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Abstract

An asymptotic theory is described for cé,lculati'ng the mode structure and éontin-
uum damping of short-wavelengthbtoroidal Alfvén eigenmodes (TAE). The formalism
sdmewhat resembles the treatment used for descriBing l-ow-‘frce'quency toroidal modes
with singular structure at a rational surface, where an inner solution, which for the
TAE mode has toroidal coupling, is matched to an outer toroidally uncoupled solution.
A three-term recursion rela,tibn amoﬁg coupled poloidal harmonic amplitudes is ob-
tained, whose solution gives the structure of the global wavefunction and the complex |
eigenfrequency, including continuum damping. Both analytic and numerical solutions
are presented. The magnitude of the damping is essential for determining the thresh-
olds for instability driven by the spatizﬂ gradients of energetic particles (e.g., neutral

beam-injected ions or fusion-product alpha particles) contained in a tokamak plasma.



I. Introduction

In a burning plasma, significant numbers of highly energetic alpha particles will be produced,
which can interact with the core plasma and affect its stability and confinement. Of particular
interest are shear Alfvén waves, since the alpha particles in a deuterium-tritium plasma are
born at an energy of 3.5 MeV, which corresponds to a speed higher than the Alfvén speed
for typical reactor parameters. It was earlier shown!? that circulating alpha particles can
destabilize shear Alfvén waves through wave-particle interaction at the resonance w = K vjja-
These shear Alfvén waves normally experience significant Landau damping, due to their
short radial wavelengths. However, an exception occurs with the so-called toroidal Alfvén
eigenmode (TAE), which is a discrete shear Alfvén wave whose frequency lies within “gaps”
in the frequency spectrum that are induced by toroidicity.** The TAE mode can be strongly
excited by alpha particles.>~7 Furthermore, the presence of this unstable wave can cause
rapid anomalous loss of confined alpha particles.® Two recent experiments have indicated
that parallel neutral injection of sufficiently fast ions can trigger the TAE mode.>'® The
quasilinear saturation of a single mode of this instability has also been studied.!!

Since the stability of the TAE mode is relevant not only to burning plasma experiments,
but also to applications that will use high-power neutral beam injection for heating or current
drive, it has become the subject of considerable attention. In order to be able to predict
the threshold, an accurate calculation of the damping is necessary. Early studies of TAE
stability focused on collisionless Landau damping.®!2-18 It was then pointed out that for
the low-mode-number TAE modes, Alfvén continuum damping could be significant.’® Also,
collisional Landau damping between trapped and passing electrons has been estimated.2°

In the present paper, we give a detailed description of a general asymptotic theory for’

- calculating the continuum damping rate for high-mode-number TAE modes.?! The theory



assumes low beta, large aspect ratio, and circular cross section. The results indicate that
continuﬁm damping can be significant, even comparable to alpha-particle induced growth
rates, as long as the shear is not too small or the mode number too large. (Estimateé of
the TAE growth rate due to fast ion or alpha particle resonance are given, for example, in
Refs. 5, 6, and 14-19.) |
Another analytic calculation of the high-mode-number TAE continuum damping rate has
been carried out recently,?* with the use of the “ballooning” representation, in the low shear
limit. These results resemble ours, although the scaling of the damping rate with mode
number reported in Ref. 22 is different. Our analytic results are supported by numerical

calculations.

Two computational studies, one with an initial value code?® and the other with a resistive
eigenvalue code,?* have recently obtained continuum damping rates for léw-mode-number
TAE modes comparable to those calculated herein.

In Sec. IT of the present paper, the toroidally coupled eigenmode equations are derived,
and a brief description of the physics of TAE modes is presentéd. Analytic solutiqns of
the finite difference eigenmode equation in various limits are obtained and compaied to
numerical solutions in Sec. III; also, the theory is extended to allow for broad profiles.
Discussion and concluding comments are given in Sec. IV. An appendix deséribes the details v

of the theoretical derivation for the eigenmode structure.

I1I. Eigenmode Equations

We consider a low-beta plasma (8 = 8np/B? < 1) in a large-aspect-ratio tokamak (a/R < 1)
with circular cross-section. Furthermore, we will consider waves with large mode numbers,
so that radial derivatives of the perturbed wavefunction dominate over poloidal derivatives.

In ideal MHD theory, the vanishing of the parallel perturbed electric field gives a rela-



tionship between the electrostatic potential ¢ and the vector potential A

~b-Vé+iwA;=0,  with sz—BB—. (1)
0

Charge neutrality is expressed by the current being divergence-free:

B x v l .
b-w”+v-(—Bfi)=o. 2)

The parallel perturbed current is given by Ampére’s law,
ir J = —V? Ay, (3)

with the fluid velocity given by E x B motion,

Vé x B :
=-—fF (4)

By combining Eqs. (1)-(4), we obtain the reduced-MHD equation for high-mode-number
shear Alfvén waves:

(b-V) [Vi(b- V)| + V- (:_zj v¢) =0. (5)
Here, v4 = B/(47p)"/? is the Alfvén speed, with B the magnitude of the magnetic field and
p the mass density (mostly that of the plasma ions). By virtue of periodicity in the poloidal
f-direction and in the toroidal (-direction in a tokamak plasma, a wave field perturbation
with frequency w can be described by a Fourier decomposition in poloidal harmonics as
#(r,8,¢(,t) = % bm(r) exp[—im8 + in{ — iwt], where n is a “good” quantum number due to
toroidal symmetry. Then we have (b- V)¢ — ikjjm dm, Where the parallel wavenumber for

the mth harmonic is given by

bin(r) = = (n _ %) , (6)

with 7 and R the minor and major radii, respectively, and q(r) = rB¢/ RBj the safety factor.
In toroidal geometry, however, the equilibrium quantities are functions of 6: e.g., the

magnetic field strength is B = By[1 —(r/R) cos §]. This leads to coupling among the poloidal
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harmonics. To lowest order in the basic expansion parameter r /R < 1, ¢, couples only to
its neighbéring sidebands, 11, and Eq. (5) reduces to a system of coupled equations given

by

d [(w 5, \dém] m?[w? W (Phm_y P
5[(‘2‘“’“ilm>'ﬂ—r—z g Fim ) dmt e\ gt gm ) =0 (D)

Va
where kjmm < 1 and m > 1 have been used. In Eq. (7), e(r) < 1 is the toroidicity coupling
strength; elsewhere'® it is shown that € & 57/2R for a low-beta tokamak plasma.
In the € — 0 limit, the poloidal harmonics ¢, (r) are uncoupled, and Eq. (7) exhibits sin-
gular structure at points r = r, where the -coeﬁicient of the second derivative term vanishes.

For a real frequency w, this leads to the shear Alfvén wave resonance condition,

w= k”m (7'3) 'UA(Ts) . » e (8)

It can be shown from ideal MHD theory that, as a consequence of causality, if an external
excitation is applied at a real frequency w, absorption of energy by th<=T plasma will occur at
the point r,, which is the manifestation of continuum mode damping.

By the same argument, at special degenerate frequencies (the so-called TAE frequencies),
it will appear that absorption from two wave harmonics with neighboring mode numbers
occurs at the same spatial location. Specifically, at the points r = r,,, where Ejm-1(rm) =
~kjm(rm) = 1/(2¢gnR), with ¢n = g¢(r,,) = (m — 1/2)/n, an excitation applied at the
degenerate frequéncy w = v4(rm)/2¢mR will lead to apparent energy absorption by the
plasma at r = r,, from both the m — 1 and m harmonics of the wave. If, however, ¢ is
small but nonzero, the degeneracy at the TAE frequencies will be resolved by coupling of
the harmonics through the toroidicity, which will cause spectral “gaps” of width =~ € to be
formed in the Alfvén continuum. This allows local energy absorption to be avoided. With
NONZero &, the precise condition for the singular structure in Eq. (7) is the vanishing of the

determinant whose elements are the coefficients of the terms with the highest derivatives



of the ¢,. A radial plot of these singular frequencies, which comprise the toroidal shear
Alfvén continuum, is shown in F ig. 1 for a typical equilibrium — viz., constant density
and ¢(r) = ¢(0) + [g(a) — ¢(0)](r/a)? with ¢(0) = 1.0 and q(a) = 2.5 — and for various
poloidal mode numbers m, with n = 5 and a/R = 0.25. The gap structure in the continuum
of singular frequencies is induced by the toroidal coupling, which prevents the resonant
frequencies from being crossed. Thus, it is possible for an externally applied frequency to
thread through several gaps, while avoiding the dissipative Alfvén resonance that would have
occured in the cylindrical € = 0 limit. In general, some resonances cannot be avoided, and
they need to be calculated in the toroidal limit.

With toroidicity, the shear Alfvén gap structure also allows for natural modes of oscilla-
tion, the discrete toroidal Alfvén eigenmodes, to exist within the gaps, with eigenfrequencies
w that are near the TAE frequencies. However, a TAE mode may still be damped, since it
can interact dissipatively with the continuum in regions that are somewhat remote from the
region where the mode is principally localized. In the present paper, we will determine the
mode structure and the magnitude of the instrinsic continuum damping for the TAE modes.

To develop our theory, we search for an eigenfrequency w that is near a specific TAE
frequency wrag(Tmy) = va(Tm,)/2¢(Tm, )R associated with the interaction of the mo and
mo — 1 harmonics at the point r = r,,,, where q(Tmo) = (mo — %) /n. The eigenfrequency, w,
is expressed in terms of a complex mismatch parameter, go, defined through

w2 — w’%AE(rmo) (9)
1 — €90

with € = e(rmo); We also introduce the complex mismatch parameter, ge, associated with

the shift of the eigenfrequency from the mg+¢ TAE frequency (for arbitrary sideband number

?), defined by

2 _ w’%‘AE(rmo-ﬁ-l) , . (10)
1—€g

w
with € = €(rmo+¢) and WrAR(Tmo+e) = Va(Tmose)/2¢(Tmose) R the TAE frequency associated
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with the interaction of the mo + £ and mg + £ — 1 harmonics at r = Tmo+e; Where ¢(Tmote) =

(mo +4— %) /n Note that

1 —ego . v5i(ro)g? [ 9 (QZ)J
= =1+ —_ — In | = +ee, 11
1—ege  v5(re)gd (2 = ) 9q vi/) e )

where we have suppressed the dependence on mg so that r, = Tm(;+g and g; = q(Tyny4s), and
where we will denote ¢m,4+s as ¢z. Therefore, if £ < mg and in the limit €, g, < 1, we can

approximate the exact relation between g, and go by the first order expansion
20 v
= —_— : 12
9% o s (12)

with € = ¢ [01n(¢?/v3)/01n ¢?] 7

q=qo0°

In analyzing Eq. (7) we assume toroidal coupling is significant only near the TAE lo-

cations. Expanding Eq. (7) about the location r = r, where only the interaction between

the £ and £ — 1 harmonics is significant and introducing the variable z = n [q(r)—m;}]g
ng'(re)(r — re) — 1/2, we obtain the following coupled equations (for general €, g;): "
. , ‘
d 1 dge 1 1 . ,
— o —_ _£2____ - _62
dz [4(1 — €g) (z=1) } dz S} [4(1 — €24s) (z—4) } o (13)
2
N € *Pe-1 _ 0.
4(1 - (iegg) dz? 7
d 1 Jdéey 1 1 2 € d’¢p
dz [4(1 — €29¢) —(e=Lt+1) ] dz S? 4(1 — €24e) —(z—£+1) ¢£—1+4(l — €g¢) dz?
(14)

where terms that are O(1/n) or O(e) have been neglected. Here, S, = [d(In ¢)/d(In 7)],=,
is the value of the shear at the £th gap location. The coupling of the £ harmonic with the
£+ 1 harmonic near r = ry;, where ¢ = (mg+ £+ %) / n = g4 1s also governed by Egs. (13)
and (14) with £ — £+ 1. .

It is now clear that for |z — £ F 1/2| >> ¢, the equation for ¢, is nearly independent of
toroidal coupling and is given by - | .
ol PR GOl KB L PR (15)



where the difference between Sy and S, is small and ignorable. However, within the
narrow layers where |z — £ F 1/2| S ¢, the toroidal coupling must be taken into account.
In these regions, the terms containing second-order derivatives dominate because of the
nearly singular structure of the equation for small e. Thus, near such a singular layer (say,

r— £~ —1/2), Egs. (13) and (14) reduce to

d €e ge dee € deer )|
?i—m—{l:él(l—eggg) +$_€+1/2:|E+4(1—€[g3) d:v } =0 (16)
d € g dde—y € doe| o
iy o] A s fro. )

This leads to a boundary value problem, with the solution of Eq. (15) to be matched to the
toroidally coupled solution of Egs. (16) and (17).

A. Solution away from a gap

Outside the thin layer at each gap within which toroidal coupling occurs, the harmonics,
¢e(z), are essentially uncoupled and satisfy Eq. (15).

Consider the properties of the solution to Eq. (15). At large |z — £|, the solution behaves
as either a growing or decaying exponential; for well-behavedness we require a decaying

solution:

1 I.’Z!gl 1
Pe(z) — = exp <— 3, ) , for |z > 55, ’ (18)

with z, = z — £. Near the TAE points x, = +1/2, the solution has the form

(15[(275) — lL’R [ln :1:3 - %l + Ag} ’ for Ty — :E-Ql- . (19)

In Eq. (19), the constants Cf = Cy(z, = —1/2) and CF = Cy(ze = 1/2) are the coefficients
of the logarithmically divergent part of the solution at the “left” and “right” gaps, and A, is
proportional to the constant regular part of the solution. Finally, with respect to the point
z¢ = 0, the solution for ¢¢(x,) is, in general, a superposition of symmetric and antisymmetric

solutions.



Three particular values for A, characterize the general solution. First, consider the
solution in the regions where |z,| > 1/2: we define A, as the value of A corresponding to
the solution that is well behaved as |z,| — oo, i.e., has the behavior given in Eq. (18). Next,
consider the solution in the region |z, < 1/2 between the two gaps: if A = A,, the solution
is symmetric with respect to z, = 0 (i.e., has the property that Cf = Cf%); and if A = A,,
the solution is antisyfnmetric. (i.e., CF = —CF). These three particular values of A can be
tabulated as functions of S only. The functional forms for As(S), Ay(S), and AL(S) can

be derived analytically in the limits of small and large shear and are given in Table I.

B. Matching to the solution near the gaps

In the narrow layers near the gaps, the harmonics ¢; obey Egs. (13) and (14). Consider
the gap at z, = —1/2. The first integrals of the two coupled equations (16) and (17) can

immediately be written down:

1 €90\ dde | €p ddey ’ 2
(2+:u+ . )d$£+4 i, =~ | (20)
1 €rge) dde-1 €, ddr  _p
<2 tre— g ) dz, 4 dz, Cems : @)

where € = €¢/(1—¢¢ ge) and where the constants on the right-hand sides of Egs. (20) and (21)
are found by asymptotically matching to the solution away from the gap for |z,4+1/2|/e > 1.
Now invert Egs. (20) and (21): o

| Id¢g_(%+$e—igt)CeL—%Cﬁ1

_ , (22)
T G+ () 0
dden _ %4 Ct + (% + 1z, + f{f’—‘) CE, (23)

2 1\ 2
d B+z) + (%) -9
By integrating Eqgs. (22) and (23), we obtain the jump conditions for the changes in the

magnitude of the harmonics across the gap region:

-1/2+46
Jf = lim dz, (%) =7 (az C¥ + B C’ZR_I) (24)

© 8fe—o0 J-1/2-5 da:g
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and

Jﬁl =—7 (ag CER_I + Be C’é:) , (25)

with

ap=——32L ﬂe:——l—- (26)
V1-—9} V1—g?

If we consider the gap at z, = 1/2, we obtain the same set of jump conditions as when we

let £ — £+ 1 in Egs. (24) and (25).

For g7 real, the branch of the square root (1—g2)!/? needs to be defined. In the case when
Re(g7) < 1, we take the square root to be positive. In the case when Re(g?) > 1, causality
arguments determine the proper analytic continuation. This is done by formally adding an
infinitesimal imaginary part to the frequency that is positive (consistent with causality), to
determine whether to slightly deform the z, integral up or down into the complex z,-plane,
in order to go around the singularities at (z; + 1/2)? = (¢/4)%(¢? — 1)/2. In this way we

obtain the following prescription for real g,:

positive, for Re(g?) < 1

V1—gi = (27)
—~isgn(gew)\/g7 —1, for Re(g?) > 1.

(We adopt the convention of positive frequencies, so that w > 0.)

Next, we proceed to construct the entire solution for de(zg). In the region where z, <
—1/2, the solution that is well-behaved as z; — —o0, takes the form be(z¢) — CFlln ,.72( B %l-}—
Ag] as 2 — —1/2. The solution in the intermediate region -1/2 <z, < 1/2 is, in general,
a superposition of symmetric and antisymmetric components: ¢, = ), #; + (1 — Ap)d%, with
the relative ratio A\, to be determined. As z, — —1 /2, this intermediate solution should
behave as

¢e(.’12g) — CEL [ln Ty + %’ + A A, + (1 — /\@)Aa] . ) (28)

Then, as z; — 1/2, this intermediate solution behaves as

oL A - (1094,
¢ 2 — 1 ’

¢o(zy) — C’f [ln 5
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with Cff = (20, — 1)C}. Finally in the region where z, > 1 /2, the solution that is well-
behaved as z; — +o0, takes the form ¢,(zs) — Cft[In|zy — 1/2] + Ao] as z, — 1/2.

If we now apply the jump conditions at the two gaps, respectively, and eliminate Ae, We

obtain
Jf = 0P e+ (1= M)A, — Ag) =7 (A, CF - B, CF) (30)
ArAs— (1 =2p) ~
R R L Lag Z L
Je :Cl Aoo— 2/\[_1 J ( _AZCZ) ) (31)

where we have defined the following quantities:

1 <1 |
Be=g Ao — (At A, Ae=gm (A=A (32)

Note that in this discussion Ay, Aq, Ay, Ay, and A, are all functions of S, the local velue of
the shear In Table I we list the values of the two quantities A, and 53 for various vaiﬁes of
the shear Sg, observe that A, >0,A,<0,and &,/|A,| > 1. By introducing the express1ons
of Egs. (24) and (25) for the jumps into Egs. (30) and (31), we obtain

@Cy + A CL =AM CF-AuCF, (33)

—0p1 Cf = 1 Oy = Do CF — A, CF (34)

Choosing to eliminate the “left” quantities Cf in Egs. (33) and (34), we obtain a three-term

recursion relation for the C,’s at the “right-hand” gaps:

Bty1 — (e + Ae)® A J ( B, ) : ( Bri1 >
— —| C Ce ————— | Coy1 , 35
L7IR WAV, * ag + Ay ‘- o + Ay - Qey1 + Ay o , (35)

where it is henceforth to be understood that Cy means CF.

When the magnitude of gZ becomes larger than umty for real g, the square root (1—g3)!/2,
which is contained in the quantities o, and 3, becomes imaginary in accordance with the
prescription in Eq. (27). This imaginary response is the manifestation- of conti'nuu'm damﬁing

of the eigenmode. When g lies in the complex plane, the appropriate analytic continuation
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for the square root (1 - g7)*/2 must be taken. A plausible choice for the branch cuts consists
of the vertical lines from g, = +1 down to g, = +1 — i00. In a subsequent publication we
will show that non-MHD physics, such as the electron response to Ej and finite ion Larmor
radius effects, determine how the branch cuts emanate from the branch points at g, = +1

and go to infinity in the lower-half complex g,-plane.

ITI. Solution of the Finite Difference Eigenmode
Equation

By means of the matching procedure described in Sec. II, we have effectively replaced the
continuous differential eigenmode equation, Eq. (7), which couples the harmonics ¢¢ and
$e+1, with a finite difference equation, Eq (35), which couples the amplitudes C; and Cpy;.
Equation (35) is now the basic equation to be solved for the eigenvalue go. For our initial
study we shall assume that we can use S for all S; and that Eq. (12) is a sufficiently accurate
expression for g,. The former approximation requires that % (3%, In S[) & 1 for all sideband
numbers £ that contribute to the eigenmode, and the latter requires € g¢ <€ 1. With these
approximations A, and A, are nearly independent of ¢, and so we shall suppress the S,
dependence. Also, we shall assume C; becomes extremely small for large |¢| and then stretch
the domain of £ to —oo < £ < 0o, with the boundary condition C, — 0 as [¢| — oo.

The recursion relation, Eq. (35), now has the symmetry property that if a particular
eigenvalue go is found, then go + 2j/moé for any integer j is also an eigenvalue, with the
eigenvector Cy — Cpy;. Note that the imaginary part of the eigenvalue go is invariant.

It is fairly straightforward to solve the difference equation (35) numerically. It is also
possible to solve Eq. (35) analytically in two interesting limiting cases. The numerical results
are found to agree quite well with the a.nalytical solutions, and we now proceed to describe.

how to derive the latter.
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A. Solution in the limit of myé < 1

This limit corresponds to the case when radially adja,cent. frequency gaps are strongly mis-
matched with each other. Hence, an eigenfrequency that lies within a given gap will intersect
the shear Alfvén continuum at all other gaps.

In this limit, we have |g¢| 3> 1 for all £ except £ = 0, for which we assume g0 = O(1).
Applying the causality condition given in Eq. (27), we find that o, — ¢ and 8, — 0 for all
¢ # 0. Only ap and Sy are real. In this case, only the coefficients Cy and C_; are nonzero,
and the three-term recursion relation of Eq. (35) reduces to a two-by-two determinant, which

yields the following result for g(()o) = lim,, 2,0(90):

11—y _ — A2 .
géO):—(l-l—Zz) , with y=A—(K—i) . (36)

The results of solving for Re (gc(,o)) aﬁd‘ Im (g(()o)) as functions of the shear S =15 are
presented graphiéally in Fig. 2 and tabularly in Table I

In the small and lafge shear limits, usiﬁg the analytic forms for A and A given in Table I,
we find the following explicit results for the mo& < 1 case:

2
Re (g(()o)) & -1+ (%) S? ‘and Im (géo)) & —rSexp (—%) when S «1;(37)

Re (g(()o)) = 1 and Im (g((,o)) o -—-Z—;ﬁ .When S>1. (38)

The damping is exponentially small when the shear is small.
B. Solution in the limit of mo€ > 1

In the mo€ >> 1 limit, radially adjacent frequency gaps are nearly aligned with each other
over an extended region. Hence, an eigenfrequency that lies within a given gap will also pass
through a number of adjacent gaps on both sides before eventually intersecting the shear

Alfvén continuum and experiencing dissipation. Although each individual harmonic has only

13



a limited radial extent, pair-wise coupling that is induced by toroidicity at successive gaps
permits the broad excitation of a TAE mode.

In the limit mo€ > 1, the coefficients in Eq. (35) vary only slightly with £ since Jer1—Ge =
gs = 2/mo€ K 1. Therefore, our method of solution will be a finite-difference variant of WKB
theory. Let Cy/Ce—1 = exp(ik;) and expand k, = kéo) + gékgl) + .-+ . To lowest order in the
expansion parameter g;, we evaluate all the coefficients in Eq. (35) at the same value of ¢,

and we also approximate ks.; = §°) as slowing varying. This yields

, A 1-A*+A?) ——
cos kgo) = f(gg) , with fz = '—Z ge — ( 25 ) 1- glz ’ (39)

or
exp(ike”) = fet \/fE -1 | (40)
For |fe| < 1, the C; coefficients exhibit wave-like oscillatory behavior, as can be seen from

writing C, in the following form:
L . ¢ £41/2
Cp = et etfe=1 gihe-2 . o oxp (z > kJ(-O)) = exp [z/ dl’ cos™! f(Z')] . (41
J

For |f;| > 1, the quantity k,(o) becomes imaginary and solutions are predicted for the C, that
either grow or decay as |[¢| — co. We must choose the decaying solution, which corresponds
to the minus sign in Eq. (40).

This lowest-order analysis shows that there are two turning points, located where f; =
+1. Let gf be the two values of ge for which this happens. Figure 3 shows a graph of
fe as a function of g,, for S = 0.8. Because —Z/& > 1, it can easily be proved that
lgif| < 1. Therefore the continuum resonance points g, = £1 occur in the evanescent region
where f? > 1 and where the C, have already exponentially decreased from their levels in
the wave-like region (where f} < 1), as illustrated schematically in Fig. 4. Hence it is
reasonable to expect that the continuum damping rate will be proportional to a combination
of the tunneling factofs exp (;2 f;;l %‘,1 cosh™!| fgl), evaluated from the wave-like region to

the evanescent region.
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To be able to calculate the damping rate accurately, we also need to solve the mode
equation to next order in g;,. Here a diﬂ"lculty arises, in that Eq. (35) is singular when
as + A = 0. This singularity occurs in the evanescent region, for a value of g, between the
turning point at g, = gf and the continuum resonance point at g, = 1. It is possible to seek
a solution of the finite difference equation, Eq. (35), that avoids this singular behavior. The
derivation is somewhat complicated and is presented in the Appendix. Here we quote the
solution for f, > 1:

- (9 =By1=g2) (fe—+/F2-1) [_ 9 dg | 7 J
ST T werrd ey R o A G UEED

In Eq. (44),Tis a normalization constant, and all quantities are evaluated at £. Notice that

(42)

in the wave-like region (where f7 < 1), Eq. (42) yields

—_— 1/2

A1 —g? — : ,
C,=2I" ( 9 ge) cos l:/g‘ i—‘,q(cos‘1 f)— %J . (43)

: gz

(1= f)e
The usual WKB joining condition applies at the turning points f, = +1
Having obtained the wavefunction, we now calculate the damping rate, using a quadratic

form for Eq. (35) that is constructed by multiplying the equation by C} and summing over

all £:.
1+A 2 K2 * ,3(.}.15 .
I= ZIC}, (A+ae+1 —2z)+ze:.|ce+1‘ (——K+a£+l)—%j 2Re (C, C}y) (———Z+a£+l) =0.

(14)
For real gy, the quadratic form I will have an imaginary part that arises from «, and G,
when ¢g? 2 1, in the resonance region. The main contribution in this region will come from
values of |g¢| close to unity, since for large mo& > 1, C, decreases rapidly as |ge| increases.

In this region, we have f, & —gg_A—/A and, for |ge| > 1,

;cexz:w—le)mexp< 24 )exp[ 21n<1f4+\/]7_) 'gf ] (45)

15



with
He = /gl digltn 171+ /7= 1) (46)

where gF are the values of ge for which f; = 1. Now collect the imaginary parts of 1, for

|g¢| close to unity, to find

— ~ v/ 1— g? .~
mmn=-4m§j{Wgﬂ1+A%+¢anAﬂ(—7;ﬂ)+auzouﬂAAdl_ﬁ}
4
(47)
Then, applying Eq. (27) for |g¢|? > 1, we obtain
J— ~ —_ 2 —_—

S vfet =1 {160+ ) + |ACews + Bae ] - Bl0u1}
I3
= Y Vi -1|CP(1+ K%~ A?) . (48)

14

Approximately converting the sum in Eq. (48) to an integral [see Sec. III.C for a better

Im(1)

treatment] and using Eq. (45), we find

35 [exp ( + exp —g—,

R

where we have added the damping from the two dissipative regions g, > 1 and g, < —1.

Im(I) = I'? (49)

The damping rate can finally be determined from the relationship
oI
Im(go) Ey Im(I)=0. (50)
o
Assuming that g, is slowly varying in ¢, we can rewrite Eq. (44) as

1=3 (K%%) IC212f = (CeC¥y + CF Cenn)] - (51)

Equation (51) is a variational expression for real go, which vanishes to lowest order term
by term by virtue of Eq. (39), since C;  cos , and Cey1 o cos(b, + kl(o)), with 0, a rapid

function of £. Hence, in evaluating the derivative 8T /0g required in Eq. (50), we need only
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differentiate f, since the derivative of other quantities will still be multiplied by terms that

vanish. Hence, using Eq. (43), we find:

of dg 2A df 4 |A|T?
2/( a), Cyl Eri r:— \/__7(200390) o (52)

In the large me€ limit, we have neglected contribqtions to I from |f]| > 1.
Finally, combining Egs. (49), (50), and (52), we obtain an expression for the damping

rate Im(¢g°) = lim,, ~, Im(go):

o) = 2 (52 = o [explmotH) + exp(-mofH)] , (55)
with /

The functions G, H+, and H_ depend only on the value of the shear S. The integrals H.

defined in Eq. (46) can be performed in terms of standard elliptic integrals:

Bu(8) = cosh B2 =L AL o o) Bk - —EA (k) — Bk
ATy B A+ B JAT T Bt

(55)

Here, we have defined

1-A%+A? A A? 4+ B? 1 S

with F(k,¢) and E(k,) the usual elliptic integrals of the first and second kinds, and
K(k) = F(k,7/2) and E(k) = E(k,n/2) the usual complete elliptic integrals of the first and

second kinds.

C. Comparison of numerical and analytical results

In the preceding two subsections, we derived analytic expressions for the continuum'darhping

rate in the two limits of me& < 1 and mo > 1. The former is given in Eq. (36) and the
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latter in Eq. (53). An interpolation formula for the entire range of meé is

1 1 1
= + .
Im(go)  Im (g((,o) ) Im(g5°)

(57)

Since damping given by Eq. (53) decreases as mof increases, this interpolation formula,
Eq. (57), provides an estimate for the upper limit of the damping at a given shear S.

Figure 5 shows the results obtained from a direct numerical solution of the finite difference
eigenmode equation, Eq. (35), for S = 0.8. The results for other S values show the same
qualitative features. One interesting result in the appearance of intervals in mgé where
solutions are not found as roots disappear or emerge from the branch cuts in the complex
ge-plane. In Fig. 5(a) the shaded regions indicate the intervals in mo€ within which roots
are not found.

The analytical results indicated by the dashed curves in Figs. 5(a) and 5(b) exhibit
good agreement with the numerical results (solid curves) at large and even moderate values
of mo€ and also at mgg€ — 0. The good correspondence occurs in spite of the fact that
justification of the WKB type of analysis in the large moZ limit formally requires that the
exponentially decaying region between the wave-like and dissipative regions be large. In
contrast to the analytical results, the numerical results for the damping rate do exhibit
signiﬁcan\t oscillation as mof is varied. However, this may be expected from the discretized
nature of the summation for Im(7) in Eq. (44). Also, at small shear and small values for moé,
these oscillations are enhanced because in the numerical routine, the sign of the quantity
(1—g7)"/? is discontinuously changed when branch cuts are crossed. In the analysis described
in this paper, the branch cuts were taken to run from the singular points ge = 7:!:71&own to
ge = £1 —100. The introduction of finite resistivity and gyroradius effects into the theory
leads to a self-consistent determination of the branch cuts and their contribution.

It is possible analytically to describe the oscillations in the damping rate and thus further

improve the comparison between the analytical and numerical results by taking into account
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the discrete nature of the summation in Eq. (44) for Im(I), which in turn determines the
damping rate Im(go) through Eq. (50). We found that
- o o
Im(I) o< 3 |Cel*(9e = 1) + 32 |Cl’lge + 112, (58)
l>£+ <l

where the values £; are defined by the resonance condition g(£+) = +1, so that

fy = %moé‘[:tl —Re(g)] . (59)

The summation in Eq. (58) is over integer‘vﬁ values. For the amplitude C; in Eq. (58), we

used the approximation

C)|? = Y, oforl>0,,  (60)

¢ . 2
Cy, exp [z /g d!’k(ﬁ’)J
+

2 |Cy, exp [—k(S) (£ — £)]

with £(S) = cosh™* (%) and similarly for £ < £_. Hence, the evaluation of Im(I ?)mfﬁéquires

the summation

(e}

() o [Chl? Y (£~ £:)"2exp[~26(S)(¢ - £4)
L=Int(€4)+1 -

F1CLP Y (£ [ exp [—24(S) (¢ — JE-)] (61)
e=Tnt([¢_[)+1 o

where Int(p) is the integer part of p. The difference §¢% between where the resonance occurs
at £'= £y (with £ here treated as if it were a continuous variable) and where the summation
begins, is

6% = Int(|£a]) + 1 — J£u] , , (62)

where §¢* ranges in value from zero to unity. Observe that Im(I), if uniformly averaged over
all possible values for §¢%, yields the result that would be obtéined if the summation were
replaced by a continuous integral:

| ()

D) = [ dENCLE 3 (£ fea) e [-2(S)E  feu])

t=[ty|+60%
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= 1CuPY [ dyyy expl-26(S)y]

n=0

N 4\/\5/_ sl Ceal” (63)

In deriving the analytic expression of Eq. (53) for the damping rate, we assumed thaf
the summation in Eq. (48) could be replaced by an integral. 'Now, however, we understand
that this procedure is justified only in an average sense for uniformly distributed values of
6¢%. The large oscillations in the ratio of the analytical and numerical results as a function
of mo& are a reflection of the loss of phase information when a discrete sum is modelled by
an integral.

In order to capture the oscillatory dependence of the damping rate with 60%, we introduce

the following phase factor:

4‘/353 " f: Vn + 60 exp[—2k(S)(n + 66%)] , (64)

with 0 < §¢* < 1. The functional dependence of F(x,8¢%) on 6¢* for various values of the

F(x(S),6¢%) =

shear is shown in Fig. 6. We modify the expression in Eq. (55) for the damping rate to

include this oscillatory phase information, as follows:

G(S)

Im(go) =~ = [Pk, 6*) exp(~mogH,) + F(x,807) exp(—mogH-)| . (65)

The appropriate values for the quantities 66%, defined in Eq. (62), that should be used in
Eq. (65) have, in fact, been determined from our knowledge of the real part of gy obtained
from the numerical solution of Eq. (35), although in principle it would be possible to use
the WKB condition ;cos'1 foe=(N+ %)ﬂ', for integral N, to determine go analytically.
Figure 7 shows a comparison of the numerical results for Im(go) with the analytical results
calculated from Eq. (65). Clearly, the oscillatory behavior of the damping rate -that was seen
in Fig. 5 has been largely reproduced. Moreover, by fitting a curve through the maximum

values of the ratio of the numerical and analytical results, we find asymptotic convergence
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of the form

Im( )Numerlca.l:l | -2
M &1 (20401 s 66
= [Im( 0) Analytical ( )(mof)” (66)

D. Extension to broad eigenfunctions

If the poloidal harmonics are sufficiently extended, it is no longer valid to use the approxima-
tions Sp = So and gy = go + 2£/mo€. We need to return to the more accurate finite difference
scheme given by Eq. (35), where the shear may vary from gap to gap, although remaining
locally “frozen” near individual gaps. The WKB procedure of Sec. II1.B may be generalized
to this case, but the results for G and H, are complicated numerical integrals. Here we
report on direct numerical integration of Eq. (35). The values of A; and A, as functions
of the local value of the shear Se = S(ry) at each gap can be computed and stored before
Eq. (35) is solved. The value of m = mgy + £ :is taken to range from mg to mg + Ly.x, Where
mo < ng(0) < mo+1 and Lpax +mo—1 < ng(a) < Lmax + mo. For‘bounda,ry conditions we
use | A

_Gix

Crlmex =0  and A(Sl)ﬂl +1 -2y A(S,) —A%(S;) =0. (67)

The latter boundary condition follows from requiring that A(S_;) = 0 and that the value of
A(S,) is insensitive to boundary conditions when S; < 1, which is the case near the axis.

The solution of Eq. (35) was carried out with the following choice of equilibrium profiles:

) =e+l@-a0l(2) =0 1-(5)]. (68

a

The results are shown in Fig. 8 for n = 3, a/R = 0.20, ¢(0) = 1.0, and ¢(a) = 3.0. There
are many eigenvalues., roughly one for each gap. The harmonic content |Cy|? of the global
TAE mode associated with each of these discrete eigenfrequencies is shown in Fig. 9 as a
bar plot of |Cy|? versus sideband number £. Observe that there is a tendency for most of
the eigenmodes to excite a cluster of harmonics at those values of £ where 5% In(¢?/v%)

is small. In Table II we tabulate the eiéenvalues obtained for the case of n = 10, for the
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same equilibrium. The damping rate tends to be smaller than that for the n = 3 case. Qur
analytical expression in Eq. (53) suggests that the damping rate should decrease with mode
number as n~%/2; however, because of the considerable phase oscillations, this is only a rough

estimate.

IV. Discussion

In the present paper, it was shown how for large mode numbers and small inverse aspect ratio
(n > 1 and € < 1, but ne still arbitrary), an asymptotically valid finite-difference equation
can be derived to describe the TAE eigenmode structure in a large-aspect-ratio circular
tokamak geometry. From this difference equation, the shear Alfvén continuum damping
for the TAE mode was calculated, botil analytically (for ne < 1 and for ne > 1) and
numerically.

The continuum damping rate is found to be significant, unless the shear is small (in which
case the damping is exponentially small) or the parameter € is large (which occurs when the
gaps are nearly aligned). For other values, the damping rate is typically a few percent of
the oscillation frequency. This is competitive with the alpha particle-excited growth rate for
the TAE instability in an ignition tokamak and could help to stabilize or a;meleorate this
potentially dangerous mode. The stabilizing effect of continuum damping could also be a
candidate to explain threshold values observed in recent experiments that excited the TAE
instability with neutral beam-injected hot ions.

We can offer a rough formula for the analytical prediction for the continuum growth rate.
For typical values, the crude approximations G(S) ~ 0.852 and Hy ~ 0 may be used in

Eq. (53) to obtain
Yy .. 0.8eS5?
W = (’I’l"tg_')é,'\)e}/2 ’

(69)

accurate to about a factor of two for S > 0.3 and 1 < mé < 20.
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Concerning the mode number dependence, we remark that although continuum damping
decreases strongly with mo and the alpha-particle drive increases with mo, the latter mech-
anism can be reduced by finite gyroradius effects and banana effects,?® and other non-ideal
MHD types of damping, é.g., due to a non-zero i)arallel electric field, will incréase with mode
number. Thus, it is plausible that intermediate mode numbers — such as those observed in
recent TAE experiments — are most dangerous.

We also note that weak continuum damping at low shear values suggests that TAE
instability is likely toward the center of the discharge, leading to flattening of the central
distribution of alpha particles. The other susceptible region is where %; In(¢*/v?%) changes |
sign, which, depending on equilibrium profiles, characteristically occurs towards the outer
part of the plasma. The likelihood of instability then depends on whether the destabﬂizing

energetic particles extend out to this region.
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Appendix A — Non-Singular Solution for C,

Here we show how to solve the finite difference eigenmode equation, Eq. (35), in the mo2 > 1
limit in such a way as to avoid the singular behavior that occurs when o, + A = 0 or,
equivalently, when g, = G, with §, = A(1 + A%)~Y/2 > 0. Because §; < 1, and because it
can be shown that f(g,) > 1, we see that this apparent singularity lies in the non-dissipative
part of the evanescent region, i.e., gf < g, < 1.

We now seek to transform away the singularity, assuming that the solution for C, is

evanescent at large £. First, we rewrite Eq. (35) as

Aoy — 2—2 Jo = —Zer1 Brar Ce (A1)
where we have defined _
ot = Ceyr — (Zﬂ::/A) Ci (A2)
with
7= _x/I"g. (A3)

(4

It is convenient to introduce the rescaled dependent variables fg and C’g defined by

Z-1(%)-% (A1)
C[ ]<£ A Jf
so that Eqs. (Al) and (A2) become

- A?

T = ﬂeﬁeﬂ ~Zen G (49)

Co = Cop1— Zogy Jo - (A6)

Notice that all the coefficients in Eqs. (A5) and (A6) are well behaved. Since Cy; — 0 as

{ — oo, we can sum Eq. (A6) and obtain (for £ > 0)

-~ f‘; Zndn . (A7)

n=£+1
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If we take Q¢ = —‘:i‘— Egs. (A6) and (A7) become

A? e |

p=0 n=0

and

Co= T i [Zp+£+1 (ﬁ Qn+e) ] : (A9)

p=0 n=0

We may now assume slow variation with £: Wipr & W, + W] and Qo1 & Qe+ Q%, with

|W;/W,| = O(mo€)~' < 1. Hence, we may approximately write

ﬁ Qnit = f“( Q‘) (1._;. Qé;j;gzj_l) <1+ Q2+Q2+1+--.+Q;+z—1)

0 Qe Qe Qe
~ QL+ lp(p +1) ] | | (A10)
- 2 Qe ,
and
Tprenn 22+ Zy+ Zpyy + -0 Zpe EZe+ (p+ 1)Z; . (A1)

In this way we obtain

o0 . I ZI
> [Z,,J,m (1‘[ Qw)] ~ 121%2 4 Zy Qe Qy + 0 _zgi)z ) (A12)

p=0 n=0 (1 - Qf)s
Using Eq. (A12), we can rewrite Eq. (A8) as

Z3Q.Q

A 7, (A Z:Z0Qu(2 — Q2)
QZ tz 1 — QZ = (,Bg ) ﬂl (1 — Q£)2 + (1 — Qg)S . (A13)

We can solve Eq. (A13) perturbatively as an expansion @, = ng) + le) + .-+, with
}Q,(gl)/ng) = O(me€)™! < 1. The lowest-order solution QEO) satisfies Eq. (A13) with the
small terms on the right-hand side neglected. Let Q, = (%) Qy; then @EO) is given by

QP =f-fr-1, (Al4)

with

8 A? A 1-A+ A? -
f=2—£<1—E2——Z£>=—<Z)gg—( X )\/1—g£. (A15)




In Eq. (A14), the sign of the square root was chosen so as to have j@ff’)] <1, assuring an
evanescent solution at large .

With the use of the lowest-order relationship

A?
2eea (15 i
= Q8
the next-order solution le) is obtained from Eq. (A13) as
/ (0) H(0) (0)
O 1 [_ﬁ_ A (@f”@ﬁ"’) Q0o (3 I)J
S QP (AP - g) AT 28 (1ol ) T TP -@g°>)

o (e g i
2\1-eP) " P (@)

where we used the identity

i

2 (0)2(0) (0)
-2 . S g ! . (A18)
2A2 (1 _ QEO)) (@,(30)2 _ 1) 211_ ng) (1 _ ng)) ( go)z _ 1)
Then, using the identities Q‘go)z -1= —2@?]) —+v/f?—1 and @g"" = (O)f/,/fe -1 to
find

o )

we finally obtain

(1)
1
@: [5 In (1-QP) - ln(fe —1)+ In & ] . (A20)
Now we return to Eq. (A9) and use Eq. (A12) to obtain
C. ZeQe -
_ (JT) =125 [1+ 0] . (A21)

Furthermore, we can write

~ 2 _
Qey = H @y = exp (Z In Qp) > exp [/ df In Q(E)}

Pt pSt

& exp [ / ‘@ [m Q@) + %” (A22)

26



where replacing the discrete sum b}" a continuous integral is asymptotically valid in the limit
mo€ — 00. The upper limit of £ 4 % forvthe indefinite integral, which reflects the use of the
trapezoidal rule, has been shifted back to £ through the addition of the small Q'/2Q term
to the integrand. Now introduce the known solution for Q, = QEO) + QEI) into Eq. (A22) to

obtain the final result of Eq. (42):
,3]') Ze { ¢ [ o QW QW
Cr=- <T 2t | [fdt Qo4 (£ QO
¢ [g K| 1-00 / 200 " Q0O

(gg—Z_ 1—9?)(f—v3§—1) 9t dg
=— — 75 €XD — In(f—y/f2-1)| .
(- [i+ B¢ (F-vP=T)]" U g ]

| (A23)
Note that the higher-order terms such as le) and ng)l / QQEO) were important only within
summations, since £ < mg but £/me€ = O(1). We remark that also for £ < 0, the same

expression as in Eq. (A23) is obtained for Cy.
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Figure Captions

1.

Toroidally coupled shear-Alfvén continuum resonance curves for the normalized fre-

_quency wR/vs, as functions of the normalized minor radius r/a, for n = 5, ¢(0) =

1.0,¢(a) = 2.5, and a/R = 0.25. The m values indicate the dominant mode number in
the regions where toroidal coupling is negligible. The horizontal line indicates a TAE

eigenfrequency.

Solutions for the real and imaginary parts of go, as functions of the shear S , In the

limit my€ < 1.

Graph of f; versus g;, for S = 0.8. Turning points at g, = gF occur where | fel =1,
whereas continuum resonance occurs where |g¢| = 1. Note that |fy(g: = +1)| =

A/|IA] > 1.

Schematic plots of the toroidal shear Alfvén continuum resonance curves g6°(z,£) and
of several TAE harmonics ¢,(z) and their global eigenmode envelope as functions of

radial position = ng(r) — mq.

Numerical results (solid curves) and analytical results (dashed curves) for Im(go) as
functions of me€. The analytical results follow from the interpolation of Eq. (57), and
the numerical results from directly soiving the three-term recursion relation, Eq. (35).
(a) 0 < mpé < 5; (b).5 < mp€ < 25. Within the intervals shown shaded in (a) and

also observable in (b), no roots exist.

Dependence of the phase factor F(x,8¢%) of Eq. (64) on 8¢ for various values of the

shear.

Numerical results (solid curve) and analytical results (dashed curve) for Im(g,), the

latter incorporating the oscillatory phase information in Eq. (65), as functions of myéE,
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for § =0.8.

. Continuum resonance curves (only the tips of the curves near the gaps are shown)
and normalized TAE eigenfrequencies wR/v4,, numerically obtained for the profiles of
Eq. (68), with n =3, ¢(0) = 1, ¢(a) = 3, and a/R = 0.2. The respective eigenfrequen-
cies and their associated damping rates (imaginary part) are A:(0.52,—4.0 x 1072),
B:(0.40,-8.5 x 107%), C:(0.35, —1.1 x 10~2), D:(0.34,—3.4 x 107%), E:(0.31, —4.7 x
107%), and F:(0.27,—4.0 x 1073).

. Harmonic content |Cy|? of the global TAE mode associated with each of the discrete

eigenfrequencies shown in Fig. 8, for each sideband number 4.
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Caption for Table I

Values of the A and A parameters, the normalized complex frequency g((JO) of Eq. (36), and

the G and Hy quantities of Egs. (56) and (57), as functions of the shear S.

Caption for Table II

Real and imaginary parts of the eigenfrequencies for various TAE modes, along with an
indication of the radial spectrum of the mode and the location of the peak of the mode
envelope. The numbers listed under “radial spectrum” are the values of j = (m — n) for

which the value of |C;|? exceeds 10% of the largest such value (located at the bold number

in parentheses).
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Table II

Re(wR/va,) " —Im(wR/vs,) ~  Radial spectrum
0.403 1.26 x 102 18,19 (18)
0.411 8.73 x 10~° 1(1)
0.364 5.53 x 103 15-19 (17)
0379 2.22x10 2 (2)
0361  3.93x10-4 3,4 (3)
0.344 1.46 x 10~ 3-6 (4)

10.343 1.53 x 10~% 3,4, 6-11, 13-17 (17)
0.338 1.70 x 103 4-7, 10-12, 14-18 (4)
0.329 1.52 x 1073 4-9, 11-13, 15-18 (5)
0.320 1.20 x 10-3 4-7,9, 10, 12-18 (6)
0.311 1.23 x 1073 5,6, 8-11, 12-14, 16-18 (6)
0.301 1.65 x 102 4-10, 12, 14-17 (6)
0.291 © 1.84 x 1073 6-17 (7)

0.281 1.49 x 10°° 713, 15-17 (8)
0.271 1.39 x 102 7-12, 14-16 (9)
0.260 9.56 x 10~ 8-11, 15, 16 (10) -
0.251 7.19 x 10~ 9-15 (12)
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