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Abstract

A novel mechanism is proposed for the excitation of solitons in nonlinear dispersive
media. The mechanism employs an external pumping wave with a varying phaée veloc-
ity, which provides a continuous resonant excitation of a nonlinear wave in the medium.
Two different schemes of a continuous resonant growth (continuous phase-locking) of
the induced nonlinear wave are suggested. The first of them requires a definite time
dependence of the pumping wave phase velocity and is relatively sensitive to the initial
wave phase. The second employs the dynamic autoresonance effect and is insensitive
to the exact time dependence of the pumping wave phase velocity. It is demonstrated
analytically and numerically, for a particular example of a driven Korteweg-de Vries
(KdV) equation with periodic boundary conditions, that as the nonlinear wave grows,

it transforms into a soliton, which continues growing and accelerating adiabatically. A
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fully nonlinear perturbation theory is developed for the driven KdV equation to follow

the growing wave into the strongly nonlinear regime and describe the soliton formation.

PACS numbers: 52.35.Mw, 47.35.+i



I. Introduction

Consider a medium which admits propagation of solitons. The question that we are going
to address in this work is the following: is it possible to use an external driver for an
efﬁcient; selective excitation of solitons in such a medium? Mathematically, a driver means
a perturbation term in a “soliton equation.” Generally, such a term must be small enough in
order not to “deform” the soliton solution too much. On the other hand, we need an efficient
excitation. We are going to show that this aim can be achieved if the driver presents a small
amplitude pumping wave, which resonantly acts on a medium.

Various schemes of resonant excitatiqn_ of waves by external pumping waves have been
extensively studied in numerous applications. The plasma wave excitation by two copropa-
ga.ti“ng laser waves, whose frequency and wave number differences match the frequency and
the wavenumber of the plasma wave (the so called beat plasma wave excitation) presents an
important example of such a process. For this particular case, Rosenbluth and Liu! showed
that the resonant growth is saturated at a relatively small amplitude, which scales like /3
(¢ is a small parameter characterizing the laser drive). The saturation occurs as the excita-
tion enters the weakly nonlinear stage, and it results from dephasing between the pumping
and exéited waves. This result was generalized by Vainberg et al.? who considered resonant
excitation of ‘waves from a low (even zero) level for four other typical driven nonlinear wave
eqﬁations (KdV, modified KdV, sine-Gordon and nonlineér Schroedinger equations). They
showed that the resonance is generally achieved, when the frequency and wavenumber of the
pumping wave satisfy the dispersion relation of the linear waves of the medium. Also, they
found that in all the cases considered, the evolution equations for the amplitude and phase
of the fundamental mode are of the Rosenbhluth-Liu type.

In order to go beyond the weakly nonlinear saturation of the induced wave, one has to



find a way of continuous energy transfer from the pumping to excited wave, which would
continue into the fully nonlinear stage. It can be achieved, if the driving force has a character
of noise with a sufficiently broad power spectrum density. It was shown?® that in this case
the wave growth continues (on the average), and can lead to the soliton formation, as new
harmonics of the broad-band noise driving wave enter the resonance interaction. However,
the efficiency of this statistical mechanism is relatively low.

A more efficient excitation can be achieved if we properly “tailor” with time the pumping
wave frequency, i.e. employ a ”chirped” pumping pulse. The chirp form should be chosen to
make up for the nonlinear frequency shift of the excited wave and preserve the phase locking
between the waves. There are two possible schemes of such a chirping.

In the first of them, we are “tuned”. to specific initial conditions (initial amplitude of
the excited wave and initial relative phase between the pumping and excited waves) and
require that an ezact resonance is preserved forever. This condition gives a concrete formula
for the time dependence of the frequency. Such a scheme (which can be called “the rigid
frequency chirping”) presents a space-time generalization of many schemes encountered in
charge particle accelerators (see, e.g. Ref. 4).

The second scheme employs a sufficiently slow frequency chirping with an arbitrary form
(“the loose frequency chirping”), proceeding in the right direction and compensating for the
nonlinear frequency shift on the average. This scheme also generalizes a number of schemes,
encountered in charged particle acceleration schemes’=7 and other applications,®® where it
was called the dynamic autoresonance.

Once the continuous phase locking is achieved, the induced wave will grow into a strongly
nonlinear stage. We are interested in the cases when nonlinear media admit existence of
solitons. Whether solitons develop may depend on additional constraints imposed on the
system. We shall consider a driven KdV equation in a system with periodic boundary

conditions (for example, a ring resonator). The periodicity plays an important role in the



present mechanism of the soliton formation beéause of two additional integrals of motioné
(see below). Our aim is to show, both analytically and numerically, that the continuous
nonlinear growth of the phase-locked induced wave in such a system necessarily leads to the
soliton formation. -

The organization of thé paper is the following. In Sec. II we presént a perturbation
theory, which describes the continuous growth of a weakly-nonlinear wave due to the fre-
quency chirping and generalize the results of Vainberg et al.2 The evolution equations for
the amplitude and phase of the fundamental, obtained in Sec. II, are used to present the
two abovementioned chirping schemes, rigid and loose. The continuous wave growth pre-
dicted by the weakly nonlinear theory necessitates the development of an adequate, fully
nonlinear perturbation theory. In Sec. III we develop such a theory, which is then us‘ed‘in
Sec. 1V to follow the excited wave into the strongly nonlinear stage and describe the soliton
formation. In Sec. V we perform direct numerical simulations with the driven KdV equatlon
and compare the numerical results with the theory. Sec. VI presents a brief summary of the

results.

II. Weakly Nonlinear Theory and Two Schemes of a
Continuous Wave Growth

A. Basic equations
Consider the KdV equation driven by a small amplitude traveling wave with a slowly time-
dependent (chirped) frequency:

Ut + UUg + Uy = —esin(kz — B(2)) (1)

where ®(t) is the external wave phase, <I>(t) = w(t) is the frequency and k is the wave number.
The small positive parameter € describes a weak coupling between the external wave and

the medium. Eq. (1) is written in the reference frame, moving with the "acoustic” speed of
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the medium.191!

The number of parameters in Eq. (1) can be reduced, if we transform to a new variable
kz = z'. The transformed equation coincides with Eq. (1) (but with & = 1), if we replace
Kt — ¢, k™%u — u and k=% — . We shall use this scaling later, when comparing the
results of our theory with numerical simulations.

We are interested in the wave excitation from a small initial level, u(z,t = 0) « 1.
Therefore, at the initial stage, we can neglect the nonlinear term in Eq. (1). The dispersion
relation for undriven (¢ = 0) linear perturbations of the media has the form of Q = —x3,
where Q and « are the frequency and wave number of the sinusoidal perturbations. If, for a
given wave number & of the external wave, the initial value of the driving frequency w(0) is
close to the resonant value —k3, the resonant growth of the induced sinusoidal wave starts.?
In the case of w = const. the wave growth saturates at relatively small wave amplitudes,
¥ < 1. Therefore, the nonlinear term in Eq. (1) can be treated perturbatively for all times,
and the fundamental mode saturation is accompanied by generation of the (relatively small)
second harmonic, while the higher harmonics are negligible.? In the case of a continuous
wave growth we are interested in now, such a weakly nonlinear theory can work only for a
limited time. However, it is instructive to briefly outline the initial, small-amplitude stage
of the excitation.

Following Ref. 2, we are looking for an approximate, weakly nonlinear solution of Eq. (1)

in the following form:

wz,t) = a(t)sin(¢ + (1)) + v(¢,a,0) + w(€,a,6) + ... (2)

where a(t) and ¢(t) are the slowly varying amplitude and phase of the fundamental, ¢ =
kr — ®(t) is the “fast” variable, v and w are the second and third harmonics, respectively,
w L v K a. We substitute Eq. (2) into Eq. (1), keep only the terms of a leading order and

find equations for @ and ¢ from the condition of the absence of the secular growth of the



third harmonic:

é:—lscosqﬁ, (3)

. 2
b=w(t)+ K =+ Zsing . ®

Once a(t) and ¢(t) are known, the second harmonic correction v is also easily found:

o,0,8) =~ (5) con(2t +24) . )

Equations (3) and (4) will coincide with those found in Ref. 2 if we consider the case of a
constant frequency w = —k°. In this case Egs. (3), (4) are autonomous, therefore integrable.
Figure 1 shows the phase trajectories of Egs. (3) and (4) for the case of k = 1,¢ = 0.1,

® = —1. Both phase-locked, and phase-unlocked trajectories are shown. (It is

and w = —k
convenient to work with both the positive and the negative amplitudes.) There is a special
limiting trajectory (starting at a = 0, ¢ = 0), for which a = (96ke sin ¢)1/3, therefore the
maximum attainable amplitude of the fundamental is (96ke)Y/3. For this special tra.jectory,
the time Ty it takes the amplitude a to complete one oscillation cycle (“nonlinear period”)

is?

T = 78 2133 3-712 p(x\15°) & 22.2¢~2/3 (6)
where F is the elliptic integral of the first kind.

Now let us return to the case of a time-dependent frequency w(t) and consider the two

schemes of continuous excitation.
B. Rigid frequency chirping

Let us select a “seed” wave with a fixed initial amplitude ax and phase ¢4 and require that
the phase remains constant: ¢(t) = dx. This immediately follows a linear growth of a with
time:

a(t) = ao(t) = ax — et cos g .
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(For the growth to occur it is necessary that cos ¢« < 0.) Now, from Eq. (4) we easily find

the specific w(t)-dependence which provides the constaricy of ¢ and linear growth of a:

w(t) = -k + %E(a* — £t cos ¢x)? — e sin pu(ax — £t cos du)”! . (7

As ao(t) becomes of the order of unity, Eqs. (3) and (4) are no longer valid, and we need a
fully nonlinear theory to describe the subsequent wave evolution.

It is clear from Eq. (7) that the rigid chirping scheme is sensitive to the initial phase and
amplitude of the wave. Therefore, it is interesting to find out whether it works when there
are small deviations of the initial amplitude and phase from the prescribed values ay and
¢*. We are looking for solutions of Egs. (3) and (4) in the form of a(t) = ao(t) + ba(t)
and ¢(t) = ¢+ + 64(¢), and linearizing Egs. (3) and (4) with respect to small deviations
6a(t) < ao(t) and §¢(t) < ¢x. We obtain the following set of linear equations:

ba = esin Oxb0 , (8)
66 = b(t)ba + eag'(t) cos dx (9)

where
b(2) = -1_12. k=1a5?(t)(ad(t) + 12ke sin dx) . (10)

Taking the time derivative of Eq. (8) and using Egs. (8) and (9) to eliminate 66 and 8¢, we

arrive at the following second-order equation:
ba — elao(t)] ™ cos pxba — eb(t) sin puba = 0 . (11)

It follows from Eqs. (10) and (11) that the sufficient condition for stability is sin ¢x > 0
(remind that cos ¢« < 0). In this case Eq. (11) describes a linear oscillator with a time
dependent oscillation frequency and dissipation. In the course of tirhe, small oscillations of

the amplitude a around the linearly growing solution ag(t) will be damped. Therefore, if the
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test wave phase ¢# satisfies simultaneously the two inequalities, cos ¢x < 0 and sin ¢4 > 0
(ie.if /2 < ¢ < ), the excitation process is always stable: not -only the “seed” wave, but
also its close neighbors on the phase plane (4, a) are excited. Numerical calculations enable
us to reinforce this statement: even-relatively distant neighbors (which initial phases ¢,
belong to the same interval 7/2 < ¢ < 1) get phase-locked and excited to large amplitudes.
Figure 2 shows two examples of such a process. Here a rigid- frequency chirping prescribed
by specific initial conditions provides an efficient excitation for other initial conditions as
well.‘ It is seen that the wave phase quickly gets phase-locked close to ¢# and then performs
small oscillations around ¢«. Meanwhile, the wave amplitudes in the two examples grow
almost linearly with time, and the two plots of the wave amplitudes versus time are almost
indistinguishable. In addition, we found that in many cases, “seed” wave phases-lying
outside the favorable interval 7/2 < ¢x < 7, also provide an efficient excitation. In these
cases, the phase ¢ quickly jumps to a regime of oscillations around some value belonging to
the favorable interval. Simultaneously, the wave amplitude is growing on the average (see

Fig. 3).
C. Loose frequency chirping

Let us assume now that we are starting from an exact resonance, w(t = 0) = —k3, and select
an arbitrary phase-locked trajectory not too close to the limiting trajectory (see Fig. 1).
If we slowly increase the fre.quency‘ w(t) (i.e. do it on a time scaile. much longer than the
“nonlinear period” Ty, encountered in the probleﬁ; Qith w = const.), we shall permit the
nonlinear oscillations of a, shown in F ig. 1. In addition to these oscillations, however, the
amplitude a will experience a slow upward drift. In other words, the wave will grow on the
average. The average amplitude behavior at large times is universal for all the phase-locked

trajectories and has the following form:

a=2(3k)" () + £°'/2, (12)
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which follows from the dynamic autoresonance condition w(t)+k*—a?/24k = 0. This mecha-
nism is obviously insensitive to the exact form of w(t) (once it is slow enough,
wTn/w < 1), and it must work equally well for the majority of initially phase-locked trajec-
tories. For a given ¢, some optimal chirping rate can always be found: too low a chirping rate
means inefficient excitation, while too high one leads to the phase unlocking and termination
of the excitation. Figure 4 shows an example of excitation in the loose chirping case. We
put k = 1, started with a small amplitude and chose a simple linear chirp w(t) = ~1+at. It
can be seen from Fig. 4 that, at large times, the time-average amplitude grows like (24at)1/2
in agreement with Eq. (12). Calculations with other initial phases and other forms of w(t)
give similar results. Therefore, the wave excitation in this regime is insensitive to the exact
form of the chirp, and depénds only on its rate.

In summary, we have shown in this section that properly varying with time the external
wave frequency, we can achieve a continuous wave growth. As the wave grows, it reaches
large amplitudes. Therefore, a weakly nonlinear theory breaks down, and an adequate fully

nonlinear theory must be developed.

III. Fully Nonlinear Perturbation
Theory: Evolution Equations

Our aim is to develop a perturbation theory for Eq. (1), which would use the smallness of €,
but hold true for any amplitude of the excited nonlinear wave.
Let us start with an arbitrary traveling wave solution of the unperturbed KdV equation.

Such a solution, u(z,t) = u®(€),¢ = € — Vi, satisfies the following equation:
- Vul + % («°)* + u = C = const. (13)

Its general bounded solution presents a “cnoidal” wave,!®!! which we write down in the
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following form: :
A 1/2 )

0(e) = aan, ((55) " €-e) +7, (19

where A is the wave amplitude, V = (4/3)(2 —m) + v is the velocity of the wave, dn,, is the

Jacobian elliptic function!? with the modulus m, and 7— is an arbitré,ry constant (a constant

pedestal). Generally, solution (14) is characterized by three independent constants: A7,

and m. The cnoidal wave is characterized by its average-over-period value,

E
ﬁ=7+A,E' (15)

(K = K(m) and E = E(m) are the complete elliptic integrals of the first and second kind,

respectively), and by its spatial period,
| A =4K <3>1/2 | (16)
) )
Constant C in Eq. (13) is determined by the three independent constants and equéli;tob
C= —V7+7§—(1 —m)-/é—z. (17)
The modulus 0 < m < 1 of function dn serVesA as a méasure of the Qave nonlihearity. If
m < 1, the wave-form is close to a cosine, while m approaching unity corresponds to a
- sech?like soliton solution.1o1! | | |
Now we return to the perturbed problem and look fof the sblution to Eq. (1) in the form

.ofa géneral (cnoidal) tra.veiing wave with slowly varying parameters plus a small correction:

12 " n=1

: ‘ 1/2 N*
u(z,t) = A(t)dnl,, ((A(t)) (e €O(t))) +y(t)+ 3 "W (z,t). (18)

- The main, “adiabatic” part of the solution, u°(¢,t) = A dn?*(...) + v, depends on the “fast”

variable, which now becomes

f=z— /ot V(t')dt
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and the “slow” variable t. The small correction to the slowly varying cnoidal wave is sought
for perturbatively, in the form of a power series of €. Once the form of the solution is
prescribed, we should obtain the evolution equations for A(t),m(t),v(t) and &o(t). It appears,
however, that only two evolution equations are actually needed, if our problem is spatially
periodic. First, if L = 27 /k is the spatial period of the problem, then we have to demand
A = L, which gives an additional a,lgébraic relation between the parameters A(t), m(t), and
7(t). Second, it can be easily checked that the average-over-period value
% /_I;/; u(z,t)dz

remains constant even in the presence of the perturbation.® In particular, if we start excita-
tion from the zero level, u(z,0) = 0, then the average-over-period value (16) must be equal
zero for all times. Therefore, we have one more algebraic relation between the parameters.
These two relations reduce the number of parameters characterizing the cnoidal Wa.ve to
two, the first of them £y(¢) and the second any of the parameters A(t),m(t), and ~(¢). It
is convenient to choose the modulus m(t) as the second parameter, because in the case of
continuous wave growth, m approaches unity, which means the formation of a soliton.

The evolution equations for m(t) and §o(t) in every order of ¢ can be obtained from
the necessary conditions of boundedness of the functions W™(z,¢), which have the form of
orthogonality relations. (Similar perturbation theories were developed earlier for single- and
multi-soliton solutions'®). Substituting Eq. (18) into Eq. (1), and lfnearizing the obtained

equation with respect to W(™, we obtain the following relationships in each order of e:
O _yw® 4 0w 4 W] — g 19
55 ["" + u + 133 J = ’ ( )

where functions H(™)(¢,t) do not contain function W™, For example, in the first order

H® = 9 _ esin (k§ +k /0 ' V(tdt - @(t)) : | (20)
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Integrating Eq. (19) once, we obtain
= VWO L OW e L ) = / H™ge' (21)
L/2+.’Eo ‘

(For definiteness, we consider Eq. (1) on interval [—L/2,L/2] and require that periodic
functions W™ vanish at ¢ = —L/2 + z,). The homogeneous equation, associated with

Eq. (21), has the following general solution:

W™ = Cru + Cpul / (u)~2de’ (22)

L/24zo
where C}, are arbitrafy constants. Therefore, we can write down the following general
solution of Eq. (21):
W = Crug+Chul / E -(uo,)'2d£'+u° / L) / i ugudg” / i H™Mdg"
i ¢ ¢ —L/2+.‘L‘o ¢ : ¢ —L/2+zo ¢ —~L/24z9 ¢ —L/2+.’l:o

(23)
Function ug takes the zero values at two points of the interval [~L/2,L/2]:¢ = %4 and
§ = @0+ L/2 or o — L/2. Therefore, as can be easily seen from Eq. (23), boundedness of

functions W™ necessitates C,;=0, and
L/2 _
d/ H™g —/ dew®H™ =0 24
/m e ), B0 = [ dew (24)

and .
/ L / Hdg' =0 | - (25)

where we have shifted the variable, { — o — ¢, and used the periodicity of function ug (from
now on { means { — o). Conditions (24) and (25) give, in each order of the perturbation .
theory, the evolution equatlons for m and €, we are Iookmg for. In the following we obtain
the explicit form of these equations in the first order of . Prior to that, however, let us

simplify Eqgs. (24) and (25). Using Eqs. (18) and (20), we rewrite Eq. (24) as

Ly L/2
5t / 5 10 = e [ sinlka(e)  @(0)e2(€)at =
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— casing [ [Z; dn? (,/A/wg) cos kéde (26)

where we have introduced the relative phase of the external and excited waves:
t
u=k / V(¢)dt' — ®(t) — kao(t) . (27)
0

Note, that Eq. (26) can be also obtained by a direct “energetic” approach. Indeed, if we
multiply Eq. (1) by u, integrate the both sides with respect to = over the period L and
substitute the slowly-evolving cnoidal wave solution into the (small) right-hand side of the
equation, we shall immediately obtain Eq. (26).

Now let us integrate Eq. (25) by parts. We have

/ ° wHMdE —4°(0) f ° H®Mdg =0 (28)
-L/2 -L/2 )

It is convenient to represent H() as a sum of symmetric and antisymmetric parts with respect
to argument ¢: HV = H(M) + H(Y). Using the symmetry and zero average of function «° and

once again employing Eq. (24), we see that only the antisymmetric part,
H®Y = —ug &o — € cos psin k¢ (29)
contributes to the integrals entering Eq. (28). Therefore, Eq. (28) can be rewritten as

0 0 0
%o [/_L/z wugds - (0) [ L2 “?df] = —ccosyu [ 1o (€ — (O] sinkede . (30)

Now we have to calculate the integrals entering Egs. (26) and (30). The integral on the
left-hand side of Eq. (26) can be calculated with the help of Eq. (13). Integrating Eq. (13)
over { and using the periodicity of u® and the fact that the average of u® over the period is

zero, we arrive at the following expression:

E) EFK l—m]
2 6 '

§) [oprie=cnwsfpm (£
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On the right-hand side of Eq. (26) appears a standard integral, which one encounters when

expanding function dn? in the Fourier series:

/ wO(€) cos ke de = A / dn? (\/}Wl_ g) cos kEdE = 2”(”/? (32)

where ¢ = exp(—rK'/K), K' = K(1 — m). Now, taking the time derivative of Eq. (31) and
substituting the result into Eq. (26), we obtain, after some algebra, the evolution equation _

for m(2):

. em?L[? mqsin u
T MI-QEKE-KK—E/i-m)] - (33)

Now we proceed to Eq. (30). Taking the integrals on the left-hand side and substituting
the values of u°(0) = A4 and u®(—L/2) = A(1—m), we reduce the left-hand side to toA?m?/2.

The right-hand side integral in Eq. (30) can be rewritten as

/ *((€) - u%(0)) sin kedé = —/12/Am /_ OK sn®¢ sin (2—;3}) de. | (34)

~L/2
It is sufficient (see Section 4) to evaluate this integral, taking into account only the first two

Fourier harmonics of function sn?. The result has the following form:

‘ K[ E  4r¢
/_OKsin2§sin< ;'(5) dg_% [1—E+K—2(’{qu7)] +0(g") .. (35)

The equation for x(t) is now directly obtained from Egs. (27), (30), (34), and (35):

= KV(m) - w(t) -

eL? cos [1 E 472 42 } (36)

BKm? |" K T KAl-g9)
Equations (33) and (36) form a closed set. It can bé checked that they are reduced to
Eqgs. (3), (4) for the fundamental Fourier harmonic of the cnoidal wave, if we proceed to the
limit of m <« 1 and substitute u = —¢ + 7/2.
Once m(t) and p(t) (and therefore z4(t)) are found, we can return, if necessary, to Eq. (23)

and find the first-order correction W) to the slowly evolving cnoidal wave.
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IV. Fully Nonlinear Perturbation
Theory: Continuous Wave Growth and Soliton
Formation

Equations (33), (36) resemble those arising in various applications referring to nonlinear
resonance phenomena. It is clearly seen from Egs. (33), (36) that the continuous wave
growth (the increase of m with time) requires phase-locking and, therefore, proximity to
the Cherenkov-type resonance w = kV between the phase velocities of the pump wave and
induced wave. Similar to the weakly nonlinear stage of excitation, there are two possible
schemes of the frequency chirping: rigid and loose. A proper chirping makes it possible to
phase-lock the waves and provide a continuous excitation into the strongly nonlinear regime.

As m approaches unity, the cnoidal wave must transform into a soliton with a “pedestal”:

u® = Asech?® [(%) v (z - xo)} —-4L7(34)12, (37)

where A =3V = 12L721n*[16/(1 — m)]. (We have used the well-known asymptotic relations
for dn, E and K at m — 1). The increase of m means simultaneous amplification, accelera-
tion and narrowing of the nonlinear wave because of the specific relations between the wave
amplitude, phase velocity and width in the KdV-equation.

Figures 5 shows the numerical solutions of Eqs. (33), (36) for the rigid frequency chirping.
We found it too cumbersome to prescribe the rigid chirping form from Eqgs. (33) and (36)
and employed in Egs. (33), (36) the simple formula (7), which followed from the weakly
nonlinear theory. However, in contrast to calculations of Sec. Ilc, we took k = 27/12.5 (the
value we are using in the next Section when numerically solving the driven KdV). From
the dimensional analysis following Eq. (1), we know that we should replace ¢’ by &' = k=3¢,
a by @’ = ke, and multiply function u (and hence the amplitude of the fundamental,
maxima and minima, pedestal, etc.) by a factor k=2, if we want to return to the case of

k =1, but retain the same “physical” parameters. As initial conditions we chose those of
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the “seed” wave itself, 2o = ax and o = d«. Figure 5 shows that even under such an inexact
chirping form, a significant wave amplitude is reached, and parameter m approaches unity,
which means soliton formation. Later, phase unlocking occurs, and the resonant growth
terminates because of the inexact rigid chirping form used. We checked separately that the
initia’i stage of the excitation is described very well by the weakly-nonlinear theory of Sec. II1.
Note that as m grows, the term proportional to € in Eq. (38) becomes very small, which
justifies using only two Fourier harmonics of function sn? in the evaluation of integral (35).

Figure 6 refers to the case of a loose frequency chirping. Again, we chose a linear frequency
chirping and started from the exact resdﬁance with the linea.erodes of the medium: w(t) =
—k® 4+ o't. We see from Fig. 6 that the simple linear chirping provides a continuous Phase-
locking between the waves and a pei‘sistent growth of the induced wave. Parameter m is
growing, on the average, and approaching unity, which means formation of a soliton. At
this stage, Egs. (33) and (36) can be simplified. Using asymptotic relations for the éémplete
elliptic integrals at m — 1 and transforming from variable m to the soliton amplitude A, we

can write down the following equations for the adiabatic evolution of the soliton parameters:

€ 4v3r? sh™1 23 sin
VA Iva o
A

[4‘=§-—w ‘ | (39)

(38)

where we havé neglected the 'small term, proportional to €, in Eq. (39). Eq. (38) can be
further simplified if the exciltation continues to very large soliton amplitudes, so that 4 >
1274/ L2. In this case we have siﬁply A = —2¢sin . Therefore, if phase 4 is locked in the
interval = < i < 27, the soliton amplitude grows linearly with time, the growth rate being
twice as large as the growth. rate of the fundamental in the 'initia.l stage of the process (see
Eq. (3)). Simultaneously, the soliton is accelerated: its velocity grows linearly with time.
Egs. (38), (39) can be also obtained directly from Eq. (1) in the fr.amework of the soliton

perturbation theory.
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V. Numerical Simulations

In order to check the predictions of the theory, developed in Secs. II-IV, and directly follow
the soliton formation, we solved Eq. (1) numerically. For this purpose we developed a spectral
code, described in Appendix. Equation (1) has been solved on the interval —6.25 < z <
6.25(L = 12.5 and k = 27/12.5 = 0.50265). In all runs we used ¢ = 3.209 . 10-3 which
corresponds to ¢ = 0.1 in the dimensionless (k = 1) version of Eq. (1).

We performed simulations for both the rigid and loose frequency chirping regimes, start-
ing with the zero initial condition. Figure 7 refers to the loose chirping and shows function
u(z), found numerically, at two different time moments; ¢ = 70, when the induced wave is
almost sinusoidal, and ¢ = 1450, where it is already almost indistinguishable from the soliton
solution (37) shown in the same figure. The same simple chirping form w(t) = —k3 + ot
was used. Figure 8 refers to the same case and shows the wave maximum versus time as
found from (a) numerical simulations, (b) fully nonlinear perturbation theory and (c) weakly
nonlinear perturbation theory. The latter was calculated taking into account the second har-
monic from Eq. (5). A good agreement between the fully nonlinear theory and simulation
for all times is clearly seen. Also, the weakly nonlinear theory agrees very well with both
the simulations, and fully nonlinear theory at the initial stage of the process. |

Figure 9 refers to the rigid frequency chirping and shows the wave maximum versus time
for the same chirping form and initial conditions as those used in F ig. 5. Also shown is the
wave maximum versus time, as predicted by the fully nonlinear theory. The agreement is
very good. At the final stage of the excitation the wave form is very close to the soliton (37)

(we do not show the corresponding figure, because it is very similar to Fig. 7).
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VI. Summary

We have shown analytically and numerically, that a proper variation (chirping) of the exter-
nal wave frequency makes it possible to achieve a continuous growth of induced nonlinear
dispersive waves. Under the constraint of a spatial periodicity, the growing wave transforms
into a soliton, which continues amplifying and accelerating.

We have proposed two excitation schemes, which we call the rigid and loose frequency
chirpings. The former requires a definite chirping form, suitable to a given “seed” wave. The
latter adfnits an arbitrary (monotonous) chirping form. The rigid chirping scheme can act
much faster than the loose chirping scheme. However, it is generally more sensitive to the
initial conditions: they must belong to a relatively small vicinity of the given “seed” wave.
In contrast, the loose chirping regime requires only that the initial conditions lie within the
phase-locking region of the relevant phase space and that the frequency variation proceed in
the right direction and be sufficiently slow.

Both schemes have analogs in particle accelerators. It is interesting that not only the
soliton, but also a general cnoidal wave behaves in this excitation process like a particle with
a variable mass, accelerated via the (slowly time-dependent) Cherenkov resonance with an
external wave.

In the present work, we limited ourselvés to the particular case of a driven KdV equation.

However, we expect similar mechanisms of soliton excitation to act in other soliton equations

as well, which promises various applications.
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Appendix

For numerical solution of Eq. (1), we have developed a code, which is similar to the second-

order split-step code used earlier.* Equation (1) can be represented in the spectral form:

oW, . :
_6—tk — iB*W, = Fo(W) (A1)

Here
+o0
Wi =/ exp(—ikz)u(z,t)dz
is the Fourier transform of u(z,t), and

F. (W) - /_-:o [(é—) 88—1;2- + esin(kz — (D(t))] exp(—~ikz)dz

- —% ik By(Wh) + (%) [5(k — ko) - exp(=i®(t)) — 6(k + ko) exp(+i®(2))] (A2)
where
Bu(Wi) = [ :° exp(~ike)uldz = [ :" WiWi_wdk . | (A3)

Equation (Al) has the following formal solution:
Wit +7) = exp(=ik(t + 7)) Wa(0) + [ " exp(ik(t + 7 — ) Fu(Wi(£))dt
where 7 is the chosen time step and Wj(0) is the initial condition. This equation can be
rewritten as |
Wi(t + 1) = exp(ik®r) Wi (t) + exp(ik®(t + 7)) /ttM exp(fikat’)Fk(Wk(t’))dt’ . (A4)

To construct a numerical code based on the exact expression (A4), we expand the integral
~ entering Eq. (A4) in terms of the small parameter 7. It is convenient to use only those ex-
pansions of the integral, which include even powers of 7, in order to preserve the Hamiltonian

‘properties of Eq. (1) in the numerical code.
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Let us consider the following expression:

Wilt = 7) = exp(=ikT)Wi(t) + exp(ik2(t ~ ) [ T exp(~iRR(WL()) . (AS)
Subtracting Eq. (A5) from Eq. (A4), we obtain after simple algebra:

Wi(t + 1) — Wi(t — 7) = 2isin(E3r)Wi(t) + Zi , _ (AS6)
where

Zy = /0 "{exp(=ik(t' — 7)) Fu(Wa(#' + 1)) + exp(—ik*(r — £') Fu(Wi(t — )} dt' (A7)
Now, expanding F} in the vicinity of 7 = 0,

Fe(Wi(t £ ¢)) = Fe(Wi(t)) £ Fu(Wa(2)) + O(?)

and evaluating the first derivative as

i, = Fe(Wi(t + T))z—rFk(Wk(t —7) O(r?)
we obtain Z in the following form:
in k3 _ in(k®
Z, =2 Smka L F(Wi(t)) + k3 [1 -~ %aﬂ] [Fe(Wi(t + 7)) = F(Wi(t = 7))] + O(r%) .
(A8)
For brevity, we denote
. in(k®
Yi =Wy — k™2 [1 - %—T—)-] Fk(Wk) . (A9)
Then we obtain the following expression:
‘1.3
Yi(t +7) = Ya(t — v) = 2sin k1 - Yi(t) + 2512 T p(Wi(t) . (A10)

37
Now we can use relations (A9), (A10) and (A2) as a predictor-corrector code:

predictor:

. 23
Ye(t +7) = Ya(t — 7) + 2 sin(k37) Vi (¢) — 2.Smlcﬁf -

- [kBu(Wi(t)) - & (e ®O6(k + ko)) — e+®O5(k — ko)) +O(r%) (ALl
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corrector:

sin kar) Be(Wi(t+ 7)) _ Yi(t+7) . (A12)

We(t+ 1) — (1 ~ %, 52

We replace the Fourier transform by its discrete version on the interval [— L/ 2,L/2].
Then, assuming perlodlc boundary conditions for Eq. (1) with the period L, we can calculate
the discrete version of convolution (A3) by means of two successive fast Fourier transforms

(FFT). For each time step, we have to calculate only two FFT for the predictor and two

FFT for the corrector. We can use the following straightforward procedure:

sin k37

k3t

n 1 n
wit =y, + = (1 ) Bi(W{™) (A13)

W(O) Y: .

In fact, a single iteration (A13) already provides an accuracy O(7?), because

1 sin k37 214
';;f(l“;:s;‘)”’“

for B3r <« 1.

The code has the following favorable properties:

a) it is exactly conservative: the Jacobian of mapping (Al1) equals unity;

b) it is linearly stable for any value of the time step 7 since it employs the ezact solution
of linearized Eq. (1);

c) it requires only two iterations of the right-hand side of (A6) for obtaining an accuracy
O(r3);

d) it exactly conserves the additional integral of Eq. (1):

o t\d 0 Al4
/_mu@,)x_. (A14)

Property (d), which is very convenient, immediately follows from relation

L/2
/_ @ 1) = Wiso(1)
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Indeed, from Egs. (A9) and (A10) we have for k& = 0:
Wo(t + 1) = Wo(t — 7) = Wy(t) = const.

Therefore, for the zero initial conditions we have Wy(t) = Wo(0) = 0, which proves (A14).
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Figure Captions

1.

Phase portrait (¢, a) of system of equations (3), (4)fore = 0.1, k =1 and w = const. =

—1.

- Rigid chirping scheme as described by the weakly nonlinear equations (3), (4). Shown

are the amplitude a(a) and phase ¢(b) versus time. The parameters are the following:
€ =0.1, k= 1,w(t) is given by Eq. (7) with ax = 0.1 and ¢4 = 2.5, which corresponds
to the favorable interval (r/2, ). The initial conditions are ap = ax, ¢o = 2.0 (solid
line) and 3.0 (dashed line). The amplitude plots for the two initial conditions are

indistinguishable.

Rigid chirping scheme as described by the weakly nonlinear equations (3), (4). Shown
are the amplitude a (solid line) and phase ¢ (dashed line) versus time. The “seed” wave

phase ¢x = 4.0 and initial phase ¢y = 3.5 do not belong to the “favorable” interval
(r/2,x).

Loose chirping scheme as described by the weakly nonlinear equations (3), (4). Shown
are the amplitude a (solid line) and phase ¢ (dashed line) versus time. Parameters are
the following: € = 0.1,k = 1,w(¢) = —1 4+ ot and « = 0.005. The initial conditions are
ap = 0.1 and ¢¢ = 1.5.

Rigid chirping scheme as described by the fully nonlinear equations (33), (36). e =
0.1,k = 27/12.5, w(t) is given by Eq. (7) with ax = 0.01 and ¢+ = 2.5. Shown in
Fig. 5a are the parameter m (thin line) and the wave maximum A + «, calculated

from m (thick line). Figure 5b shows the phase y. The initial conditions are Qo = ax,

Po = Px.

Loose chirping scheme as described by the fully nonlinear equations (33), (36) with
€ =01,k =2n/12.5, w(t) = —k> + ak® and @ = 0.01. Shown in Fig. 6a are the
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parameter m (thin line) and the wave maximum A ++, calculated from m (thick line).

Figure 6b shows the phase . The initial conditions correspond to the zero amplitude

and phase gy = /2,

. Numerical solution of Eq. (1) for function u(z, ) with the zero initial condition for two
successive time moments: ¢t = 70 and 1450. The parameters are the same as in Fig. 6.
Also shown is the soliton solution (37). The amplitude of the “fitting soliton” has been

calculated as the difference between the maximum and minimum of the numerical

solution.

. The wave maximum versus time in the loose chirping scheme as found from (a) nu-
merical simulations (solid line), (b) fully nonlinear perturbation theory (solid line with
dots) and (c) weakly nonlinear perturbation theory (dash-dot line). The parameters

and initial conditions are the same as in Figs. 6 and 7.

. The wave maximum versus time in the rigid chirping scheme as found from (a) nu-
merical simulations (solid line with dots) and (b) fully nonlinear perturbation theory

(solid line). The chirping form and initial conditions are the same as in Fig. 5.
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