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Abstract

We give a simple drift-kinetic derivation of the expressions for the poloidal ion and

impurity flows in the presence of charge-exchange drag and ion-impurity collisions.



Recent observations! in DII-D have identified a sudden increase in plasma rotation as a
signature of L to H transition. The discrepancies between experimental observations? and
neoclassical predictions® of plasma flows are generally attributed to neutrals causing drag on
ion rotation through charge-exchange (CX) collisions. Kim et al.* have derived neoclassical
expressions for ion flows using the moment approach, but without CX effects. We show
that a simpler derivation (including CX effects) is possible directly from the drift-kinetic
equation without having to use the moment approach.

For simplicity, consider a plasma of ionized hydrogen (¢) with a small concentration of
neutrals (n), and one fully ionized impurity species (z). The results can be easily extended
to multiple species. Also make the physically plausible assumptions that the ion density
n; > n;, Ny, and that the CX mean-free-path A, and gyroradius p < density scale length L.

The steady-state force balance equations for the three species are

V;
V-Pi=eni(E+ XB)=F52+Fm, (1)
C
V. P, —zen, (E-J—VZXB):—F,-Z, (2)
c
V-P,=-F,,, (3)

where F, P, and V are the friction force, pressure, and velocity. If the mass flow is much
smaller than the thermal speed for each species s, P, = Ip,. Rearranging the force-balance

equations we write the system to be solved as

V:;xB
V(pi + ps) — en; (E + : ) =F;, (4)
Vp, — zen, (E—{—VZ:B) =-F;,. (5)

For large ion-impurity collisionality, we approximate the ion-impurity friction force as
Fiz = _in = mznszAV ) (6)
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where AV =V, —V, and v, is the ion-impurity collision frequency. Appropriate manipu-
lation of (4)—(6) gives |
(1-¢bx)AV =Q, - (7)

where b = B/ B,

and

a= (5)6[() Torro- () 9] g

The solution to (7) can be written as

AV =(1+¢)7(1+¢bx)Q. B -(10)

We find that, due to small parallel pressure gradients,

c

(@D -(D)ve] o

is very small for all g, and therefore
Vi = V= \ (12)
However, the perpendicular flows do not equilibrate. For the physical case of large ¢(92, >

v;), we have

AV, = (%) bxQ, + 0(4—2)

~ ()b [(i) V(i o) — (—1—) vp.| | (13)

whose poloidal component is given by

eG4 w

1

where primes indicate radial gradients. This result corresponds simply to independent dia-

magnetic (and E x B) motion of each species. The physical point is very simple: large



v:(¢g = 0,Q — 0) wants the two species to move together, while large ,(¢ — o0) wants the
perpendicular velocities to be independent and diamagnetic.

Our goal is to calculate the net poloidal impuriﬁy flow
Vie = Vyi = AV, . (15)

Since F;, does not affect perpendicular ion motion, (4) gives

C

eBni

Vi = ( ) b x [V(p: + pa) + ensV] . (16)

Note that the neutral pressure gradient term contributes additively to the ion diamagnetic
flow.
We also need V|; to compute V,;. Using velocity variables (v, = v/v), we write the

linearized ion drift-kinetic equation as

dg

wap T Mg—=Cqg—Xg==Va-Viy—-MfatXfa. (17)

Here 0 is the poloidal angle, V; is the guiding-center drift,
f=fu+tfityg (18)
is the ion distribution function,

fa = (%) fm (19)

i

is the first order perturbation of a displaced Maxwellian,
is the transit frequency,

is the mirror force,



(
¢
I

is the C X operator, v, is the ion C X collision frequency, and C = C; is the ion-ion collision
operator.

For plateau ions, we order our operators according to
w>C+X>M. ‘ - (23)

To lowest order, for small v/w, the solution to (17)is

g= W+ w?) Hvsin§ — wcos 0)Q, fur , (24)
where v = v, + v;, and
: [ v? | P e® . T 20r Vi L
Q= |——| (1| B 4 & _5/9)=k 4 2L L 2
Qs [(293)] (1 5)[pi+ R CRLTOL R ( 5)

Using (24), we return to the “exact” drift-kinetic equation (17), multiply by m;vé, inte-
grate over velocity and perform a flux-surface average (here equivalent to a -average). We

obtain for the parallel ion flow

‘/“i =D Uneo ) : | - (26)

with the CX damping coefficient, D, given by -
1

EHOOT -

Here Upe, denotes the conventional neoclassical parallel flow

T; pt ed T!
neo — T — — k= 5 2
v (miﬂp) (Pi T Ti) (28)

k = —1/2 for plateau ions, and €2, is the poloidal gyrofrequency.
From (16) and (26)—(28), we obtain the net poloidal ion flow

[ c Vi pi + ed’ DkT! .
and from (14) , (15) and (29), the net poloidal impurity flow

== (5) o ()

5




+ (1= k)DT! + (D —1)ed' —T, ( n, ) - (1> T;} . (30)

zZn, z

We find that C'X with neutrals causes the poloidal ion and impurity flows to depend on
the radial electric field. Note that D approaches 1 in the limit of no CX. In this limit,
our results agree with those of Kim, et al.* Charge-exchange introduces a neutral pressure
gradient term into the ion diamagnetic flow. Since the neutral pressure gradient opposes
the ion pressure gradient in much of the edge region, this should result in diminished ion

diamagnetic rotation.
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