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Abstract

It is shown that ioﬁ transport in the banana regime in tokamaks is reduced in the
presence of a strong shear in the radial electric field Er, as is often observed in the
edge region. For s1mphc1ty, the ordermg with ppild In E./dr| > 1 but ¢|E,|/Bpvyi < 1
is adopted. Here, p,,,- is the ion poloidal gyroradius, B, is the poloidal magnetic field
strength, v;; is the ion thermal speed, and ¢ is the speed of light. A kinetic transport
theory similar to those for bumpy tori and stellarators is developed to show that the
ion thermal condu’ctivity X; is reduced by a factor of roughly § =3/2, where § = 1 —
(ppid In Er/dr)(cE,/Bpvs). The result reflects moré than simple‘orbit équeezing: the

fraction of trapped ions is also modified by §.
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I. Introduction

In the edge region of a tokamak, especially during H-mode [1] operation, the values of
the radial electric field E, and its radial gradient dE, /dr are larger than those allowed by
the standard neoclassical theory [2, 3, 4]. The results of the standard neoclassical theory
are therefore not applicable. For example, When- M, = |cE,/Byv;| ~ 1, it is possible,
on theoretical grounds, to have a shock [5, 6, 7, 8, 9]. Here, c is the speed of light, B,
is the poloidal magnetic field strength, and vy is the ion thermal speed. It also has been
demonstrated both experimentally and theoretically that the nonlinearity of plasma viscosity
in M, becomes important when M, ~ 1 [10]. Furthermore, it is well known that when
S =1~ ppi MpdE,[|E.|dr > 1, the size of the ion particle orbit also deviates from the
standard neoclassical theory [11, 12]. It is therefore necessary to reexamine the relevant ion
transport theory to understand edge plasma transport phenomena.

Several effects on ion transport can be expected for plasmas with M, ~ 1 and |S| > 1.
In the case of 0 < M, < 1, the variations of plasma density and temperature in a magnetic
surface associated with poloidal rotation enhance the ion transport. However, when 1 <
M, < B/B,, ion transport will be ifnproved mainly because of the dramatic decrease in
plasma viscosity [13]. For plasmas with S| > 1, a reduction of ion transport from squeezing
of the ion orbits is expected.

In this paper, we intend to demonstrate the effect of strong shear in E, on ion transport.
To isolate this effect, we adopt the ordering that |S| > 1 but M, < 1, so that we can neglect
the variations of plasma density a,nd‘tempera,ture in the magnetic surface associated with
poloidal rotation. We find that the ion thermal conductivity X; is reduced by a factor of
|S|=3/2. The result can be understood from the random walk argument together with the
decrease in the size of the trapped ion orbits and the increasé in the number of trapped ions

by a factor of {/|5].

The paper is organized as follows. In Sec. II, we derive the linearized drift kinetic equa-
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tion. The variation of the poloidal angular Velocity needed in solving the linearized drift
kinetic equation is calculated in Sec. III. Ie Sec. IV, we solve the linearized drift kinetic
equation to obtain the particle distribution function. The ion thermal conductivity is de-
rived in Sec. V. The procedures employed in Secs. III—V are very similar to those in the

kinetic theory of bumpy tori [14]. Concluding remarks are given in Sec. V1.

II. Linearized Drift Kinetic Equation

Besides adopting the ordering that S| > 1 but M, < 1, we further assume <BV”> / (B2)l/ Yvg €
1, where V) is the ion parallel flow velocity. The angular brackets denote flux surface average.
This assumptien is motivated by the experimental observations that Vjj/v;; is indeed small
iin the edge region of a tokamak. We also neglect the Ohmic inductive electric field, which is -
irrelevant in calculating X;. With these orderings and assumpfions, the drift kinetic eqlia,tion

for ions can be written as

8f 8f

(w+ V) VOG54 va Vo 50 =0(f), | (1)

where f is the particle distribution function, i = B/|B| is the unit vector in the direction of
magnetic field B, v is the parallel (to B) ion speed, and Vg = ¢E x B/B? is the E. x B drift
velocity, with E = —V® the electric field and ® the electrostatic potential. Because M, < 1
and <BV||> / (B2)1/2 vy K 1, @ = O(%) is.a function only of the flux +». We adopt standard
tokamak flux coordinates here with B = I'V({ + V({ x V1. The poloidal and toroidal angles
are denoted by 6 and ¢, respectively. Note that I = ,RZIB - V(. The radial guiding center
drift is given by |

ve Vi = IV (%) ,

where (0 = eB /Mcis the ion gyrofrequency, with M the ion mass. The independent variables
in Eq. (1) are (¢,0, E, 1), where p is the magnetic moment, E = v?/2 + e\<I)/M, and v is the

particle speed.



Our assumption of weak plasma flow is appropriate to the annulus, commonly observed
near the plasma edge in tokamak experiments, where the electrostatic potential is close to
its peak. Thus, Vg is retained in Eq. (1) not because it is large (in fact Vg- V8 < yii- V9),
but because its derivative dVg/dy oc d*®/d+)? is large.

Assuming v ~ (yi + Vg) - V8 > vy - Vi/1., we obtain from Eq. (1), to the lowest
order in (vq - V¢ /1.v),

0fo _

(vip + Vi) - Vo2 50 = Clfo) (2)

where . is the equilibrium scale length in ¢ for the equilibrium distribution fy. A solution

to Eq. (2) is a Maxwellian distribution
Jo=fu(¥) . (3)

The next-order linearized equation is then

il
36

e wa{;— C(h) @)

of1
O

where f; is the perturbed particle distribution. Here the term involving 8f, /0% may ap-

(’U“ﬁ-i-VE) + vy Vip —

pear to be a higher order. That it is in fact comparable to the other terms in Eq. (4),
can be understood as follows. We note that 8f,/0% ~ fi/v,, with 3, the typical size of
a particle orbit in ¥, and 0fy/0% ~ fo/e. Because fi ~ (¥,/%.)fo, we conclude that
0f1/0% ~ Ofo/Fp. The sharp radial variation of f; distinguishes the edge region (more
specifically, the potential-peak region) of a tokamak plasma, making conventional kinetic
analysis inappropriate. The point is that when the poloidal drift changes significantly over
a nominal orbit width, the collisionless orbits become rather different from conventional
tokamak bananas. Indeed, orbits in the edge region have much in common with those in
bumpy torus geometry, which explains the resemblance between the following analysis and

that appropriate to bumpy torus transport.



III. Variation of Poloidal Angular Velocity over
Particle Trajectory

In order to solve Eq. (4) it is necessary to express the poloidal angular velocity,

1%/
CB>ﬁ-V0, (5)

w = (v”ﬁ + VE) Vo = (’U” +

in terms of § and constants of the motion. To this end we use the guiding center energy,

1 ep(¥
E:<§>vﬁ+ A(J)erB(a),_ (6)
and the canonical angular momentum,
B Iy
P=y q (7)

Note that the a,pproxima,tién R%v . V(f ~ (I /B)y| .depends upon small flow velocity as

discussed previously. It is not hard to show that

w:<é>ﬁ-ve<%%). o ®

The potential in (6) is expanded in a Taylor series,

_ 1\ -,
B(%) = B0+ By( — o) + (5 ) 24 — o)’ O
‘where we aBbreviate |
dd d*®
— ! _ = " —_— .
o=, =gl P = apl,

The parameter 1o labels a reference flux surface in the vicinity of which we study transport.
Equation (9) is a local assumption, requiring that near its peak the function ®(3) be ap-
broxirnately parabolic; it does not assume that ® varies slowly. It is sometimes convenient

to represent the energy and magnetic moment by means of the invariant

vo = v))(tbo, 60) = {2[E — e®o/M — uB(tbo, 60)]}/? (10)
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where 0 is a convenient reference angle, chosen to insure its general accessibility. In this
regard we note that for large |.S| trapped particles reside on the inside (smaller major radius
side) of the torus, so that the appropriate choice is 8 = 7 (for |S| > 1).

The guiding center trajectories
A = (6, P, B, 1) = o (1)

are determined by the three constants of the motion, and derived from (6), (7) and (9). The
results may be found in, for example, Ref. 11. Here we need only the poloidal frequency;

from (5) and (7),
w=7-V8 { (%) oo + AV, + [-11; +A(S - 1)] (%) Azb}

where the magnetic field is expressed as B = By/h(,0), where By is the field on the magnetic
axis, and Vg, = cI®,/B,. After eliminating Ay using (6), (7), and (9), we find that

o =04 (Ve + 2 2—[1+h2(5—1)] ho _ 1Y [2 (B = €20 (ho/h + 1) — 2P0 v
h M A

Yllo

where hg = h(%o, bo).

Equation (12) is valid for arbitrary S; in particular one can verify that for S — 1(f, — 0)
and Vg, — 0, it reproduces the conventional expression for poloidal motion, proportional to
v|. At this point however it is convenient to simplify (12) by approximation for large aspect

ratio and large |S|. Thus we assume
c<l, 4«1 (13)
9 IS‘ I

while allowing €S ~ 1. Then h = R/Ry = 1 + e cos § and we find the lowest order form,
' o\ 11/2 :
W=+ [1 + ksin® (5)] : (14)

with



o 1/2
o=1n-Vé {(VEO + vypp)? + 45 (vﬁo + #Bo)} ’ (15)

('U|2|o + uBo)
[(VE, + vj0)? + 45&(vfly + Bo)]

It can be seen that k — oo as & — 0; this limit corresponds to deeply trapped particles.

k=4|Sle . (16)

The trapped-passing transition occurs at £ = 1, or .
(Ve + vyp)? = 8¢IS|(ofy + uBo) (at k=1) . (17

Since the distribution function is nearly isotropic, (17) implies that the fraction of trapped
particles, f;, is proportional to (¢|S])*/*:
fur (el | (18)
The analysis leading to (15) allows f; to be of order one; indeed it might exceed unity
near the potential peak in some experiments. However, in the kinetic theory that follows, we
shall assume f; < 1, as might occur for very large aspect ratio. The point is that analytical
treatment of the Coulomb collision operator is extremely awkward unless either f; or 1 — f;
is considered small, and the former assumption seems somewhat more realistic. Of course
we cannot expect quantitative accuracy from an analysis basedj on ikl
The physical point is that orbit sqlleezing is inherently accompanied by enhanced trap-
ping. This can be seen, without large aspect ratio approximation, by noticing that the
large-|S| limit of (12) requires all particles to reside near § = 7. The ultimate effect is to
make ion heat transport at low collisionality depend strongly on S. We demonstrate this

conclusion in Sec. V, after computing the distribution function for squeezed orbits.

IV. Solution to Linearized Drift Kinetic Equation

Employing the constant of motion P, we can rewrite Eq. (4) with independent variables
(P, 8, E,p) to obtain

I #-V8 9P 0f, I7-V§ 0P df,

T Q0P/oE DY 96 |ps, T 00P/E 20 69 - O (19)
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We now perform a subsidiary ordering in terms of the expansion parameter (v;/Se)/(v;;v/Se/Rq)

< 1, as is appropriate in the banana regime, to obtain the lowest-order equation,

-V8 OP 8]"1 _ I n-V0 0P Ofo _ 0 (20)
Q 3P/3E 8 \ 06 |pE, QOP/OE 06 0y |
and the next-order equation,
I 7-V8 0P [0f] _ 0
"~ Q OP/OE 8y (aa PE“) =C(f) (21)

where the superscripts in f; indicate the subsidiary ordering. Note that the definition of
the conventional ion collisionality vs; is also modified by the orbit squeezing factor S to
ve; = v;Rq/ [vt,-(Se):*/?}.

The solution to Eq. (20) is simply

Ofo |
5% "

where g = g(P, E, 1) is an integration constant to be determined from Eq. (21).

f=—v=- (22)

To proceed further, we need an explicit form for the collision operator C(f). We adopt

the pitch angle scattering operator

) a of

C(f)=vp PB "5, (23)

where vp is the deflection frequency defined in Ref. 15, and the magnetic moment y = v /2B

with vy the perpendicular (to B) speed of the ion [15]. The independent variables in Eq. (23)

I

= Gveosa’ and neglecting

are (E, p). Changing variables from (E, x) to (E,w), us1ng 94 ~
the 0f /0w term for /€S| <« 1, we obtain |

’02 aZf

SR Bt (24)

C(f)y=vp

We have also neglected a term of the order of M, < 1 in obtaining Eq. (24).
Our use of simple pitch-angle scattering can be justified by a conventional neoclassical

argument based on the small fraction of trapped particles. The theory of transport in the
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plasma core shows that Eq. (24) applies affer one has appended to f a term corresponding to
a shifted Maxwellian, the size of the shift (mean parallel flow) being ultimately determined
by momentum conservation. Somewhat different considerations pertain in the edge region,
where parallel flows are observed to Be very small, apparently because of atomic physical
processes. Equation (24) then pertaips for small f; provided some (implicit) damping process
annihilates parallel flow. In this case momentum conservation ultimately to determines the
radial electric field.

Because k is the parameter that characterizes the trapped and circulating particles, it is

more convenient to use (E, k) as the independent variables for C(f) to obtain

OU) = oems 2 (ff—“’ %:-) (25)
The boundary conditions for f} in Eq. (21) are
fH0=0)=fr=2m),
fre=0=s0=m, 5
for 0 < k<1, and
0 =0)=f"(0="0,),
Ho=—0)=fr(0=-0), (27)
for 1 < k < oco, where the superscripts “+” and “_" indicate the sign of w and 6, is the

turning point of _the trapped ions. With these boundary conditions, we can annihilate the
left side of Eq. (21), by bounce averaging for both trapped and circulating ions, to obtain
an equation for g, '
‘ 0 [k dg
| = | = 2
g (e o) =0, 29
where

(w)y = 57—7- /()27rwd9 (29)
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for0 < k<1, and

@ =5 [ loldo (30)
for 1 < k < oo.
The solution to Eq. (28) is
~2

% - k(i:)a ’ (31)
where C' is an integration constant. For circulating particles, we find, from Egs. (22) and

(31), |
O _ L__ 0 yp.® (32)

bw  SQA-V6 9 (W)
Because 0f7/0w is localized in the trapped particle phase space, and limy_q (W), = w, we

choose C' = =L 80 {5 obtain

2(n-V8)Sw Oy
ow — SQn- V6 dp 1‘@ (33)

for 0 < k < 1. For trapped particles, dg/0k is even in the sign of w. In order for the even
part of dg/0k to be continuous across the k = 1 boundary, we choose C =0 for 1 < k < oo

. because the even part of dg/0k vanishes for circulating particles. We conclude that

afo_ I afo w 7
5 = "S0R VG 3% [1_H(1_k)<7)§] ’ (34

where H is a step function with H(z) = 1 for z > 0 and H(z) = 0 for z < 0. The

discontinuity in 8f/0w at k = 1 can be removed by including the collisional boundary layer
effect. However, for the purpose of calculating thermal conductivity, the correction associated
with the boundary layer is higher order and can be neglected. As shown in Sec. V, we only

need to know 9fP/0w to calculate X;.
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V. Ion Thermal Conductivity

The flux-surface-averaged radial particle flux I' and heat flux ¢ can be calculated from the
.definition

ty= o [ [T 5 [ @ (v v (35)

Azb ¢1
where T' is the ion temperature; for j =1,y =T and Z; =1, and for j = 2, ['; = ¢/T and
=, = v?/vZ — 5/2. The radial average in Eq. (35) is carried out over a distance ¢, < Ay =
g — 1y < .. Employing Eq. (19) to express (v4 - V) in Eq. (35), we find
-1
T; = Aizb ¢/ da/d?’vfl [C(fl) ég%ﬁ-ve%%] (%29) = . (36)
It is straightforward to show that the terms involving 0f1/06 vanish after the operation

Jdy [df [ d*v. Then we have

dé : S
PJ-_/ /d%fl fl)(gﬁ’) z; . »(37)'

Because the integrand in Eq. (37) varies over a distance of the order of ¥, > Ay, we
approximate (A)~} ff ¥ ~ 1 in obtaining Eq. (37). Substituting Eq. (24) into Eq. (37),

and infegrating by parts with respect to w, we obtain

27 df v? 8f0 afl . .
Pj = A —47r/dERq VD ————= 2R2 2 (-) /d ( =g (38)
With 8f/0w given in Eq. (34), we find
v v | D e® 5\ T
Ij=- \/— ‘S\é;zppzl/t/ dy Dy3/2 vz '[;‘FT'F(Z/—E) —f] ) (39)

where v; = v; is the ion collision frequency defined in Ref. 15, y = v?/v2, p = NT,
ppi is the ion poloidal gyroradius, and N is the plasma density. The constant Im =
I (dk/k3/2) (&/|w]), — ®H (1 _ k) / (Jw|),) is calculated in Ref. 14 and is Im = 2(0.69) ~
1.4.
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The ion particle flux calculated from Eq. (39) is about a factor of \/W larger than the
electron flux. (Here, M, is the electron mass.) To maintain ambipolarity, a radial electric
field, which is proportional to ®’, develops. To the lowest order of \/W , we have
Y

= =, 40
b T .U_lT (40)
where
P = /°° dy V_Dyslze_y , (41)
0 Vi
and
Y Ry 3/2( 5) -y
= dy — _— . 42
f2 /0 yo v \v-g)e (42)

We note that the procedure employed here to determine ¢ is equivalenf to that in determin-
ing poloidal flow velocity in the conventional neoclassical theory because we have assumed
<BVH> / (Bz)l/ % v = 0. Equation (40) makes Vg comparable to the diagmagnetic drift, and
therefore
VE ~ (ppi/a)v ,

consistent with our neglect of finite- M), terms. Here a is the minor radius. The large gradient
of Vg is also consistent with Eq. (40) because the latter is a local relation, valid near the
potential peak. Of course, the physics causing the peak in ®(¢), presumably related to orbit

losses, is not included in our analysis.

Substituting Eq. (40) into Eq. (39), we find

9 _ Im e , _ _% Z’
T|Vy| /_27FN53/2Ppi Vi (#3_ u) T VY|, (43)
where
po = [ ARy (y =527 e, CY

From Eq. (43), we find that the ion thermal conductivity is a factor of $S~3/2 smaller than

that in the conventional neoclassical theory [16, 17].
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VI. Concluding Remarks |

The result in Eq. (43) can be understood from the random walk argument. Because of the

strong shear in E;, the size of the trapped ion orbit is reduced by a factor of /S, i.e.,

(ary o W) 45)

and the fraction of the number of trapped jons is increased by the same amount, as shown

in Eq. (18). We then have

. y VP2,
X; ft(Ar)z S_te ~ e St,3/pz e , (46)

From the results presented here and elsewhere, it is clear that the conventional neoclas-
sical theory is not applicable in the edge region of a tokamak where large values of both S
and M, are observed. Therefore, one should not compare experimental results with those of

conventional neoclassical theory.
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