - (19)

) t ’ .

dB; |

W{-[er(va)]—f-B%: =0 (20)
J#i : :

0 ( p _p* B2 o, )1

6t( y-1T 2 T )+V’ {V(7—1+ 2 ) T B (vxB)

2 ‘,7
‘*’Z"’:%%PJFZ —v; P+<*T+—2—)Zgl
J

aj

B2+B%4, B2+B%a, B!+B%g4 |
TR s W Rk | 21
+ Tt a, t 4 ay + 4 a, 0 v ( )

19 10 190
WhereVT_(Za—x, ga—y, o 57

.- do not imply summation. Our simulation is ‘two-dimensional, but ‘z direction” terms have

), and all summations are explicit, 7.e. repeated indices

been retained here for completeness.
Now we must alter the computational algorithm to account for the “source terms” and
the time-dependent coefficients appearing in the new equations. We now represent the MHD

equations by

OU +-—0.F 4 = 6,G+5=0.

Yy
- We first find mid-point values for U™*!: Here, we closely follow the standard Lax-Wendroff

algorithm, but we introduce two changes. First, the spatial derivatives are modified by the

expansion factors a, and a,. For instance,

d 1 i
=7 aas P - )

T
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Second, we account for the expansion source terms:

dF™ + At g™ 1
dz dy 2

n+t+1 — n+1
i1/25 = Ui + AL

(Syu; +5%) -
Midpoint values are then calculated for F**!, G**! and S™*!:

+1 +1
ir1/25 = (Uz?fi-l/2,j) etc.

Lastly, grid point values are calculated for U™*:

n+1 n n+1 n
Urtl = yr. — ﬁ 5_F + a_F - ﬁ 2(_;_ + _6_G.
i W2 Oz 0z ), ; 2 9y /) Oy 0

i
- % (s +3)

Tntl _ 1 n+1 n+1 n+1 n+1
where S} = % (Si-i-l/Z,j + 531205125 5T 2)

B. Simulation Results

We model a non-resistive MHD plasma. The adiabatic constant is ¥ = 5/3. The plasma
is contained in a box with reflective boundary conditions. Physically, it is twice as long
in the y direction as in the z direction. One hundred twenty two grids are evenly spaced
along the y direction; thirty are spaced along the = direction. A dense plasma occupies the
lower third of the box, a thin plasma the upper two thirds. The interface between them is a
transition region with a width of about 10 grid spaces. A magnetic field B(y)Z is imposed;
it is relatively weak in the thick plasma and strong in the thin plasma.

In detail, the pressure, density, and magnetic field strength profiles are:

P = po — p1 tanh (y —Zyo)

o= po ot (£52)

_ 1/2
B=<B§+B§tanh(yey°)> 5.
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Yo is the center of the transition region..£ is on the order of half the width of the transition
region. po and p; are chosen so that the thick region pressure (pi) is seven times that of
the thin region pressure (p;,). The variation in p is exactly proportiondl to the variation in
p. The total pressure (p + B?/87), however, increases as we cross the transition region from

the thick plasma into the thin plasmas:

2

2B,
Din + 8_7r0 = 1.2py .

The pla;sma B in the thin region is 0.11. The overall B(= 87 py/2B¢) is 0.77.

The imbalance in the total pressure creates a force across the transition region directed
toward the thick plasma. This system is R-T unstable.

To test the code, we first studied the growth of initial R-T perturba.tioﬁs in a plasma

- without expansion. Velocity perturbations took the form

-ooin () (2)
U = Vg Sin \ etk

L (27rx) (_y_) in th‘e.thick plasma (22)
-0 A Ly
U= (1_'2—3”—&*) sin(-@) | ‘
_ Ly A in the transition region (23) ‘

© Y = —y5cos (,27rm>
= =g /\

Yy — Ly, +ftr)) sin (27?53

Etn By

Ly + £4) 21z
v=— 1_3— COS(T)
tn

u=uwvgl{l

in the thin plasma - (24)

(25)

where £y is the size of the thick plasma, 4; is the size of the transition region, and {;, is
-~ ~ the size of the plasma. A, the perturbation wavelerigth', was set to twice the length of the
direction wall of the simulation box — v is about 0.1 of the sound speed in the thick plasma
. The transition region was also given a sinusoidal bend of the same wavelength having an

amplitude of about one grid space.
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The R-T instability grows qualitatively as standard theory and experimental results have
indicated. Namely, the sinusoidal perturbation of the interface grows and then becomes
cycloid-like, sending “spikes” of dense plasma into the thin plasma [12].

We have also compared the early growth rate of the instability to a “ball park” ob-
tained from the standard expression for the growth rate of an incompressible, two-fluid R-T

instability in gravity, namely:
P2 — /M
p+2+p1’

where £ is the perturbation wavenumber, ¢ is the gravitational acceleration, and p, and p,

n=./gk

are the fluid densities above and below the interface, respectively. For g, we substitute a

number approximately equal to the average acceleration in the transition region:

— (2B3/87 + Ap) /Ly
p(ytr)

where Ap < 0. Given that

_ 2m _2r  2m

X T 20, 2,
we find

Cs
Nclass = 5172; ’

where ¢, is the dense plasma sound speed and ¢, is the y direction box length. This is,

indeed, within the “ball park” of the simulation results:

¢
=3.05 =
n 7,
or
" n = 0.58N s -

The main result of interest from these simulations is the somewhat stabilizing effect of

the expansion on the instability. Let the amplitude of the “bend” in the interface be denoted

16



by I(t). Then the amplitude relative to expansion is

s(t) = 1(t)/ay(2) -

If a,(t) is a constant, then our present problem reduces to the static case with some expo-

nential growth rate

I(t) x ™ s(t) .

However, if a,(t) is a function of time, such as at 4+ 1, the simulations shows that s(t) is
some sub-exponential funcfion of time. The time evolutions of the density contours of static
and ekpanding plasmas is shown in Fig. 2. Note that, after equal times, the interface of
the expanding plasma remaiﬁs much more planar than that of the stétic plasma. The s(t)
-for two different expansions, a(t) = ¢+ 1 and a(t) = 4¢ + 1- (¢ being normalized to the
time needed for a wave traveling at the thick plasma sound s_péed to traverse the y extent
of the computational grid) along. with the results of the static plasma are shown in Fig. 3.
The plasma instability growth is slowed relétive to the overall expanéion of the plasma. In
particular, the early-time growth of the instability is slowed by 7% when a(t) = ¢+ 1 and
by 14% _When} a(t) =4t + 1. Also, the instability appeas to saturate and enter a non-linear.
regime earlier with faster expansion. When a(t) = 1, fall-off from linear growth begins at
about 0.17 of the classical growth time. This occurs at about 0.15 of the classical growfh
time when a(t) = ¢ + 1 and at about 0.1 of the classical growth time when a(t) = 4¢ + 1.
We take a moment here to review the relationships between the two systems we studied
in Sec. 2 and the system we have simulated. In each of the Sec. 2 systems, the instability
growth rate, relative to the overall expansion, is sub-exponential. However there are signif-
icant differences in the makeup of the two systems: The incompressible instability under
consid;ration is driven by a constant gravitational force while the expansion (and accompa-

nying contraction) of the fluid is chosen to be constant. On the other hand, the compressible

instability is driven by the same pressure gradient that cause the expansion to slow down;
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it is precisely this deceleration that destabilizes the system. The incompressible system has
a slab geometry; the compressible system has a spherical geometry.

The system we have simulated stands “half-way between” the other two in certain re-
spects. It is a compressible fluid in a slab geometry. Its overall expansion rate in the y
direction is chosen to be constant but, since the fluid is compressible, there is no need for
any contraction. The instability driving force is created by a pressure imbalance at the in-
terface of the heavy and light plasmas. This imbalance is not responsible for any change in
the overall expansion ratc “»ut, as in the compressible case, it is depleted by the expansion.
Despite the differences in  .ese sy=tems, fluid expansion slows RT growth in them all. This

can be taken as a successfully passed, qualitative test of the simulation algorithm.

IV. Conclusions

A large number of specific expanding fluid systems give rise to slowed, or even sub-exponential
relative growth of Ra,'yleigh-Taylor instabilities. We have presented analytical results for two
new systems which exhibit this phenomenon: an incompressible two-fluid system and an
adiabatic fluid system. The adiabatic system is a generalization of Book and Bernstein [5].
They studied an expanding adiabatic fluid with a pressure completely dependent on fluid
density. This led to a spherical system with both density and pressure falling off with radius.
The density and pressure gradients were necessarily in the same direction and the system
was RT stable. We have introduced a spatial variation of temperature into the equation of
state, making possible a rise in pressure together with a fall-off in density. This makes the
system RT unstable.

Results from a new MHD fluid code written specifically for simulating fluids undergoing
overall expénsion (or contraction) confirm this result for a simple slab gedmetry system
undergoing a simple linear expansion.

It should be noted that fluid expansion will not al: 1ys lead to stabilization of instabilities.

18



Modes developing along magnetic field lines, called Parker modes or ballooning instabilities,
behave in a marked way in an expanding gas in their nonlinear stages [13]. Expansion could
contribute to nonlinear destabilization through mass motion along the field lines.

- The computational algorithm presented here may find application in the study of astro-
physical phenomena, such as certain stages of supernova behavior. For instance, it might be
" used to study the effects of the interstellar medium or magnetic field swept up in tile leading
edge of the explosion. It might also be usefully applied to problems in inertial confinement
fusion. For exémple, fluid expansion and contraction might significantly affect the results of
such research as Emery et al. 1] and Kull [2].

This work was supported in part by the U.S. Department of Energy Grant DE-FG05-
80ET-53088 and National Science Foundation grant ATM 88-11128.
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Figure Captions

1. Growth of the two-fluid RT instability for a static fluid (dashed curve) and the ex-
panding fluid studied in this section. s(t) is the growth of the instability relative to
the instantaneous size of the fluid system. 7 is time in terms of the instability growth

time in the static fluid: (gk(py — p-)/(p3 + p_)*/2.

2. a) Density contours of the expanding MHD plasma undergoing RT unstable motion.
Time is in terms of the classically calcula;ted static RT growth time {Vpeo /p(yer )| k(e ~
Pin)/(ptk + pin) evaluated at ¢ = 0. Expansion is in the Yy directioﬁ only. The expansion
factor is ay(t) = 4.t/tc, + 1, where 1., is the ¢ length of the b‘qx Ainﬂthé»y direction (at

= 0) divided by the thick region soundspeed (at t = 0). Initial thin region density
(at the top of the box) w'fa,s 1/ 7. that of the thick region. Proportions remain the same
through the simulation, but absolute density is cut in each frame by a factor of 1/a,(2).
b) Density contours of the static MHD plasma undergoing RT unstable motion. Note

much larger relative perturbation growth for static plasma. '

3. Relative growth of RT instabilities from simulations of static plasmé (solid curve)
expanding plasma with a,(t) = ¢/t.; + 1 (long dashes) and expanding plasma with
ay(t) = 4t/tes + 1 (short dashes). Time is in terms of classically calculated RT growth

time for static plasma.

21



Fig. 1
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