INSTITUTE FOR
FUSION STUDIES

DOE/ET-53088-535 IFSR #535
Magnetic Surfaces in a Steady-State Tokamak

R. KINNEY, T. TAJIMA
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712
and
H. IrIE
Department of Physics
Nihon University 1-8
Kanda Surugadai, Chiyoda-ku
Tokyo 101, Japan

February 1992

THE UNIVERSITY OF TEXAS

AUSTIN







Magnetic Surfaces in a Steady-State
Tokamak

R. Kinney, T. Tajima
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712
and
H. Irie
Department of Physics
Nihon University 1-8
Kanda Surugadai, Chiyoda-ku
Tokyo 101, Japan

Abstract

We study a toroidal plasma in a tokamak with externally given toroidal and poloidal
magnetic fields as well as self-consistently interacting internal currents. The unper-
turbed magnetic surfaces are described by the well-known nonlinear “standard map.”
When the magnetic field is allowed to carry an internal current, the self-interaction of
these currents disturbs the integrity of the magnetic surfaces. We carry out a com-
putational study of the effects of the interacting internal current filaments, measuring
the diffusion of field lines from the unperturbed surfaces, and find the self-interaction
to be a significant effect which always serves to increase diffusion. Perfect surfaces are
difficult to maintain even when magnetic islands do not overlap. Diffusion from the

current interaction dominates when current fluctuations reach ~ 10% of the applied

field. -



I. Introduction

The tokamak, as a toroidal plasma containment device, does exhibit evidence of possessing
a natural current profile, just as in other devices, such as the reversed field pinch (RFP).
This is in spite of the fact that, unlike some fusion devices, the tokamak cannot be said
to undergo relaxation. Relaxed profiles for such experiments as RFP’s can be obtained
by assuming that the plasma undergoes a period of strong turbulence, during which the
magnetic field memory is destroyed and energy is dissipated subject to the constraint that
the global magnetic helicity remains constant [1]. Thus, a variational principle can predict
the relaxed state of the plasma by minimizing the magnetic energy while helicity remains
constant. There have also been variational treatments in which complete relaxation of the
plasma is not assumed to take place, and the helicity density is conserved locally [2].

In a tokamak the physical justification for such a method is absent, because such strong
turbulence does not occur during the device’s normal operation, though such variational
calculations have been carried out for the tokamak, and do lead to plausible profiles [3, 4, 5].
Taylor [6] has proposed a physical model of the tokamak interior which leads to reasonable
predictions of its natural profiles, without relying on an ad hoc variational principle. His
physical model, which owes much to the “clump” picture of MHD turbulence put forth by
Tetreault [7], is instructive and serves as the basis for our study. We adopt Taylor’s model of
the tokamak interior, which is characterized by filamented currents running along stochastic
magnetic field lines. In this model, the current filaments interact collectively to determine
the overall magnetic field in a steady state. We study the effect of the plasma internal
current, via this interaction, on the magnetic surfaces imposed on the plasma through a

given field.



II. Tokamak Interior Model

In a slow-moving or equilibrium plasma in a tokamak, we consider the combined internal

and external toroidal and poloidal magnetic fields to take the form
B=DBy(z+zZxVY¥), (1)
where the poloidal field is related to the toroidal current by
J=J2=V xB=(V0)z. (2)
Here, the current and magnetic field satisfy
Vx@xB)=0. (3)

Were the magnetic field regular and endowed with perfect surfaces, such that B-VV¥ =0,
then (3) would be satisfied automatically and (2) alone would determine the current .proﬁles',
though with a great degree of generality left unresolved. We suppose instead that the
magnetic field is weakly ergodic: it does not possess perfect surfaces, nor does it wander
uniformly throughout the toroidal volume. Small turbulent effects cause the field line to
vary from the ideal surfaces only slowly. A line must traverse many circuits of the torus to
deviate significantly from a surface. This causes it to lose memory of its past and breaks the
strict periodicity of the torus. Since a field line that wanders through a constantly changing
torus is equivalent to one wandering through an infinite cylinder, we treat our volume as
such a cylinder.

A non-uniformly distributed current flows along the magnetic field lines which become
stochastic when magnetic islands begin to overlap. Neighboring‘ﬁeld lines will carry their
currents alongside each other for roughly a Lyapunov time, after which the field lines diffuse
apart. At the same time, however, new current filaments are brought together by the action

of the stochastic field lines.



Equation (3) can be written as

aJ
5‘;']‘[\1’,(]],—0, (4)
where [...] indicates the usual Poisson bracket in the poloidal coordinates. From (4) it is

plain that with z acting as a time-like variable, ¥ acts as a Hamiltonian describing the
evolution of the toroidal current. We represent the current as a collection of filaments of
strength «;:
J(r,z) = Z k:6(r —r;y(2)) . (5)
i
The filaments’ positions evolve according the Hamiltonian equations

drj .. 0H(ry,...,ry;z)
KZ,E-—-ZX 61‘,’ y (6)

where \/k; z; is conjugate to \/K;y:, and the part of the Hamiltonian is played by the flux
function .

This discretization may be looked upon as a representation of the nature of flux found
in a real tokamak, but may more generally be considered as a mathematical procedure in
which the number of degrees of freedom representing the current field is reduced from the
continuum infinity of a field variable to the discrete infinity of a set of filament positions,
which may even be represented by a large but finite number of filaments in order to be
handled computationally. A complete description of this procedure is given in Ref. [8].

The essential point is the realization that because our system is governed by a Hamilto-
nian set of equations, conventional statistical mechanics can be used to find reasonable (and
physically justifiable) current profiles. The randomization necessary to perform statistical
mechanics comes not from strong turbulence in the fluid, which would not be compatible
with typical tokamak operations, but from the stochasticity of the magnetic field. _Assum—
ing all filaments have equal strength x, one may define a statistical distribution function of

filament positions p(ry,...,rx), adopt a microcanonical ensemble and calculate the mean
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current distribution as
N
J(r) =& (p(r)) = const./&[E — H(r,ra,...,rx)] [] dr: . (7)
‘ 2

The mean filament density can be found using information theory techniques, and leads to

the result

J(r) = Ke#¥0) | (8)
which, together with the equilibrium equation (2), gives the profile (see [6] and 8]

Jo

J=—ro .
[T+ o)

(9)

III. Interior Model with External Applied Field

Our purpose now, however, is not to determine natural current profiles in a tokarnak, but
rather to make use of this interacting field-line model to explore the structure of magnetic
surfaces inside a tokamak. We treat the profile of Eq. (9) as a given externally-imposed
helical magnetic field. Local deviations from the background current are treated as small
current filaments running along the background magnetic field lines. The structure of the
total field is determined by the action of these interacting filaments on tol.;> of the basic

structure of the imposed field. Thus we assume the following form for the flux-function

Hamiltonian: |
H=U=3 ai¥ex(r:) + Uins(rs)] (10)
where we write
Vi (1) = ; = nlr -, -y

the appropriate flux for a system of parallel currents in two dimensions. Ui represents the
mutual interaction of the current-carrying filaments. The first term of (10) is the external

- field, which we take to be confined to a particular helical mode and hence to be of the



following form:

\I,ext(r) — lIfg(I‘) + Z Umnei(m9—n¢) , (12)

m,n

where ¢ = z/R, and the U’s are assumed to depend only weakly on r. As an approximation,

we write

{ 21U = constant m = £mg,n =4fny (£ an integer) .
U‘rnn -

(13)

0 otherwise .

We expand ¥ to second order around ro (where g(ro) = mo/ng). The toroidal coordinate 2
plays the role of time, and hereafter, we will write # in place of z.
Under the assumption of (13), (6) and (12) lead to the equations of motion for the current

filaments (see Appendix):

da; Kj o?(yi — y;)
— = Usin(2my; 6(t—n) — ek A
di ( y)zn: t=n) jzaeiz” (zi — ;)% + (yi —y;)?
@=$‘+Zﬁ Ti — T (14)
di Yo (mi— )2 4 (i — )
with
T = %‘r%(r — o) a rescaled radial coordinate,
y = ﬁm—‘)o;rﬂl a helical angular coordinate,
t ="z the time-like toroidal coordinate,
and
— 2= din|2f : 1 h ic sh
= e e proportional to the magnetic shear.

To
The interaction of the background current filaments is represented by the first terms in the
right-hand side of Eq. (14), while random local deviations from this current are represented by
the parameters x;’s which take on individual values centred around 0 and whose interaction

is represented by the second terms in the right-hand side of (14).



IV. The Standard Map

The portion of the filament motion due to the externally applied current in (14) (that is, the
first terms of the right-hand side) can be represented by the “standard map,” a well-known
non-linear map which has been studied both for its own interest and as a model for‘va,rious
physical systems (See, e.g. [9] and [10]). The toroidal projecfion of our unperturbed magnetic

field lines is given by successive iterations of this map, defined by:

Ynt1 = Yn + Tn ,
: (15)
Tpt1 = Zp + Usin(2my,4q) -

The map is characterized by stable orbits surrounded by stochastic regions, the areés of
which increase with the parameter U. For a critical value of U near 0.1546, the Stochéstic
regions of adjacent orbits overlap, and trajectories diffuse throughout the region without
limit. For U < Uy trajectories stay confined within one particular orbit. Thﬁs, a'weak
external field will produce magnetic surfaces that are distinct and separate, With individual
field lines confined to roughly concentric tori. Under a stronger applied ﬁeid, suffaces will
overlap and the volume will approach one large stochastic region, with a single field line)
wandering ergodically thioughout the région. Figure 1 shows stochastic regions for U < Uit
and U > U;.

Another feature of the standard map are the “accelerator modes” [10]. These modes
are present only for particular values of U > Uy, such that when U takes on one of these
(near-integral) values, there exist particular regions of phase space in which a trajectofy may
become greatly accelerated in z. The displacement of trajectories iﬁ this regibn grows faster
than linearly with time (whereas over most of the phase space, diffusion is linear), although
they eventually diffuse out of the accelerating region altogether, to diffuse at the normal

rate.



V. Computational model

The interaction term of (14) also takes a well-known form. Hydrodynamical vortices [11] and
two-dimensional guiding-centre plasmas [12] (in which particles move exclusively under the
E x B force) both have equations of motion identical to ours, apart from scaling factors. We
simulate this system with a 2-d electrostatic particle-in-cell technique. The code accumulates
the filament density onto a grid from the filament positions. From this filament density, it
calculates the electric potential ¥;,, and field in Fourier space via Poisson’s equation, Eq. (2).
The field is then interpolated back to the filaments’ positions to advance them forward in
time. Calculations are performed for 1024 filaments on a 32 x 32 grid with periodic boundary
conditions. On top of the interaction motion, we impose the action of the standard map.
We let these “kicks” from the external field occur every 25 time steps. With the filament
interaction strengths set to zero, we have measured the variance of diffusion times with U
and obtained agreement with Chirikov’s calculations [9]. These are shown in Fig. 2.

The computational grid represents the phase-space region 0 < y < 1, -1 < z < 1, with
a magnetic shear value ¢ = 2 in Eq. (14). Filaments are given random strengths between
+# and —& with mean zero, and were initially distributed randomly throughout 0 < y < 1

, —1/2 <z < 1/2. We calculate the diffusion time by fitting the curve

¥ Slot) = s (0)F = 7 (16)

For particularly slow diffusion, Tss was measured by calculating the average time elapsed

for a filament to first drift one unit in z from its starting position.

VI. Results

We are interested in the “time” scale of filament “diffusion.” This determines the degree to

which the ideal magnetic surfaces from the external current are maintained under the effects



of internal current self-interaction in a tokamak equilibrium. It is important to remember
that what we measure is not actually a diffusion time: our “time” is really the toroidal
coordinate ¢. Hence the “diﬁ”usioﬁ time” is the number of revolutions around the torus that
a field line must traverse in order to deviate significantly from its original surface.

The diffusion of field lines is characterized by three regimes. When U is large, the stochas-
ticity of the standard map dominates the diffusion. As U — Uy, the background magnetic
surfaces become regular and the diffusion is driven by the current interaction. In between is
a regime wherein the diffusion rates of the two effects are comparable. Figure 3 show plots
of the diffusion vs. time in the three regimes. In the field-dominated regime, the magnetic
surfaces overlap, so the filaments wander throughout the region more or less freely. When
the rates become comparable, a filament wﬂl spend a long time within a particular orbit
before diffusing across a boundary, so the diffusion fluctuates around a mean linear growth.
Finally, as U — 0, the closed orbits narrow, and the fluctuations decrease in rnafg"ﬁitiude
until the diffusion becomes smooth in the current-dominated regime. Figure 4 shows the
dependence of diffusion time on U for different fixed values of the interaction k. From thié,
one can seé that the transition between the three regimes is smooth: the fluctuations around
the mean diffusion appear and disappear without affecting the net diffusion rate.

Figure 5 shows the dependence of diffusion time on x. In the absence of a background
field, the current-dominated diffusion goes as ~ k2. As & grows large, the diffusion conforms
to this law regardless of U. A qualitative look at this figure reveals that this regime sets in
at around In || &~ —4.5. When U > Uaqy, the curve will flatten out as k — 0 (*’s in figure),
making diffusion independent of & and representing the ﬁeld-dorhinated‘regime. Note that
this regime does not exist for U < Ugg, as the diffusion time will increase without bound as
k — 0, the rate of this increase growing inversely with U.

Orne possible anticipated effect of filament interaction was that a filament would be jostled

out of an orbit’s stochastic region and into a more tightly bound region, thus possibly slowing




the diffusive process. This was indicated in some simulations involving only two filaments [13]
but in none of our simulations was this observed. Without exception, diffusion of magnetic
surfaces was enhanced by filament self-interaction. This effect may yet be observed with
a smaller number of filaments in the system, but we expect that for a realistic model of
a tokamak interior, a large number of filaments must be maintained, and the anticipated
diffusion inhibition would not appear in experiments.

The presence of accelerator modes of the standard map continued to be observable for
small values of x. Figure 6 shows the presence of accelerator modes in our model. They
are represented by dips in the diffusion time at U ~ 1.1, 2.2, and 3.2, where the presence of
these modes increases the general rate of diffusion. The effects of these modes can be seen

for values of x up to about the order of U, after which the effect becomes indiscernible.

VII. Discussion

We find the effect of the interaction of local current deviations to be pronounced. When the
interaction reaches a strength x ~ Uy, the accelerator modes cease to become noticeable.
The parameter regime for which the field is stochastic ranges over all values of U , Whereas
for the unperturbed case, the field is stochastic only for U > Ueit- In the “field-dominated”
regime, the stochasticity is due to the normal overlapping of magnetic islands, but even as
the magnetic surfaces become regular, the plasma becomes “current-dominated” and the
field remains stochastic due to filament interactions. The onset of this regime occurs when
x 1s near 0.011U when U is near the critical value of 0.155.

In addition to the questions treated herein, this model may also be applicable to the
problem of the “ergodic limiter” [14], in which the role of the limiter in a tokamak is played
by stochastic field lines. The filamentary features of currents and magnetic fields are well-
noted of late in astrophysical plasmas as well [15, 16]. Similon and Sudan [17] studied the

Alfvén wave propagation in the stochastic fields of solar coronal loops in which a toroidal
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magﬁetic field is present. The present model may be relevant to such astrophysical plasmas
as well. Finally, current filaments and their stochastic behavior in condensed matter [18]

may be treated in a similar manner.
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Appendix

Here we derive the map describing the dynamics of the field line due to the applied external

current. The field line is described by

dr B, dd By oz
3" B,’ 4 tB°" R (AD)

Define

2

v
Q—f, I—m, (A2)

as normalized poloidal and toroidal flux. L is an arbitrary quantity with dimensions of length.

The coordinates I and 6 obey the Hamiltonian equations with ¢ as the time coordinate:

dl. 0% df 09

Let us change coordinates from (1, 6) to (p,n) by way of a canonical transformation with the

generating function

F(p,0; ¢) = p(mob) — nod) + Iof . (A4)

Our new coordinates are determined by the equations

OF
I'=2g=mor+lo
oo
n=— =myd —nod, (A5)
while the “Hamiltonian” transforms like
0P
Dpew = Do —_— A6
ne 1d + a¢ ( )

We treat the case in which @ (in (7, 8) coordinates) looks like

O =B(I) + Y Uppem?=n9) | (A7)
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and expand ®o around I = I, to second order. In (p,7) coordinates, ® looks like

@ ~ @o(I) + mop®y(Llo) + = (mOP)Z‘I’"(Io )+ 2 Unne ™) —ngp

m,n

If we now choose I such that

no
(L) = —,
( 0) my
in other words, look at the region where the local ¢ = mq/ng, then

® = &(l) + % (mop)*®5(Lo) + Umnei(mlo = (ome)e) :

m,n

Now let us assume that U,,, takes the form

{ %— U = constant m = +mg,n = £no(£ an integer) .

0 otherwise .

(A8)

(A9)

(A10)

(A11)

This will be a valid assumption if U has a weak radial dependence or a weak q (safety factor)

dependence. The summation may be rewritten in this case as

1 : 1 ,
5 U ; !(n=(t=1)nod) 5 U Zz: e!=(t+1)nod) _ 17 ; cos(n —£€nop) = U cos Z § (

Our equations of motion are now

% = 25 = ¥(Lo)mip

gg= anL"’-—Usmnz 6(”°¢ n) ,

n0¢
27

(A12)

(A13)

‘which give us the listed equations of motion in the transformed coordinates with the scale

change

2
U — 2r0(I,) (?) U.
0

13

(A19)
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Figure Captions

1.

Phase-space plot (z,, y») for 25,000 iterations of the standard map beginning at a
point near the X-point, (0,0). Plot shows stochastic region of the standard map for
(a) U=0.15 < Ugys and (b) U = 0.20 > Ugy,.

Crosses show computed diffusion time, Tyg, versus the parameter U for the standard

map. The solid line is the fit calculated by Chirikov [9).

Plots of mean square diffusion, % ¥; |z:(t) — 2:(0)|2, vs. time for £ = 107, (a) field-
dominated regime U = 2.0. (b) transition regime U = 0.15, (c) current-dominated

regime U = 0.
Tas, vs. U for £ = 0.05, 0.01, 1073, 10~%, and 10~%.

Log-log plot of Ty vs. k. The solid line represents the data from U = 0. The o’s are
from U = 0.06, the +’s from U = 0.15, and the *’s from U = 0.20.

T4g vs. U in the accelerator mode regime. (a) in the absense of self-interaction, £ = 0.0.
(b) for & = 0.1. The effect is dimished but still noticeable. (c) for £ = 0.2 the modes

are all but gone.
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