INSTITUTE FOR
" FUSION STUDIES

DOE/ET-53088-543 IFSR #543

Kinetic Theory of
Toroidicity-Induced Alfvén Eigenmodes

R.R. METT and S.M. MAHAJAN
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

"March 1992

THE UNIVERSITY OF TEXAS

AUSTIN







Kinetic Theory of Toroidicity-Induced
Alfvén Eigenmodes

R. R. Mett and S. M. Mahajan
Institute for Fusion Studies

The University of Texas at Austin
Austin, Texas 78712

Abstract
~ An analytic kinetic description of the toroidicity-induced Alfvén eigenmode (TAE)
is presented. The theory includes electron parallel dynamics non-perturbatively, an
effect which is found to strongly influence the character and damping of the TAE —

contrary to previous theoretical predictions. We use a parallel conductivity model

that includes collisionless (Landau) damping on the passing electrons and collisional

damping on both trapped and passing electrons. Together, these mechanisms damp

the TAE more strongly than previously expected. This is because the TAE couples (or

merges) with the kinetic Alfvén wave (KAW) under conditions which depend on the

gap size, the shear, the magnitude of the conductivity and the mode numbers. The high

damping could be relevant to recent experimental measurements of the TAE damping
coefficient. In addition, the theory predicts a “kinetic” TAE, whose eigenfrequency
lies just above the gap, whose existence depends on finite conductivity, and which is

formed by the coupling of two KAWs.

PACS numbers: 51.10.+y, 52.40.Db



I. Imntroduction

Toroidicity-induced Alfvén eigenmodes (TAE) are currently of great interest because they
may destroy the confinement of fast ions in a burning tokamak plasma.!~® Their excitation
depends critically on the difference between the growth rate due to the fast ions and the
damping rate, mainly due to electrons. Past theories have predicted a very low intrinsic
damping for the TAE,?*® and have determined the dominant form to be Landau damping
due to the magnetic curvature drift of the electrons.? Perhaps stimulated by recent Tokamak
Fusion Test Reactor (TFTR)*!° and Doublet III-D (DIII-D)®!! results showing a higher
excitation threshold than expected, more recent theoretical studies have focused on alter-
nate damping mechanisms, such as continuum damping,®~® and trapped electron effects.’
In contrast, the present study attempts to demonstrate that a non-perturbative treatment
of electron parallel dynamics yields intrinsic damping of the TAE significantly higher than
originally thought.

The higher damping is caused by a coupling between (or merging together of) the TAE
and the kinetic Alfvén wave (KAW) if the gap is sufficiently thin and/or the magnitude
of the conductivity is sufficiently small. In this regime, the damping is strong and rela-
tively insensitive to the real part of the parallel conductivity o because the KAW carries
the energy of the mode away from the gap region. Outside this regime, as previously pre-
dicted, the TAE damping depends linearly on the real part of =1, and may be quite small.
Our theory also points out interesting connections between the TAE and the global Alfvén
eigenmode’®~'* (GAE). In addition to altering the structure of the TAE, finite conductivity
introduces a countable infinity of new modes (like for the GAE'?), which are formed by the
coupling between two KAWs. These new modes, which we call kinetic TAE (KTAE), have

eigenfrequencies which lie just above the gap. Their damping scales as 0~1/2. We find that



the KTAE closest to the gap has a moae structure very similar to the TAE, but with the
opposite phase between the coupled modes, and may have a lower damping coefficient than
the TAE. The modes further outside the gap generally have high damping coefficients. The
KTAE correspond to the continuum, which has been discretized by the electron dynamics.
Analytical calculations of the dispersion relations and damping coeflicients for the various
modes in various regimes are in good agreement with numerical values obtained by direct
iﬁtegratibn of the basic equations for a wide range of plasma parameters.

The paper is organized as follows. Section II contains a derivation of the basic coupled
set of equations used to describe the TAE and KTAE. Properties of the system in the ideal
magnetohydrodynamic (MHD) limit are examined in Sec. III. Analytic dispersion relations
for the modes in various parameter regimes are derived using a variational approach in
Sec. IV. In Sec. V, numerical results obtained by direct integration of the coupled set of

equations are presented and discussed, while conclusions are given in Sec. VI.

II. Basic Equations

~~We consider a ' TAE formed by the coupling between two poloidal harmonics my and m;.
As our model, we use an equation describing Alfvén waves in an inhomogeneous, current
carrying, cylindrical plasma, corrected by toroidal coupling to first order in inverse aspect

ratio e(r) = r/R,
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In this equation, the poloidal electric field E(r) ~ eimé+né=wt) the poloidal wavenumber

K = (¢* +€*)~Y%(mq+€?n)/r, the parallel wavenumber k = (g2 +¢€2)~1/%(m — nq)/R, while

A =w?/vi —k* G = (dA/dr)/K — A%/ K?, where A = ¢(2q¢k — s‘K)/[r(ql2 +€?)], and T is



related to the parallel conductivity o as

—iw
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The coupled system is completed with the equation formed by exchanging the subscripts
1 « 2. The left-hand side of this equation was derived in Ref. 12 and used to examine
KAW and GAE.'*"1 Tt stems from the well-known system of equations describing Alfvén
waves derived in Ref. 15. Electron dynamics are described by the term containing 7, while G
contains the effect of shear or equilibrium current [G' ~ +s where s = ding/dinr; to leading
order in €, G = (dk?/dr)/(rK?)]. We note that the toroidal c‘oupling term on the right-hand
side of Eq. (1) is the same as Eq. (30) of Ref. 1. Neglecting the term containing 7, Eq. (1),
apart from the last term on the right-hand side, is the same as Eq. (35) of Ref. 8. Equation
(1) may also be reduced to Eq. (2) of Ref. 7 under appropriate limits. We have taken the
toroidal coupling strength in Eq. (1) to be 2 £. This is because, heuristically, half of this
comes from the variation of w?/v} with 6 through R = Ry(1 + €cos §) and half comes from
the variation of £ with 8 through R. Other works have used a value of 2.5 %,5~® where the
additional 1/2 comes from a Shafranov shift in the gaquilibrium,8 which we do not consider.
We point out that there are, in addition, many other e-dependent terms which come from the
equilibrium, and keeping some of these may not be entirely justifiable. Our results, however,
are changed little if the additional 0.5 were included.

Our parallel conductivity model includes collisionless (Landau) damping on passing elec-
trons and collisional damping on both trapped and passing electrons. It was derived by
following the drift-tearing mode analysis of Chen, Rutherford and Tang,'® except we have
added a particle conserving Krook collision operator for the passing electrons on the jons.

The derivation is outlined in the Appendix. We find
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where p; = ¢;/w,; and
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The variable F' factors into a passing particle contribution (coming from an integral over the

passing electrons), given by the first term in curly braces; and a trapped particle contribution
(coming from an integral over the trapped electrons), which is purely collisional, given by the
last term. Here, 7 is the plasma dispersion function, ¢ = (w + iv,)/(|k|ve), & = ¢/(2¢)/2,
(. = t,/(|k|ve), where v, is an effective collision frequency for the passing electrons on the

ions and v, is the electron thermal speed, while

(2¢)4/? —o2_w(z)
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Inv Eq. (5), v(z) = (ve/e)z where v, is the collision frequency of thermal e}ectrons on
the ions. We comment that F' reduces to Eq. (9) of Ref. 16 in the limit v, — O(and for
wx/w — 0). It also takes the form reported in Eq. (30) of Mahajan, Hazeltine, Strauss,
and Ross for € — 0.17 In this limit the conductivity becomes the Spitzer conductivity for
vp/(lklve) > 1 and describes collisionless Landau damping [F=14¢Z(¢ )] for v, < w.
Equations (2) and (3) may be combined to yield a more familiar relation,
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where n is the plasma density, e is the unit charge and T, is the electron temperature. For
typical plasma parameters, F' is of order unity. Neglecting collisions, the trapped particles
(by removing a cone of passing electrons from velocity space) tend to decrease slightly the
real part of F' and decrease substantially the imaginary part to a small fraction of the real
part. Colliéions have their largest effect on the imaginary part of F', increasing it to a
significant fraction of the real part for typical plasma parameters.

The essential features of the TAE may Be obtained from Eq. (1) and its counterpart by

expanding A(r) in powers of r about the position ry where A; = A,. For simplicity we
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assume the radial variation in all other quantities (except F) about rq is unimportant. We
take ¢(r) = rE(r), r = ro+z, Ay = A —ayz, Ay = A + oz, where a; = —dA/dr|,,,
az = ds/dr|, and obtain

2
%(A ~ alx)% — KA —ayz—Gy)+7 (E% - Kf) } ¢y = —2521; (dd—; — Kg) és .
(7)
The other equation has 1 « 2 and the opposite sign of a. Here, the quantities A, 7,¢,v4, K,
K,,G1,G, are all evaluated at r = ry and are therefore constants. (The subscripts were
dropped on A and 7 since 1 = 2.)
Equation (7) and its counterpart are conveniently analyzed in Fourier space. Parseval’s

theorem implies that any function localized (square integrable) in z will also be localized in

the conjugate Fourier variable. We take

#(2)= [ dpd(p)e™ (32)
3(p) = ziw i ‘: do(z)e-7 (8b)

and Eq. (7) becomes
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2. (9)

d AL p _iKGy
dp a1 p*+KI o(p?+ K}

This equation and its counterpart may be symmetrized by defining the new functions
Y1 = il (s + K])]V* (10a)

Yo = alone™(p* + K2)]V/? (10b)

wheren = (afl—agl)(Ap—% p%) —7(K}/cay—K2/ag)p —K1Gro7 ! atan (%1—) +K,Gy05 atan (7%)

Then Eq. (9) and its counterpart reduce to the simple normalized system
d . o
45 +h0)] = i), (112)
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where the normalized Fourier coordinate y = p/«, the normalized inverse aspect ratio & =

|

2ek(ayaz) " 2w? [v}, while the functions h(y) = A - G(y) — 7(y* + 1), and fly) = [(v*+
y2)/(y? + y2)]/2. Here, the normalized eigenvalue A = + kA/a, the normalized “shear”
parameter G(y) = %[@1/(1 + 42/y?) + G2/ (1 + ¥2/v2)], and the normalized inverse parallel
conductivity 7 = 17x%/c, where & = [a(K2/on + KZ/aa)?, o = (a7 + 05") 7, Gy =
kG1/ay, G, = kGylaz, y1 = Ki/k, and y; = K;/k. We have reduced the TAE problem
to a coupled pair of linear, first order, ordinary differential equations with the eigenvalue w
entering through A(w), #(w), and &(w). For the TAE, we expect A(w) to be small (A ~ E)
- and so it is a good approximation to put 7(w) = 7(kv,) and &(w) = &(kv,4) and treat A as
the eigenvalue. It is clear from the definition of h(y) that since 7 is small, it will inﬂuenée

- only the high frequency (in p or y) components of the wave function, as expected. In terms

of the normalized variables, the eigenfrequency is given by

12 /A 1/2
w = kv, [1 1 gelmma) ™ (-;)] , (12)
my + Mg €
and so the.damping is, to leading order in ¢,
1 _ g (ama)? (A (13)
W my + mgy 3 ’
and the gap boundary _
: ~ . my+my
Dgap = ter——7 .
o = S )12 (14)

III. Existence of TAE in Ideal MHD Limit

* Before solving Egs. (11a) and (11b), it is illuminating to examine properties of the system

with 7 = 0. Then these equations may be combined into

{d—if%H[(A—é)z—?]—idi[f(ﬁ—@)]}wzﬂ- (15)
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Since f(y), G(y), & are all real, we expect A to be real. Since f(y) — 1 and G(y) — 0 as

y — oo, asymptotically Eq. (15) becomes

[dd—; + (A - 52)} B =0. (16)

Consequently for a bounded solution, A% — &2 < 0. Taking the inner product () = [, dy of

Eq. (15) with % and adding the result to'its complex conjugate, we find

dis

@ ) (1) = (1]22] ) - (j6(G - 2wl an)

Since f(y) is positive for all y, this (virial-type) equation shows that finite G(y) is required
to make A2 —£% < 0 and thus to create a localized mode. The function f(y) plays essentially
no role in the formation of the mode. Consequently, with no parallel electric field (7 = 0),
equilibrium current (essential for the GAE!?~14) and toroidal coupling are both essential for
the formation of the TAE. The function G(y) plays a similar role as boundary conditions
in other analyses.!"™® Notice also that since £ is small, it is quite likely that there is only
a single mode — one with no nodes (zero crossings) in ;. This is because as one creates
a node, |dis/dy|? increases, requiring |A| to increase (on the right-hand side), but thereby
preventing A2 — &2 < 0. It is also seen that a larger |G(y)| requires a larger |diy/dy|? and a
smaller |,|?, which implies a more localized mode in y-space (and thus a broader mode in
z-space). These tendencies are born out in the numerical solutions of Eqgs. (11a) and (11b),
presented in Sec. V. |

If the K7 and K? terms are dropped in the coupling terms on the right-hand side of Eq. (7)
and its counterpart (often used as an approximation), a similar virial-type construction shows
that a finite @'(y)is not required to make A? = &2 < 0. It indicates, incorrectly, that a TAE
may be formed by toroidal coupling alone. Since it is more accurate to keep the K? and
K? terms, this suggests that many terms are of the same order and so one must be cautious

when dropping various terms.



Finally, we point out that with 7 # 0 the condition A? — & < (s no longer necessary

to permit a localized solution.

IV. Analytic Dispersion Relations

We now analytically derive the dispersion relations and damping coefficients using a varia-
tional technique. Two distinct modes emerge from the analysis. One, the TAE, persists in
the limit 7 — 0. The other, the KTAE, does not. For 7 sufficiently small, the damping of
the TAE is scales as Im(7), but may be enhanced significantly by & and G. For larger 7, the
damping depends on the magnitude of 7 and becomes relatively insensitive to Im(7). For
the KTAE the damping scales as 71/2. Analytical results are in good agreement with values
obtained by direct numerical integrafién of rthe basié equa,tio‘ﬁs. - |
Recognizing from the arguments of the previbus section that f(y) plays a minimal role
in the form of the TAE, for simplicity we set f(y) = 1 in Eqgs. (11a) and (11b). We further
make the simplification G(y) & Go/(y? + 1), where Go = %(G‘l + @) (generally Gy > 0).
This makes A(y) symmetric in y. From our numerical solutions of Eqs. (11a) and (11b), we
observe 'fo'rhlih’ewTAE_ that -
\ P2(y) = ¥a(~y) ‘ (18a)

to a gdod approximation, while for the KTAE

Pa(y) & —1(~y) . (18b)

Substituting Eq. (18a) into Eqgs. (11a) and (11b) with our simplifications, we form a coupled

system for symmetric and antisymmetric functions defined by %;(y) = ¥1(y) -+ %1 (—y) and
Ya(y) = ¥1(y) — ¥1(—y). This system may then be combined into a single equation for s,

a1 a) . _
5 [=ho 3 ~E =0, 1)



where ho(y) = A — Go/(y® +1) — 7(y* +1). A similar procedure using Eq. (18b) for the
KTAE leads to Eq. (19) with £ replaced by —&. [Equations (11a) and (11b) may also be
combined into a single (Schrodinger) equation, ¥4 + Vi, = 0, where the effective potential
V(y) = h2 — &% — idho/dy. 1t is interesting to note the similarity between ho(y) and the
effective potential for the GAE discussed in Ref. 12 — c.f. Egs. (23) and (24) and Figs. 1
and 2. However, the correspondence is not complete since in the present case the effective
potential is significantly more complicated.]

In leading up to our variational procedure, we take the inner product of Eq. (19) with

1, to obtain the quadratic form

S=L+I,=0, (20)

2 .
where I; = — <:#(y) (‘ffy’) > and I, = — ([€ + ho(y)]®?). We take the trial function ¥, =
e=*’/2 with the (complex) parameter ), substitute into Eq. (20), and carry out the integrals.
Perhaps surprisingly, the integrals may be carried out exactly and written in terms of the

probability integral ®.1® We find

I————LI—I __a_(I -1.) (21)
YT Ry —2) Y T Ayt
(T 1/2 ~ 12 _/m\ /2 1
I =—(E+A4) (K) + 7Goel — O(AYH)] 4+ 7 (X) <1 + ?2—,\_> ) (22)
where »
1/2
I = (%) — (1 — 2 )2e2) {1 —9[(1- zi)l/z/\l/z]} : (23)
~ A q1)2
A—-E 477Gy
_ Lol I ) 24
2= {11[1 Ay } (24)

The integrals are strictly valid for |Arg(A/?)| < Z and Re[(1 — z4)/?] > 0.
We now take advantage of the ordering of the various terms. In general, |7] < |A| ~

|&] < 1, while 0 < Gy <1 and |A| < 1. Then

A—¢
Z+g

; (25)

7’:
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Consequently, |24| > 1 ~ |2_|. If 7 is sufficiently small, z;. becomes sufficiently large that
we can use the asymptotic expansion of ® to evaluate I,. Then to leading order in A~1/2,

r1/2

=_—2(i R (27)

"

Since A is small and z_ is of order unity, we can use the small argument expansion of ¢ to

determine I_. To leading order

L= ()" e

With these results,
: - [ ()2

= —= ,' 29 )
T 2(A -9 (29)
and our quadratic form Eq. (20) becomes '
S:i—€—£+@0(m\)l/2——Ag—=0. (30)
27 2(€—-A) ‘

The parameter ) is determined by finding the extremum of Eq. (30), which corresponds
to a solution of S/0A =0, or _

7oA /m\1/2 1
_/\_2'+G0<';\') —g_A—O. (31)

If 7 is sufficiently small, an accurate solution of Eq. (31) may be obtained by solving pertur-

batively in 7,
e _TG(E-A)
14+7/[rGie-A)]

[We comment that the solution neglecting Gy does not satisfy the constraints on the inte-

(32)

grals.] Substituting this into Eq. (30) gives the dispersion relation

~ - A2 =
A=—’“1 7rG0/2+ _ T

z _ — 33
14762 " 2m3E - A)p(L+7C3/2) (33)
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This shows that for 7 = 0, A? < & in accord with the results from the previous section.
Furthermore, for |#/(87G28?)| < &, Im(A) ~ Im(7). Consequently [see Eq. (13)] the damp-
ing coefficient is proportional to Im(7) and is enhanced by the small parameters & and Gy,
Iterative solutions of Eq. (33) show that as |7/(87G2&%)| ~ £, Im(A) increases dramatically
with |7|. This is shown in Fig. la, where Eq. (33) is labelled “33.” The solid lines indicate
the real part and the dashed lines the negative imaginary part of (ZS/ €+ 1), plotted as a
function of |7|/&% over several decades. The (representative) values & = 0.1, Gy = 0.3, and
Arg(7) = —0.3 were used. The rapid increase in Im(7) is also reflected in the numerical
solution of Eqgs. (11a) and (11b), labelled “C” in Fig. 1a, although the increase is a bit more
gradual and begins for smaller |7|/£%. As |7/(87G2%E%)| ~ &, our approximations begin to
break down and Re(A) predicted by Eq. (33) diverges from its true value.

The TAE root may be traced further by going back to Eq. (23) and using the small

argument expansion of @ to determine I, (since |z4| is reduced by larger 7). Then

71/2)3/2
I =
and our quadratic form Eq. (20) becomes
S=i—5—5+é(m\)1/2—§2-=0 (35)
2X ° 7o

The extremum of this equation which satisfies the conditions on the integrals is, to a good

)= (i;-)m , | (36)

approximation,

and gives the dispersion relation

- ()9 o

[In this equation and all subsequent discussion, only the primary root (the one with smallest

absolute value of argument) is implied. The other roots do not satisfy the constraints on the

12



integrals. Note in Eq. (37) that the argument of 7 still makes —& < Re(A) < 0, which is also
true for Eq. (33).] This result is independent of Gy, suggesting that the electron dynamics
in some sense dominate over the MHD effects as 7 becomes sufficiently large. Equation
(37) is plotted in Fig. la and labelled “37.” Note the surprising continuity in Im(ﬁ) from
Eq. (33) to Eq. (37) as |7|/&° increases. Taken together, these dispersion relations follow
Im(A) determined by numerical solution of Egs. (11a) and (11b) within a factor of two
or three. The real and imaginary parts of A from Eq. (37) agree well with the code for
|7|/€% > 10. The correspondence is good considering the simplifications and approximations
used. Equation (37) also ‘has the surprising feature that the damping does not vanish as
Im(7) — 0. This is because in this regime TAE is dominated by the interaction of /two
- KAWs. Neglecting the toroidal coupling term on -lthe right-hand side, Eq. (1) describes a
KAW, which is propagating for A; > 0 and evanescent for A; < 0.1 Toroidal effects -couple
together th‘e poloidal harmonics 1 and 2. As shown in Fig. 2a, when the eigenvalue A < b,
(true for the TAE) a small evanescent region separates the propagating regions. If this region
is small enough, or if |7| is sufficiently large, the TAE excites a KAW on harmonic 1 which
~_propagates away to the left and another KAW on harmonic 2 which propagates away to the
right. As long as Im(7) is finite, the KAWs will damp and not be reflected back in this plane
sla,bl model. Consequently there is significant damping for vanishingly small Im(7).

The KTAE dispersion relation is found by replacing & by —& in Egs. (30) and (31). The

extremum that satisfies the constraints on the integrals is approximately -

A =[7(A +8)]Y? (38)
and gives the dispersion relation
~ 1/2
~ 7
A=E+ |=—— 39
= 9

There are several differences between this mode and the TAE. First, the mode lies on the

top side of the gap boundary, Re(ﬁ) > 0. Second, the mode may be outside the gap,

13



Re(A?) > &2, Third, the damping scales as 71/2. Equation (39) is plotted along with the
code results in Fig. 1b. The 7!/2 behavior for both are clearly seen, although there is a
moderate increase in the slope of Im(A) vs. |7|/&2 for |7|/&® ~ 0.1 which is not represented
in Eq. (39). This increased damping is due to the excitation of KAWSs propagating away from
the gap region, similar to that described for the TAE. In this case, however, the transition
to this regime is not as strong. Since Re(A) > 0, the KTAE is formed by the interaction
of two KAWs as shown in Fig. 2b. Here, the propagating regions for harmonics 1 and 2
overlap. Apparently this situation is less favorable to the excitation of propagating KAWs
than the TAE case. Perhaps the evanescent region in the TAE case forces out the KAW for
|7|/€® > 1 and causes the large damping. The damping of the KTAE is larger than the TAE
for [7]/&% < 1 due to the 7'/2 scaling, but smaller than the TAE for |7|/&% 2 1.

V. Numerical Results and Discussion

The dispersion relations given by Eqs. (33), (37), and (39) are valid if the symmetric wave
function ¥s(y) = ¥1(y) + ¥1(—y) is relatively close to the assumed form e~*¥*/2, This was
tested by direct numerical integration of the basic equations with a shooting code (originally
developed by J. Sedlak). Our code solves the coupled system given by Eqs. (11a) and (11b)
with the WKB-type boundary conditions

b _ {8 — R - b))
¥ BH0)

at y> 1 and y < —1 respectively. The code input Gy, Gy, 2,32, 7, &, which are calculated

(40)

from their definitions. The solutions are rapidly convergent and robust.

The numerical solutions discussed in Sec. IV and shown in Figs. la and 1b were calculated
with the values & = 0.1, Gy = 1.4, G, = ~0.35, y2 = 0.5, y2 = 2.0, and Arg(?) = —0.3.
These values reflect representative plasma parameters as shown in Table 1 and discussed

below.
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As a benchmark, we chose to run the code for TF TR device parameters under two quite
different operating conditions. The first case corresponds to the TFTR TAE experiment
discussed in Ref. 4. The second case corresponds to a D-T burning experiment. The plasma
parameters for each case are shown in Table 1. In both cases the plasma density and
q profiles were chosen to scale parabolically with r/r,, while the temperature T, ~ [l —
(r/r)?]%. An effective mass of 2.5 was assumed. For each case, we consider three sets of
mode numbers: n = (1‘,1), m = (1,2) with ¢ = 1.5; n = (2,2), m = (2,3) with ¢ = 1.25;
and n = (3.3),m = (3.4) with ¢ = 1.17. The n = 2 case fits the experimentally measured
g ~ 1.3 of Ref. 4. In Table 1, the corresponding normalized parameters &, Go, and 7 /€% are
shown with the numerically computed eigenvalues for the TAE and KTAE and the dé,mping
coefficients v /w [calculated from Eq. (13)]. For comparison, corresponding values of (7/w)med
due to the magnetic curvature drift of the electrons [calculated from Eq. (10) of Ref. 2] are
also indicated.

We see from Table 1 that the numerically computed damping coefficients for the TAE are
significantly (a factor of 5-15\) higher than the Landau damping (v/w)mea predicted by past
- perturbative approaches for n = 2 and n = 3. Fortuitously, our predicted damping coefficient
for the TAE exﬁeriment for n = 2 is close to the experimentally measured value (of Ref. 4)
of ~ 3%. The damping is high in these cases because the norr\nalized parameter |7|/&% is
near or greater than unity. Consequently, these cases are near or into the regime where the
dispersion relation given by Eq. (37) is valid. In this regime, the damping is dominated by
excitation of KAWs propagating away from the gap region. This indicates the importance of
our non-perturbative approach. In contrast, for n = 1, we see that the numerically computed
damping coefficients for the TAE are relatiyely close to the perturbative (y/w)mea. The
damping is weaker in these cases because |7 /&% < 1, which corresponds to the regime where
the dispersion relation given by Eq. (33) is valid. The KTAE damping coefficients are nearly
equal to those for the TAE for n = 1 and smaller than those for the TAE for n = 2 and

15



n=3.

ngure 3a shows the n = 2,m = 2 TAE wave function %,(y) in normalized Fourier space
for the D-T burning experiment (fifth column in Table 1). The oscillatory character is due
to the influence of 7 and the connected excitation of the KAW. For n = 1,m = 1 (column 4),
¥1(y) has a significantly less oscillatory character due to the smaller value of |7|/%. Figure
3b shows the perpendicular electric field Ey(r/rp) in real space corresponding to the inverse
transform [Eqgs. (8a) and (10a)] of ¥(y). Oscillations to the left are a propagating KAW.
This may be compared to the diagram of Fig. 2a. Figure 3c shows the perpendicular electric
field Ey(r/rp) corresponding to the inverse transform [Egs. (8a) and (10b)] of ¥2(y)(m = 3).
Oscillations to the right are a propagating KAW. Note that £, and E, are in phase. For the
KTAE, (not shown) it is interesting that E; and E, in real space are very similar to E; and
E; for the TAE, although the oscillations are less prominent. The major difference is that
E, and FE, are out of phase. |

Predictions of the A/ from the dispersion relations given by Eqgs. (33), (37), and (39)
generally were found to lie within a factor of two of the values from the shooting code for the
cases cited in Table 1. We comment that, for lower mode numbers (m = 1,2), decreasing the
value of @o by ~ 35% from its definition @0 = %(@1 - @2) is found to improve the prediction
of Eq. (33). This is not unreasonable considering the approximations used in its derivation.

For higher mode numbers, the wave functions become more localized in real space. Damp-
ing coefficients generally become higher. For the TAE, this is due to an increase in the
normalized parameter |7|/€% with m to values greater than unity. Then the dispersion re-
lation given by Eq. (37) holds. The damping coefficient in this case can be estimated by
" writing 7/&°% in terms of the unnormalized parameters to leading order in ¢ (unnormalized)
and combining Eqgs. (37) and (13). The result is
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Vg (mama s p\Py T (i)”"’

w 3<m1+m221/2r> tm [z F) |- (42)
Note that F' 2 1 and therefore Im[i(i/F)'/3] = 1, even for vanishingly small Im(F"). For
my =ny =ny =mand my; =m+1, ¢ = 1+:= and, with a parabolic ¢ profile ¢ = 1+(r/r;)?,

the shear s = (r/r,)(2/m)*/?/(1 + 5x). Then, in the high m limit, Eq. (42) becomes

X3 <§—> " [z (%)1/31 . (43)

This equation gives surprisingly good agreement with the code results when |7|/€% 2 1 and
even for the n = 1 and n = 3 cases given in Table 1.
Finally we comment that for DIII-D, the kinetic effects on the TAE may be more signif-

~ icant than for TFTR because of larger shear.

VI. Conclusioné

In conclusion, a non-perturbative treatment of electron parallel dynamics predicts a non-
negligible combined collisional and collisionless (Landau) damping of the TAE. The damping
rate for the TAE predicted in this study is of the same order as the resonant or continuum
*‘damping,®~® which is caused by a mechanism not treated in this stidy. Our theory points out
the possible importance of a non-perturbative treatment of damping for the TAE. Although
the form of damping examined in this study may not in itself be enough to overcome the
a-particle drive, it should be taken into account in more careful future studies. Our theory
also predicts the existence of a new TAE (the KTAE) which depends on finite conductivity
and is formed by the coupling of two KAWs. Since the daﬁping of these modes can be

smaller than the TAE, a study of the effect of a-particles on these modes is also warranted.
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A. Conductivity Model

Our parallel conductivity model is derived by following the drift-tearing mode analysié of
Chen, Rutherford and Tang.!® This is reasonable since the essential features of the TAE
mode structure are described by electrostatic potential ¢ and the parallel component of the
magnetic vector potential A, as in the tearing mode. That £ & 0 for the tearing mode
. does not affect the derivation of the conductivity. In this analysis, the perturbed electron
distribution function h is determined by the drift-kinetic equation. Trapped (¢) and passing
(p) components are treated as separate species h = h; + h, but are related to each other
_ through the coilision operator. The collision operator acting on the perturbed trapped

particle distribution is modelled as
Chy = —v(v)hy . (A1)

It simpIy‘ tells the rate of scatter of trapped electrons out of the trapped region. In this
equation, the carat designates the non-Maxwellian part, while v(v) = (v./€)(ve/v)3, where
~ v is the collision frequency of thermal electrons on the ions and v, is the electron thermal
speed. [The quantity (v./€) represents the effective collision rate of the trapped electrons
out of the trapped region.] The collision operator acting on the perturbed passing electron

distribution is modelled as

Ch, = L2 /t Lov(v)he — v, [ ,— ;zf"— / d%h,,] : (A2)

Nop Op
The first term describes the rate of scatter of the trapped electrons into the passing region.
Here, fo and ng represent the unperturbed distribution function and density. The second
term is added to the analysis of Chen, Rutherford and Tang. This term is a particle-
conserving Krook collision operator where v, is an effective collision frequency for the passing

electrons on the ions. For simplicity, v, is taken to be a constant in our analysis. We take
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Vp = Ve(ve/v4)® to account for the importance of the resonance w = kv, in the drift-kinetic
equation for the passing particles. We comment that a velocity dependence v,(v) results in
an integral equation for &, that is not readily solved. Trapping and collisional effects of the
ions are neglected.

Relationships between the perturbed electron distributions A, and A; and the fields ¢ and
A are obtained by substituting Eqs. (A1) and (A2) into the drift-kinetic equation and bounce-
averaging. (For simplicity, no distinction is made between ¢ and A and their bounce-average
values. We also take wx/w — 0.) From the total electron and ion distribution functions, we
obtain density and current perturbations which are substituted into the quasineutrality con-
dition and Amperé’s law. The parallel conductivity is extracted from the resulting coupled

equations for the fields ¢ and A.
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Figure Captions

1. Comparison of analytic dispersion relations with numerical shooting code results. Solid
lines indicate real part and dashed lines the negative imaginary part. a) (A/€ + 1)
vs. |7|/€%: The labels “C” “\33,” and “37” designate code results, Eq. (33) and Eq. (37),
respectively. b) (A/g - 1) \vs. |7|/€%: The labels “C” and 39 designate code results

and Eq. (39), respectively.

2. Superimposed plots of A; and A; in real space near the gap indicating regions of

propagating and evanescent KAWs. a) TAE case. b) KTAE case.

3. Wave functions fr'om the numerical shooting code corresponding to the D-T burning
casen = (2,2) and m = (2,3) in Table 1. a) Wave function ¥, (y)(m = 2) in normalized
Fourier space. b) Perpendicular electric field corresponding to the inverse transform
[Egs. (8a) and (10a)] of t,(y). Oscillations to the left are due to a propagating KAW.
c) Perpendicular electric field corresponding to the inverse transform [Egs. (8a) and

(10b)] of ¥o(y)(m = 3). ‘Oscillations to the right-are due to a propagating KAW.
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b) KTAE
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