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Abstract
For describing ion gyroresonance processes, a complete set of self-consistent Vlasov-
Maxwell equations is derived by systematically transforming a self-consistent action
principle from particle coordinates to guiding-center/oscillation-center coordinates. They
include the oscillation-center Vlasov equation; the equations for wave-particle resonant
interactions; and Maxwell equations for the background electromagnetic fields. These
equations satisfy local conservation laws for energy, momentum, and angular momén—

tum, constructed by using the Noether algorithm. A heuristic interpretation based
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on the theory of linear mode conversion in ray phase space is also presented for ion

gyroresonance processes, which suggests a method for obtaining analytic solutions in

general geometry.

PACS Nos. 52.50.Gj, 52.25.Sw, 52.25.Dg, 03.50.Kk



I. Introduction

The main purpose of this paper is to develop a general formalism fbvr the self-consistent
description of ion gyroresonance processes. lon gyroresonance is the physical mechanism
behind the so-called ion cyclotron resonant heating scheme, which is an important method
for raising the plasma temperature in a tokamak in order to achieve thermonuclear fusion.
Besides its practical significance, ion gyroresonance is also very interesting as a basic physical
problem. The literature on this subject is huge and rapidly growing.!® In the present work
we derive a complete set of self-consistent equatiohs that describe not only the coupling
between the resonant particles and the wave fields, but also the slower evolution of the
background plasma and electromagnetic fields. We demonstrate the self-consistency of these
equations by deriving the conservation laws for energy, momentum, and angular momentum.
We also propose a heuristic interpretation for the ion gyroresonance processes based on the -
theory of linear mode conversion in ray pha.s‘e space. This interpretation allows us to obta,i'n'-'
analytic solutions of the gyroresonance coupling equations.*”

The results presented in this paper are the fruit of a long line of development made in
the last decade by our group and many other workers. A historical account of the evolution
of ideas and an outline of techniques have been given in Ref. 8. Below we shall briefly
discuss some of the important mathematical methods that are used in this paper so as to
provide some background materials. They are: (1) the self-consistent action principle for the
Vlasov-Maxwell equations; (2) the Lagrangian guiding-center and oscillation-center theory;
(3) resonance crossings; (4) the ray phase-space eikonal (also called WKB) théory; and (5)
the theor3.f of linear mode conversion in ray phase space. For practicality we shall cite only
references that are of immediate relevance to our present work and, if possible, refer readers

to review articles where they may find more complete bibliography.




The self-consistent action principle for the Vlasov-Maxwell equations has been known
for a long time.>'® For the guiding center-Maxwell system (without perturbation) two dif-
ferent action principles were introduced by Similon!! and Pfirsch.!2!3 Similon’s approach is
based on the particle orbit dynamics (the Lagrangian picture) and uses a Lorentz-covariant
formulation, while Pfirsch’s approach is based on the Hamilton-Jacobi equation (thus closer
to the Eulerian picture). Both authors use Littlejohn’s phase-space guiding-center La-
grangian.'* Boghosian'® extended Similon’s method to include nonresonant interactions
between particles and an eikonal perturbation; he also uses the covariant notation. In this
paper we extend Boghosian’s work to include the resonant particles. We shall follow Sim-
ilon’s methodology, but since we are aiming at providing formulas that are useful to plasma
physicists (in particular fusion researchers), we shall use more conventional notations and
consider only nonrelativistic particles. A comprehensive discussion of these two and several
other versions of self-consistent action principles for Vlasov-Poisson and Vlasov-Maxwell
equations (and their relationships to each other) can be found in Ref. 16. Action princi-
ples provide a natural vehicle for carrying out a systematic approzimation scheme.l’” When
approximations are performed on the action, the effects will spread out into the evolution
equations after the variation, and self-consistency is attained automatically. Furthermore,
Noether’s theorem provides an algorithm that makes the construction of conservation laws
almost routine.

The Lagrangian theory of guiding centers was developed by Littlejohn.'* The theory
of oscillation centers was first introduced by Dewar'® and further developed by Cary!® for
the unmagnetized plasmas, and later generalized to the magnetized plasmas by Grebogi
et al.?*# In this process a powerful new method, called the Lagrangian Lie transform,
has also been developed??? (also see Appendix A). It allows us to carry out systematic
perturbation expansions using noncanonical variables such as the guiding-center coordinates.

With the exception of Ref. 18, all of the above references (including 15) have only dealt with



the nonresonant wave-particle interactions. McDonald et al** extended Dewar’s work to
magnetized plasmas with fixed background fields, derived the coupled plasma-wave kinetic
equations in which the resonance effects appear as dissipation, and proved the H-theorem for
these equations. In this paper we continue this line of development By including the resonant
wave-particle interactions and the self-consistent background electromagnetic fields.

'The idea of ‘resonance crossing is based on the following observation:?5 In the particle
phase space there are resonance regions where particles will suffer jumps in their adiabatic
invariants when they cross. Outsid¢ the resonance regions particles interact with the wave
fields a.diabétically. For small perturbations, the jump in adiabatic in\}afiants can be calcu-
lated by integrating the perturbed Hamiltonian along the unperturbed particle orbits‘ ?cross
the resonance region. This local averaging procedure leads to window functions!® thaf‘devide
the particle phase space into resonant and nonresonant régions in a natural way. Thevahdlty
criteria for the resonance croésing treatment are given in Ref. 25. For ion gyroresonance in
an inhomogeneous magnetic field, the gyroresonance regions are usually well—éééarated due
to the spatial variation of the ion gyrofrequency.

- The above three tools are essentially sufficient for us to derive the set of self-consistent
equations that govern the wave-particle resonant interactions. The followmg two methods
pertain mainly to the solving of the linearized gyroresonance coupling. equatlons

The ray phase space (z-k space) eikonal theory was developed by McDona.ld26 to over-
come the caustic singularity problem in the traditional z-space eikonal theory. The use of
Wigner functions allows one to deal with wave equations in a representation independent
fashion, both for coherent and incoherent perturbations. The method of Weyl symbol calculus
- systematizes the asymptotic analysis.?”?® In our calculations we will be using the Fourier

representation for the wave fields; but the end results are expressed in terms of Wigner

functions so that any other representations can be substituted into the final formulas.



Similarly to the ray phase space eikonal theory on which it is based, the ray phase space
mode conversion theory was developed as a generalization of its traditional Z-space coun-
terpart.?®* Often the operators in the linear wave coupling equations can be simplified by
canonical transformations of the ray phase space coordinates, thus enabling us to construct
analytic solutions in the new coordinates. The theory of metaplectic transformations was
developed by Littlejohn® to describe the transformation of the wave functions themselves as
the ray phase space coordinates undergo a linear canonical transformation. The two taken
together allows one to obtain analytic solutions of single mode conversion problems. Fried-

d%*% also developed the congruent reduction algorithm as a systematic way of reducing

lan
the number of components of the wave fields. We interpret ion gyroresonance processes
as pairwise linear mode conversion, so as to apply these powerful methods to obtain ana-
lytic solutions. The notion of pairwise mode conversion was first introduced by Cairns and
Lashmore-Davies.3*35

This paper is organized as follows. In Section II we review the self-consistent action
principle for the Vlasov-Maxwell equations in particle coordinates. In Section III we trans-
form the particle Lagrangian to the guiding-center coordinates, and obtain the unperturbed
guiding-center equations of motion. In Section IV we further transform the guiding-center
Lagrangian to the oscillation-center coordinates to eliminate the fast-scale wave-particle in-
teractions in the nonresonant regions of particle phase space. The ponderomotive Hamilto-
nian and the Vlasov equation in the oscillation-center coordinates are obtained. In Section V
we discuss the ray phase space eikonal theory and the general theory of linear mode con-
version. In Section VI we derive the self-consistent Maxwell equations for the background
electromagnetic fields. In Section VII we first linearize the coupling equations between the

resonant particles and the wave fields, then present a heuristic interpretation for gyroreso-

nance processes. In Section VIII we discuss other potential applications of our formalism.



Finally in Section IX we conclude. Appendix A is a review of the Lagrangian Lie transform

technique.

II. Action Principle for the Vlasov-Maxwell Equations

In this section we review the phase-space action principle for the self-consistent Vlasov-
Maxwell equations.!''® We shall start from the beginning with the particle coordinates.
In this paper we consider only nonrelativistic particles. The extension to treat relativistic
particles is straightforward, but is most conveniently done in Lorentz-covariant notation.!s

Let us denpte the particle coordinates in six-dimensional pa,rtide phasé space by z; =
(r;, v;), where i is the particle label. Also denote the electromagnetic field by (E,B)(x,1),

and the associated four-potential by (A, ®)(x,t), so that - R

E'____la_A_VQ, B=VxA. (1)
c Ot . :

Then the action functional S takes the form

= Z/dtL(z,.(t),z,.(t),t) + /d“a: Le(x,1), | )

where d*z = dt d®x, L is the single-particle Lagrangian (we shall omit the particle label

whenever there is no danger of confusion)
L= [mv + %A(r, t)J ‘T — [%mv2 + ¢®(r, t)} , (3)
and L is the Lagrangian density for the fields
L =—1—(E2—B2)+-1—J ‘A -p,..P | (4)
F 87 c ext g ext ="

We allow for a given external source of electrical charge and current densities (J,,,p,.,).
The field Lagrangian density £ F is standard, but the particle Lagrangian L has many vari-

ants, among them the traditional quadratic form in F. Our choice is called the phase-space
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Lagrangian, which allows the most general transformations of the particle coordinates.!4
This property arises from the geometrical character of L dt as a one-form in the (extended)
particle phase space (see Appendix A).

It should be emphasized here that both r and v are to be varied independently. We
also note that the end points of a particle’s path z(t) are held fixed in the variation. As a
consequence the particle Lagrangian L is determined only up to a total time derivative. In

other words, the following transformation

dF

does not affect the resulting equations of motion. This Lagrangian gauge freedom plays an
essential role in the theory of canonical transformations.® It plays a similar role in the
theory of Lie transforms which is a powerful generalization of canonical transformations (see
Appendix A). Lie transforms will be used extensively in the next two sections.

Carrying out the variation of S with respect to the particle path z(¢) we obtain the

d (0L oL
4 (a_) ~Z o, (6)

Upon substituting into it the particle Lagrangian (3) we obtain the familiar Lorentz force

Euler-Lagrange equation

law

- .4 1
r=v, V== [E(r,t)-f— -V x B(r,t)|. (7)

Particles with the same mass m and charge ¢ are identical and can be gathered into a group
called species, and for each species (labeled by s) we define a Klimontovich distribution
function

f(zt) =) 8z - z,(2)). (8)

i€s



Then the Lorentz equations (7) can be written equivalently as a single partial differential

equation

.00

1
5o + L 1E(r,t) + z‘v.xB(rr,t)

8

of,
: =0.

ov (9)
This equation becomes the Viasov equation if we ignore the discreteness of the plasma and
think of f, as a smooth solution of Eq. (9). Formally this smoothing can be done from the
outset by labeling the particles with a continuous variable z, instead of 7, and replacing
Z by /dezo fso(2o), (10)
where f,,(2,) is a reference distribution function in the label space.

Variation of S with respect to the four-potential (A, ®) yields the Euler-Lagrange equa-

tions for the fields

V-D =dnp;, VxH—%%t]?-=4—7:Jf, - (1)

where D, H, J;, and p; (the subscript f stands for “free”) are defined as functional deriva-
tives of S with respect to the ekplicit fields and the potentials (i;é., treating (E,B) and

(A, ®) as if they were independent)

§S - 8S a
D_M(SE)_ i)
H= —dr 2 3 =c(E -

"\sB 1=\a )

These functional derivatives are functions of (x,t), and can be calcﬁlated by the following

65 = /d“z [( >5E+(§1§) 5B+<§i>.5A+<g§)5¢} 13

where § stands for arbitrary variations. Worklng it out using Eqgs. (2), we find

o= bt 20, [ #280x-0)f,(2,0),

formula

(14)
I =1.,+% g / £26%(x - r)v, (2, 1),

9



Here we have replaced the sum over particles in a species by a phase-space integral weighted
with the distribution function (8). Since the particle Lagrangian (3) does not depend on E
and B explicitly, we have D = E, H = B. Thus we see that Eq. (11) are indeed the correct
nonhomogeneous Maxwell equations. The other pair of Maxwell’s equations are already

implicit in Eq. (1), but we list them here for completeness:

10B
V.-B =0, VXE-{-Z'a—t—O. (15)

Taking these together with Egs. (9) and (11), we have a complete set of equations describing
the self-consistent evolution of the Vlasov-Maxwell system.

Thus far we have shown that the Vlasov-Maxwell equations are derivable from a single
action principle. A fundamental property of the Euler-Lagrange equations (6) and (11) is
their covariance with respect to change of variables. That is to say that under coordinate
transformations the form of these equations will remain unchanged. We will rely on this
fact in the following sections to construct the self-consistent Vlasov-Maxwell equations in
the guiding-center/oscillation-center representation.

The hallmark of self-consistency of the evolution equations is the conservation laws
that they satisfy. The conservation laws can be derived by the Noether algorithm (see e.g.
Ref. 37). The time-space translational invariance of the action (2) leads to the conservation
of energy and momentum. For a system described by the Lagrangians (3) and (4), the law

of energy conservation reads

YV iv.s=_3

at ext E’ (16)

with the energy density and energy flux density defined by
1 oo 2 m, 3 2
t
U= 3 (E* +B*) + E, : /d625 (x — r)vif,(z,¢),

S = 4%(E x B) + Zs:%/dazﬁ(x —r)v’vf,(z,t).

10



(Actually because of the presence of external sources, it is p'erhaps more appropriate to call
this the “law of energy balance,” but we will ignore this distinction.) Similarly the law of

momentum conservation reads

og

1 ‘
at + v T_ - [peztE:'-'_ zJea:t X BJ ) (18)

with the momentum density and momentum flux density defined by |

g = 47rc(EXB +Zm /d6263 x —r)vf,(z,1),

47 |2
+3m, / 2 8%(x — 1)V, (3,1).

T = 1[1(E2+B2)1—EE BB] (19)

We have used 1 to denote the unit tensor, i.e.,, 1-V =V .1 =V for any vector V. These
conservation laws will be derived again in Section VI for the guiding-center /oscillation-center

Vlasov-Maxwell equations.

ITI. Lagrangian Guiding Center Theory

In this section we specialize to the situation where the electrdmdghetic fields are com-

posed of two parts

E=E,+E,|, B =B, + B,, (20)

where (E;, B,) are the background fields, slowly varying on the particle gyration scale, and
(E,, B,) are the perturbed fields. Since our aim is to study the gyroresonance processes,
we shall assume-that the perturbed fields are of high frequencies and short wavelengths, on

the same scale as the particle gyration, so that the eikonal approzimation is appropriate.

11



However we will not introduce the usual (coherent ) eikonal ansatz, but instead use the general
Fourier representation for the perturbed four-potential
d*k ;
Ave) = [ At
ikx
@1(2) = /Wél(k)e .

Here we have used the short-hand notations z = (t,x) and k = (—w, k), thusk-r = k-x —wt.

Eq. (1) gives the Fourier components of the perturbed electromagnetic fields

E,(k) = A, (k) — ik, (k),
c (22)

B, (k) = ik x A, (k).
Note that the reality of the fields in z-space implies a symmetry condition in k-space, e.g.
E}(k) = E,(—k), where the star denotes complex conjugate. By “high frequency” we mean
that the perturbations vanish as w — 0. As we will see momentarily, this assumption allows
us to deal with the electrical perturbation E, only, resulting in significant simplifications.
Substituting A = A, + A, & = &, + &, into the particle Lagrangian (3) we find that
L=1Ly+ L,, where

q . 1
Ly = (mv + ZAO) ‘F— (-2-mv2 + q‘I>0> , (23)
and

L = %AI F—q®,. (24)

Consider the perturbed Lagrangian L, for a moment. Inserting Eq. (21) into L, and using

the relationship (22) to eliminate A, (k) in favor of E, (k), we can rewrite it as following:

_ d*k- El iker . d d‘k @1 tk-r
L‘“[q/ o (0] ’*E[q ) w F)e } =

- where r denotes (¢,r) so k-7 = k-r—wt. The second term is a total time derivative and can be

omitted, owing to the Lagrangian gauge freedom discussed in the previous section. We note

12



that L, has then also become manifestly gauge invariant. The field part of the perturbed
action can also be expressed in terms of E,(k) only, but we will-defer that discussion to
Section V.

Before proceeding to the guiding-center transforfhation, let us make a change of va,fia,bles

that removes the perturbations from the r term. Define

4
u=v+4 = / d*k ’El Ik r’ (26)
m }

(2m)* 1w

and eliminate v in favor of u, then the whole Lagrangian L becomes
L(r,u,ft) = Lo(r,u,t,t) — H (u,r,t) — Hy(r, t), (27)

where L, has the same form as in Eq. (23) except that v is now replaced by u. H, and H,
are the perturbed Hamiltonians, given by v

d4k El ther
Hy = —qu. / o) —(k)e™, ,
T2 (28)

‘ d4k Elr tkr
/ (2r) 1w e

This simple transformation will greatly simplify the averaging calculations to be discussed

9‘2

2m

2

in Section IV. This is because averaging the Hamiltonian requires only the Hamiltonian Lie
transform, a much simpler special ‘case of the Lagrangian Lie transform (see Appendix A).
This fact was exploited in Ref. 21 but not in a manifestly gauge invariant form. The La-
grangian Lie transform method was used in Refs. 15,38. This transformation has another
deeper significance with respéct to the Poisson bracket which will be discussed later in this
section. We note in passing that the same simplification can also be achieved for short-
wavelength but low-frequency perturbations, i.e., for perturbations that vanish as |k| — 0

but not necessarily as w — 0. In this case we can express the perturbed Lagrangian L, as

_ d*k ka1 el d‘k k-E; ..
L, = —[ 27)F ik —— (ke J 'r+Q/(2ﬂ.)4 k2 (k)e

d [q dk k-A ikor
T# [Z/(zwy e (e

13
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Thus a transformation similar to Eq. (26) can again be made and perturbations be moved
into the Hamiltonian. But note that in this case we have to deal with both E, and B,.
Now we are ready to carry out the guidin.g—center transformation. Our presentation
below is slightly different from Refs. 14,39. Let B = IB,| and b = B,/B. Also assume that
|E, - b is small so that the guiding center transformation is a.ppl.jc:a.ble,40 and that the drift

velocity associated with the perpendicular electric field
vg =cE; xb/B (30)

is of the same order as the particle thermal speed. The guiding-center transformation can
be achieved in three steps. The first step is to separate the parallel and perpendicular
components of u. Define uy =u-b,u; =u- yb—-vg,u, =|u|,and c=u, /u,, where

b and v are evaluated at r, so we can write
u = ub(r,t) + u, c + vg(r,t). (31)

By definition c is a unit vector perpendicular to b, so it must satisfy the following two

constraints

c.c=1, c-b(r,t) =0. (32)

¢ can be used as an independent variable as long as these constraints are taken into account.
Notice that, besides the rapid gyration, ¢ also has a slower variation imposed on it by the
constraints.

In the second step we make a preparatory transformation from the particle position r

to the guiding-center position R, defined by
Rse‘”“'vr=r—pa+%pa-V(pa)+-~, (33)

where p = u, /Q is the (signed) gyroradius, Q = qB/mc is the (signed) gyrofrequency, and

a =b X c, all evaluated at r. In Eq. (33) we hold (v, uL,c) constant when calculating V.

14



The use of the exponential operator not only makes the inverse transformation apparent, but

more importantly it also preserves the simple form of the constraints (32), which become
c-c=1, c-b(R,t) =0. (34)
The inverse transformation of Eq. (33) is

Loa-V(pa) + -, (35)

r=e‘”‘"VR=R+pa+2

where the right-hand side is evaluated at R. Now we substitute Egs. (31) and (35) into
L, and make a Taylor expansion in powers of p. For most practical purposes, we need to
keep only the zeroth-order terms in b and v g, and the first-order terms in the four-po't“ential

(Ag, ®y). The calculation is lengthy but straightforward, and the result is

2

L, = [m(u”b +vg) + %AO} 29 ~ H, -
. 36
d d [gp
+m(yb +vg) - a(pa) + 7 [—-— -A, + 2—aa VA, +---,
where Hj is called the guiding-center Hamiltonian, defined by
1
Hy = Em(uﬁ +ul +vE)+ q%,; (37)

the colon denotes trace operation A : B = A;;B;;; and the overdot stands for total time
derivative. Note that the right-hand sides of Egs. (36) and (37) are evaluated at R. Again
the last term in Eq. (36) is a total time derivative and can be omitted. Similarly we substitute
Egs. (31) and (35) into the perturbed Hamiltonians, expand only the exponent to first order
in p, and obtain

d4k E tk-R_ik.pa
H = —q(u||b+vE +u.LC) : / (27!')4 ﬁ(k)eknekp )

2 (38)
/ d4k E k)eik-Reik-pa

(27)% w ’

q2

H, =

where R denotes (t,R),s0 k' R=k R —wt.
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The third and final step of the guiding-center transformation is to perform a gyroaverag-
ing to eliminate the rapid oscillations from the Lagrangian. To do this we need to introduce
the gyrophase 6 to separate the fast and the slow variations of c. Choosing a local perpen-
dicular unit vector e,(x,t) and defining e, = b x e,, so that (b, e,,e,) form a slowly varying

local triad, we can then define 8 by

c = e (R,t)cosd — e,(R,1)sinb. (39)
The relation a = b x ¢ is preserved by the exponential operator, yielding

a=-e (R,t)sinf + e,(R,¢)cos¥. (40)

Thus (a,b,c) also form a (gyrating) triad. Notice that Eq. (39) manifestly satisfies the
constraints (34), so 8 can be treated as a free variable. However, it is clear that the value of
¢ depends on the choice of e;. This freedom of choosing the basis vector e, is yet another
gauge freedom, called the gyrogauge, whose subtle effects on the guiding-center motion have
been studied by Littlejohn.4

For the rest of this section we shall concentrate on the unperturbed guiding-center
Lagrangian L,. The averaging of the perturbed Hamiltonians H, and H, is more involved
and will be dealt with in the next section. The gyroaveraging of L, can be carried out to
arbitrary orders by using Lie transform techniques, as shown in detail in Ref. 15, but for our
purpose we only need the lowest order contributions. We retain the notations (R, Uy Uy, )
for the averaged guiding-center variables, but keep in mind that their defining equations (26),
(31), and (33) are no longer exact—there will be higher order gyroradius corrections. The
actual relationship between the particle and the guiding-center coordinates is not needed in
this paper; interested readers can find them in Refs. 14,15. The lowest order gyroaveraged

Lagrangian then reads

Lo = [m(ub+vg) + 24| ‘R 4,0~ p,é, - e, - A, (41)

16



Here we have eliminated u, in favor of the gyromomentum p, which is defined by

mu?

Ps = 20R, D) - - (42)

Since p, is the canonical momentum conjugate to 8, and 8 is an ignorable coordinate in (41),
p, is a constant of motion in the unperturbed system. The magnetic moment p of a guiding

center can be defined by

p=(m)ee (43)

me
The set Z = (R, v, p,,0) is called the standard guiding-center variables by Littlejohn.'* The
guiding-centér Hamiltonian H, now reads

1
H, = §m(uﬁ +v%) + P, + q®,. (}44)

The ¢, - e, term in Eq. (41) is the gyrogauge term. Although it is usually small, it must
be kept because it compensates the 8 term to make L, as a whole gyrogauge invariant. To

see its effects more clearly, let us rewrite it as
~Pye € = A -R—gA, ~ (45)

where A = —(cp,/q)Ve, - e,, Ay = (p,/9)0;e, - e;. Thus (A, A,) acts like a four-potential,

with the associated fields given by

10A
E, = ——8—-—— VA, = Py op. (0,b x b),
c Ot q
) (46)
BA = V X A = _EZ;—geijkbiVbj X ka,
where ¢;;; is the Levi-Civita symbol: €, = 1 = —€321, etc. We shall see in Section VI

that the gyrogauge term also contributes to the magnetization vector (and in turn to the
_ current density and the energy-momentum tensor). It is also essential for angular momentum

conservation.

17



Applying the Euler-Lagrange equation (6) to Eq. (41), we obtain the lowest order

guiding-center equations of motion
,

. " 1

. B* * q * 1

P (47)
909 = + égo) e,
0 =
where (E*, B*) are the “effective” electromagnetic fields
. m
E'=E, - _(u”atb + 0,vg) + Ey,
’ (48)

B*=Bo+ﬂq5(ul,be+vaE)+BA,

and By =b - B*. The quantity in the square bracket in Eq. (47) can clearly be interpreted
as the effective force that acts on a guiding center.

In the future we will need to calculate the Poisson bracket in the guiding-center co-
ordinates. The fundamental Poisson brackets can be obtained straightforwardly from the
guiding-center Lagrangian L, by first computing the fundamental Lagrange brackets, then

inverting. The details can be found in Ref. 14 (also Appendix A). Here we only display the

results:
Bﬂ
R,R} = R,u =50
R an an tR) mBj
{R,0} = {R,R}(Ve, -e)),  {u},0} = —{R,uy} - (Ve, - ey), (49)

{6,p,} =1, all others = 0.

Another set of variables commonly used in guiding-center theory is (R, E, Py, 8), where
u is replaced by the energy E = H,,. This is especially useful when the background fields

are stationary, because theﬁ E is an invariant of motion
EO=RO.[—2 (b +vy)+ I4,) 4 ¢E, | =0 (50)
at m u” VE + - 0 € Al =Y,

18



where 0, is taken with E held constant. It should be gmpha;sized that, although partial
* derivatives such as V may have different meanings in different coordinate systems, the Pois-
son bracket between scalar functions is always the same.

Also in Ref. 14 it has been pointed out that‘the higher order gyroradius corrections
that were left out in Eq. (41) can all be put into the Hamiltonian H,. Since the Poisson
bracket does not depend on the Hamiltonian, Eq. (49) is in fact correct to all orders in p.
Moreover, since the perturbatibns have been moved into the Hamiltonian by Eq. (26) before
the guiding-center transformation, the Poisson bracket is also correct to all orders of the
perturbation amplitudes.

(The above points are so basic that they are worthy of further comment. In the study
of Hamiltonian systems, we must distinguish the Hamiltonian nature from the Hamiltonian
itself. The equations of motion of course depend on the Hamiltonian, but their Hamiltonian
nature are solely determined by the Poisson bracket structure. When the Harmltoma,n is
modified, the equations of motions will also change but their Hamiltonian nature remains
the same. Therefore although the guiding-center equations per se are approximate, they have
captured the exact Hamiltonian nature of the original particle dynamics. In this sense we can
think of the guiding-center coordinates as a representation rather than an a.pproximatib’n.)

The Hamiltonian nature of the guiding-center equations (47) are manifested in the
Liouville theorem. By noting that the fundamental Poisson brackets transform like a con-

travariant tensor

i 07 87
1 Il — < k i
{Z ,Z }_ azk {2 ,2} 821 ’ (51)

we can easily compute the Jacobian of the guiding-center transformation

Oz

J = det (6Z

) = (det{Z,2})"/? = %Bﬁ. (52)
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Here we have used det{z,z} = 1. We emphasize again that this Jacobian is ezact. The

Liouville theorem on the phase-space volume conservation can be expressed as

d .
WJ + 57 (Z0T) =0, (53)

which can be verified by direct calculations. This conservation law is a property of the Poisson
bracket. It holds true if the higher order gyroradius corrections, or more importantly for our
purpose, the perturbations, are included in the Hamiltonian.

The Klimontovich distribution (8), when expressed in terms of the guiding-center vari-

ables, becomes

FAZ,t) =TTV 652 - Z,(1)). (54)

t€s

This is also an exact relationship. Just as in the particle case, we can rewrite the lowest order

guiding-center equations of motion (47) equivalently as a single partial differential equation

( )f_<a+z<°> BZ)f—o, (55)

which is known as the drift kinetic equation. In obtaining Eq. (55) we have used the Liouville
theorem (53). By ignoring the discreteness effects, we can interpret it as the Vlasov equation
in the guiding-center representation.

To summarize: In this section we carried out the guiding-center transformation, defined
with respect to the background electromagnetic fields. We obtained the unperturbed guiding-
center equations of motion, and the (exact) Poisson bracket in guiding-center coordinates.
The perturbed Hamiltonians have also been transformed into the guiding-center coordinates;

their averaging is the topic of next section.
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IV. Oscillation Center Theory

Now let us turn to the perturbed guiding-center Hamiltonian (38). Expanding the wave

vector k in terms of the local triad,
k="Fkb+k (e cos)+e,sin)), (56)

where A(k;x,) is the angle between k, and e, (x, t), and using Eq. (40), we have k - pa =

k, psin(@ + A). Then by using the familiar formula
eiésin(6+2) _ Z J (f)etl(9+z\) v v (57)

we can express the perturbed Hamiltonians as Fourier series in 6:

Z/ Gyt Ve Cup 1 B R)EVORD Ey k), 5®)

Z / d*k Jl(kw) eV (OiRE) El(k')

(2m)t  dw

2

, (59)

2’2m

where the star denotes complex conjugate. The phase function v, and the vector J, are

defined by

Y(0; R k) =k R —wit+ 0+ A(k, R, )], . (60)

Q ia —ia
ot 2o = 2 b4 v)d, + ER et e SO Y
where e, = 715(e1 * 7e,), and the argument of the Bessel functions is k 1p with p =

(2p,/mQ)2. Using Eq. (56) we can also express J, in a manifestly gyrogauge invariant

form:

9 e 1
1

In order to carry out averaging transformations on H, and H,, we first need to identify

their oscillatory parts that vary on the same scale as the particle gyration. In the eikonal
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approximation we assume that their rate of change is primarily determined by the phase

factor e™¥¢. Define

. b .
D,E(i) be=k-RO —w1 2|0+ ik xb). 50| (63)
i), 5

Clearly if D, is far from zero then the ¢th term in H, is oscillatory. The condition D, =0
determines the resonance regions in the particle phase space, whose width can be estimated
as follows. The phase change as a particle goes through the resonance region is roughly given
by Ay, = De(At)2. The time it takes a particle to cross a resonance region can thus be
estimated by setting Ay, ~ 1, which yields At ~ DZI/Z. So the width AD, of a resonance
region is approximately D,At a2 D,l/ 2. Let us introduce a window function, w(D,), which is
close to unity inside the resonance region (|D,| < |D,|*/?) and quickly falls to zero outside
of it. The exact form of the window function may be tailored to the specific problem at
hand, but it should be strictly unity at the center of a resonance, i.e., w(0) = 1.}®* The

non-oscillatory (resonant) part of H, can then be defined as

dik N ity (6;
K, = 24: / W w(Dt)Jt(uH’ b, R, k)e veGiRA) E,(k), (64)

Now we are ready to remove the oscillatory (nonresonant) part of H 1 by a near-identity
Lie transform. We shall work only to the second order of the perturbation. The relevant Lie

transform formulas are (see Appendix A)

d
1
K, = <H2+-2~{F1,H1+K1}>, (66)

where F) is a Lie generating function, {-,-} is the guiding-center Poisson bracket as given
by Eq. (49), and K, is the so-called ponderomotive Hamiltonian. The angular bracket here

denotes “slowly varying part.” The generating function Fy can be solved by integrating
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Eq. (65) along the characteristics of (d/dt)y; since the right-hand side is purely oscillatory,

we are safe from secularities. Fourier expand F, in both R and 6:

d*k —
F(R u“ pg,e) Z/ (2 )4 U”,pg,k)e"ﬁl(g,R,k). (67)

and substitute it into Eq. (65). The dominant contribution to (dF,/dt), is from the phase
factor, since p, is an invariant, and in practice there is usually another invariant of the
unperturbed motion. Two common situations are: (1) the background fields are quasi-
stationary, in which case we can use the energy E instead of uy (see Eq. (50)); (2) the
background fields are axisymmetric (a good approximation for tokamaks), in which case the
toroidal angular momentum Py 1S an invariant and can be used in place of u” In elther case
F, will be constant. However, it is not necessary to make an explicit change of vana,bles
here, because in the end F, only appears inside a Poisson bracket that can be calcula.ted in
any coordinates (see the remarks below Eq. (50)). | |

Thus, after equating the integrands 61_1 both sides of Eq. (65) we obtain
Dy(uy, gy By k) Fyuyy pgr k) = (1 — w)J; (v, 0y, R, k) - By (k), (68)

where w, = w(D,). To be precise we should interpret the variable R in D, and J; as é.n
operator: R — i9/0k, which is required for equating the integrands. But for nonresonant
particles, and within the eikonal approximation, the R variation is unimportant. (In the
case when the perturbations are global so that the eikonal approximation does not apply,
action-angle variables may be used24® to solve Eq. (68). ‘A more general method is perhaps
to employ a symbolic integral operator that may be implemented later by other means, such

as an ergodicity argument.**) Therefore we have

F = Z/ (d k (1,;)l e)Jl E, (k)eVe@RH), ' (69)
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Appendix A discusses how to calculate the actual coordinate transformation from F,. But
to find the ponderomotive Hamiltonian K, the knowledge of F itself is all we need. Using
Eqgs. (66) and (69) we obtain

< Z/ 2k /d‘;k’ Koo (k, K)ee G0 . B (R)Ex (k )> (70)

e

where

fcw<k,k'>=[f“"( >""(k’)1+{“ we) 3 <k>,wp(k')}<1+wa)Jz,(k'>

m w l

(71)

LU Z);U‘)J,(k) {1+ we,)JZ,(k’),zh(k)}}-

Here for clarity only the dependence on k and £ is displayed. In this paper we shall not
consider the nonlinear effect of particle-beat wave gyroresonant interactions (called induced
scattering*®), so we drop all £ # ¢ terms, which depend on the gyrophase 6, reducing the

double sum to a single one. The result reads

/1 dk d*k’ ik k)R | ,
K, = <5 / o / Gt Kk ke B, (F)E:(k) (72)
with the two-point kernel given by
Kk B) = Kyp(k, k)t BEI=20, (73)
¢

Note that A(#') — A(k) = arccos(k, - k/,) is independent of the unit vector e,. Therefore K
is gyrogauge invariant as it should be.
It is now straightforward to reexpress the ponderomotive Hamiltonian in terms of E,(z),

by simply substituting
E, (k) = / d*z B, (g)e~t*= (74)
into Eq. (72). The form of K, will remain the same

- <% / d'z / &2’ K(z, 2 :El(z')E;‘(x)>, (75)
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only the kernel is Fourier transformed, as given by

Kj(:l: m,) — d4k d4k’ K(k k/)ei[k'(t—R)_k,'(z’_R)] (76)
’ (2m)t J (2m)t T '

Thus we say that K, is form invariant with respect to change of representations. Using the

formalism of Weyl symbols and Wigner functions, we can cast it into a form that manifestly

exhibits this symmetry between the z- and k-space. Let k = & + 1o, kK =k — 1o, then

Eq. (72) becomes

1 d4]:7 d40' T 1.7 1 —io-R L 1 *(T. 1
R, = 5/ (271')4/ r)t K+ 30k = 30)e By (k — 30)Ef(k + o) ). (T7)

Henceforth we drop the bar over the dummy variable . Defining the Weyl symbol of the

two-point kernel K(k, k') by

K(z, k) = / S Kk + Lo,k — Lo)eios g
) (27(')4 29 2 ’

and the Wigner tensor of E, (k) by

Weg(z, k) = <% /Zg% E,(k+ 30)Ej(k - %a)e“’"> , (79)

we obtain the ponderomotive Hamiltonian in the form

- itk
K, = /d“m/wﬁ(z _ R k) : Wy, k), | (80)

where we have used the eikonal assumption that K(z, k) is slowly varying to move it out of
the angular bracket. It is appropriate to think of the Weyl symbol and the Wigner tensor
as creatures 1iving in the ray phase space (i.e., the z-k Space) since they do‘not depeﬁd on
either representation. For instance we can express Wg(z, k) in terms of E (z) in a forrﬂ

almost identical to Eq. (79):

We(z, k) = <% / d*sE,(z + 18)Ei(c - %s)e“"">. (81)

In fact K(z,k) and Wg(z, k) can be defined without using an explicit representation.3!
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To further simplify the expression for K, let us expand the Wigner tensor in Eq. (80)
about R. To the lowest order in the eikonal approximation we can replace z by R in We(z, k).
Then the z integral acts only on the kernel K(z — R, k) and can be easily carried out using

Eq. (78), yielding

K, = u/kawy_k)wM&m. (82)

The diagonal kernel K(k, k), which can be evaluated from Egs. (73) and (71), has the fol-

lowing concise form:

K(k, k) =

{ A-wi)y Jl,w,} (k). (83)

In obtaining (83) we have used the Bessel function identity 3, J? = 1.
As an example, let us calculate the ponderomotive Hamiltonian for an eikonal wave
E,(z) = a(2)e’®@ + c.c., where a(z) is the slowly varying amplitude. Inserting this expres-

sion into Eq. (81) we obtain the Wigner tensor, to lowest order in the eikonal approximation,

4
Weg(z, k) = (2;) [aa*6%(k — 0O) + a"aé*(k + 90)]. (84)

On substituting it into Eq. (82) we find
K, = a*(R) - K(uy, p,, R, k = 00(R)) - a(R), (85)

where K is given by Eq. (83). This result has been obtained previously!®202! where the
eikonal wave form is assumed from the outset.
Adding K, and K, to the guiding-center equation (47), we obtain the oscillation-center

equations of motion:

Z=120 4+ {Z,K, +K,). (86)
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As mentioned in the previous section, the Liouville theorem (53) remains valid if we replace
Z(©) by Z. Furthermore, the oscillation-center Vlasov distribution is the same as in Eq. (54)—
we just need to reinterpret Z,(t) as the oscillation-center variables. Finally, the oscillation-

center Vlasov equation reads

(%) £+ UK+ K} =0, )
0

where K| represents resonance and K, represents nonresonant ponderomotive effects.

To recapitulate this section: In the nonresonance regions we have transformed the co-
ordinates to the oscillation-center representation, and obtained the ponderomotive Hamilto-
nian. In the resonance region no tranvsf.orma,tion was performed so the wave-particle inter-

action there is still fully nonlinear.

V. Wave Equations and Ray Phase Space Eikonal Theory

Now that we have the oscillation-center Lagrangian L=1L,-K,~K,, from Egs. (41),
(64), and (82), we can use it in the action principle (2) to obtain self-consistent equations
for the electromagnetic fields. The background fields and the perturbations have different
scales and can be varied independently. In this section we will concentrate on the equation
for the perturbed fields (the wave equation).

The whole action functional is given by

5= 3 [ atz, - K, - Ky) + [atate+ 2, (85)

where L, is similar to Eq. (4) but with the four-potential replaced by (Ag, ®y). (We have
assumed that the external sources (p,,,J,_,) are slowing varying so they affect only the

~ background fields.) The perturbed field part of the action is quadratic in wave fields
[ . E:_B? 1 [ d
4 . 4 1 1 —- = . *
Jaeti= [ae BB < 1 [ e b mwE®, (89)
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where we have used Faraday’s law wB, (k) = ck x E, (k) to eliminate the magnetic pertur-

bation. €,4,(k) is called the vacuum dispersion tensor, defined by

€. (k) = == Kﬁi - k2> 1+ kk] . (90)

4rw? c?

Another quadratic contribution comes from the ponderomotive Hamiltonian K 2- The whole

second order action can be written in the general form

1 [ d'% [ d*k , .
S:=5 [ Gt [ e DU s BRIBR () (o1)

where D(k, k') is called the two-point plasma dispersion tensor. Using the Wigner-Weyl

formalism introduced in the last section, we can rewrite S, as

S, —/d“ /(2 ) : Wg(z, k), (92)

where D(z, k) is the Weyl symbol of D(k, k') and is called the local plasma dispersion tensor.
From Egs. (88), (82), and (83), we obtain

D(z, k) = €,,.(k /dsz.%x R[ 1+Z{(1 J,Juw,}Jf. (93)

Here we have replaced the sum over particles in a species by an integral over the particle phase
space. The second term in Eq. (93) represents the linear nonresonant plasma response to the
electromagnetic perturbation. It is called the linear susceptibility and is usually denoted by
X(z, k). The intimate relationship it has with the ponderomotive Hamiltonian K, is known
as the K-x theorem.'®*® The dispersion tensor D(z, k) embodies all the information about
the (nonresonant) plasma linear response to the electromagnetic perturbations. It should
be emphasized that D(z, k) does not contain the resonant particle contribution and is thus
Hermitian.

Variation of the action (88) with respect to Ej(k), which is equivalent to varying A(k)

since w # 0, yields the linear wave equation

dK ,
/(2 7 D(k, k') ZJ, (94)

28



where the right-hand side comes from K, and represents the current density due to the

resonant particles
k=3 / L T,f,(Z, 1), T (2, 1, k)e=HeORE) (95)
7 ;

Variation with respect to ®(k) yields only the k component of the same equation and is thus

redundant. Again Eq. (94) is form-invariant and looks just the same in the z-representation:

/ d*z' D(s, z') Z i.(2), (96)

where D(z,z’) is the Fourier transform of D(k, k'):

'k [ dF N
N — i(k-z~k'-z'),
D(z,z') = | ) / ok D(k, k)e ; (97)

similarly for j,(z). Eqgs. (94) and (96) are two different representations of the same hnea.r
wave equation that describes the linear plasma response to a given source, which in th1s case
is the resonant particles. In Ref. 27 a similar equation is considered when the source is due

to discrete particle effects.
0
Let us concentrate on the left-hand side of (94) for the rest of this section. For asymptotic

analyses it is useful to turn the integral equation (94) into a pseudodifferential equation. For
this purpose we can employ the Weyl symbol calculus, as decribed in detail in Ref. 28. We

first replace &' by k — o, then use the dlsplacement operator to obtain

/ (§4> D(kk~ o) Eyfk o) = [ Zgﬂ_(;“@(k,k—a)e_a'a*'El(k)‘ (98)

Define the common symbol d(z, k) by®

d'o io:a |
Ao k) = [ 55 Dtk = o), (99)
then Eq. (98) is seen to be equivalent to

d(xHiQk,k) ‘B (k)=0 (100)
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with the rule that the derivative acts only on the wave field. In practice, we can first expand
d(z, k) in a power series of z, arrange it so that k is before (to the left of) z in every term,
then replace z by the operator i8,. A more descriptive name for d(z, k) is the “k-before-z
symbol.” In one dimension the rule can be expressed concisely as

d(z,k) — ¥ nl!a;;d(m = 0, £)(i3,)". (101)

n

Clearly the same technique applies to the z-space equation (96) as well. It is straightforward

to show that the common symbol for D(z,z’), also called the “z-before-k symbol” and

denoted by d'(z, k), can be defined in terms of D(k, k') as

d'(z, k) = / (‘217‘;—4 D(k — o, k)e™'=, (102)

Therefore, since D(k, k') is Hermitian, the z-space common symbol d'(z, k) is the adjoint of
its k-space counterpart, d(z, k), hence the notations.

Note that unlike the Weyl symbols, a common symbol is typically non-Hermitian. Using
the same technique as above, we can easily obtain the following relationships between these

symbols

d=et%%D  dt = ¢ 100D, (103)
The inverses of Eq. (103) are
D =290 = 300 gt, (104)

These rules are useful for finding the operators that correspond to given dispersion functions.
Let us illustrate the rules with an example. Suppose that we want to find the z-space operator
associated with the Weyl symbol D(z,k) = zk in a one-dimensional problem. Applying
Eq. (103), we find that d'(z, k) = zk — %, so the desired operator is

—£(20, + 9,z). (105)



Similarly we can find the k-space operator by computing d(z, k) = kz + -;-, therefore
D(z,k) = k(i8,) + & = i(kb, + 8,k). (106)

These operators are Hermitian, which is a general property of real Weyl symbols.

As we have seen in Eq. (100), a pseudodifferential equation is in general an infinite-order
partial differential equation and is often intractable analytically. In the eikonal approxima-
tion one assumes that the plasma, represented here by the dispersion tensor D(z, k) (or by a

“symbol such as d(z, k)), is slowly varying on .the characteristic scales of the wave fields. Then
it is possible to truncate the series expansion of the symbols and reduce Eq. (100) to a more
manageable lower order partial differential equation.?”"?® In the following we review those
elements of the ray phase space eikonal theory that are related to rthe theory of linear _Jmode

conversion. These ideas will be applied in Section VII to the ion gyroresonance processes.

The lowest order eikonal equation is the dispersion relation, usually written as
det D(z,k = 80) = 0. | (107)

The close resemblance of Eq. (107) to the Hamilton-Jacobi equation of classical mechanics
leads to the concept of rays, defined as the trajectories of the corresponding mechanical”
system. And just as in the case of classical mechanics, the most natural setting of the
eikonal theory is the ray phase space, Le., the z-k space. Let D(z,k) be an eigenvalue of
D(z, k), then the dispersion relation D(z,k) = 0 defines a dispersion surface in the eight-
dimensional ray phase space that is analogous to the energy surface in mechanics. The rays

are confined to this surface [Figure 1] and obey the Hamilton equations

dz oD dke 0D

i TR il (108)

where 7 is an arbitrary parametrization along the rays. If §,D # 0, then we can solve the

dispersion relation D(z,k) = 0 to obtain w = w(x,k;t). There is usually more than one
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solution; each corresponds to a wave (or @ mode). The ray equations for a given wave in the

reduced six-dimensional ray phase space (the x-k space) become

dx Ow dk Ow dv Ow
T & a o (109)

The third equation is a trivial consequence of the first two. The dispersion surface in this
reduced ray phase space can be defined only if dw/dt = 0, by assigning w(x, k) a given value
such as the frequency of the antenna.

The next order eikonal equation is a differential equation that describes how the wave ac-
tion and polarization change as they propagate along the rays. A general, Lorentz-covariant
eikonal theofy has been developed in Ref. 47, which contains a concise formula for polariza-
tion transport. It is in this order that the traditional z-space eikonal theory encounters the
so-called caustic singularities, where the solution of the eikonal equation becomes infinite
at certain places. The caustics occur when the rays focus in z-space. This focusing can
not happen in the ray phase space because of the Liouville theorem associated with the ray
equations (109). Indeed it is possible to construct a uniform eikonal approximation in the
wave space which is free of caustic singularities.?®3! There are other advantages in taking the
ray phase space point of view, and we will argue below that this approach becomes essential
when dealing with linear mode conversion.

A medium such as a magnetized plasma can support many waves simultaneously. Nor-
mally, each wave propagates on its own dispersion surface and the coupling between waves
is negligible, at least in linear theory. However, when two dispersion surfaces come close
to or cross each other, then a degeneracy occurs in the original wave equation, leading to
a phenomenon known as linear mode conversion. Figure 2 schematically depicts such an
event. One wave traveling on its own dispersion surface and passing through the crossing
- can linearly convert part of its energy to the other wave, which would then propagate away

on its dispersion surface. As we have seen in the discussion of the ray equations (109),
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to determine the dispersion relation of a wave it is necessary to diagonalize the dispersion
tensor D(z, k) by reducing the number of the compbnents of the wave fields down to one.
But in a mode conversion region, because of the degeneracy, this reduction uéuaﬂy— requires
division by a small quantity, results in a rapid variation of the wave polarization and causes
the eikonal approximation to break down. This scenario has been analyzed in Refs. 32,33.
Therefore in reducing the number of the components of the wave fields in the mode conver-
sion région, one would come to a péint when all the elements of the remaining dispersion
tensor have become small. The'dispersion tensor is then only block diagonalized, but this is.
as far as oné can go without violating the eikonal assumption. A general theory for the block
diagonalization of the dispersion tensor, called the congruent reduction algorithm, has been
developed by Friedla.r{1d,32'33v which makes systematic use of congruence transformations and
Weyl symbol calculus.

The eséential techniqﬁe of ray thse space linear mode conversion ig the following. In
the ray phase space, mode conversions typically occur pa,irwise at isolated locations. In this
case of two waves crossing each other, the equations can be reduced to two coupled first
order partial differential equations (i.e., the dispersion tensor can be reduced to a 2 x 2 block
whose entries are linear functions of z and k). These equations can be reduced to a set. of one
first order ordinary differential equation plus one. algebraic equatioﬁ, by a linear canonical
transformation of the ray phase space.?®® Thus to construct an analytic solution in the '
new coordinates becomes a trivial matter. The theory of metaplectic 151'*ansf0'r'mcztions31 can
then be applied to transform the found‘sélution back to the z- or k-representation. The
different mode conversion regions, which are separated in ray phase space, often coincide
when projected onto z-space. Therefore to describe the same problem in the traditional
z-space mode conversion theory, one must use higher order differential equations.

. These arguments apply to any linear-wave equation. In Section VII we derive the

gyroresonance coupling equations by linearizing the oscillation-center Vlasov equation (87)
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and the wave equation (94). Then we give a heuristic interpretation of the gyroresonance
processes based on the ray phase space mode conversion theory, so that the above techniques

may be employed to construct analytic solutions.

V1. Maxwell’s Equations and Conservation Laws

Varying the oscillation-center action (88) with respect to (A,, ®,) yields the Maxwell
equations for the background fields that have the same general form as Eq. (11). The
functional derivatives D, H, p;, and J, can be calculated from Eq. (12) in a straightforward
manner.

However, the guiding-center Lagrangian L, as given by Eq. (41) is not yet suitable for
computing H. Recall that the gyrophase 0, by its definition, has an implicit dependence on
b that must be removed before one can vary A,. For this purpose let us take a step back
and use the unit vector ¢ with constraints (34). Introducing two Lagrange multipliers A,

and A, for the two constraints, we then obtain a modified Lagrangian
L, = [m(u”b +vg)+ %AO] ‘R + p,(e xb)- &= A (c? —1) = Ay(c-b) — H, (110)

where H = H, + K, + K,. Not surprisingly, L, has become manifestly gyrogauge invariant.
The two Lagrange multipliers can be calculated as follows. The Euler-Lagrange equation

for p, yields

0H
cxb) ¢=—. 111
(ex)-é =5 (1)
By enforcing the constraints (34) we obtain
oOH .
¢ =(cxb)=— —(c-b)b, 112
(e x B (e (112)
which is equivalent to the equation for §. The Euler-Lagrange equation for ¢ yields
d - 0K
(—iz'(pgcXb)—pngC+2AIC+A2b+7c'l=0. (113)
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Taking dot products of this equation with ¢ and b respectively, and using Egs. (34) and
(112), we then find

/\1=p6H_£6K1 Azz'—pga.B._b.

0p, 2 Oc’ :

S (114)
For ready reference we also list here the Poisson bracket of ¢ with other guiding-center
variables. They can be obtained directly from Egs. (39) and (49) by the chain rule:
{R,c} =—-{R,b}-cb, {p,,c} =b xc,
- (115)
{uy, e} = —{y, b} - cb, | {c,e} =0.

Now substituting Eq. (110) into the action (88), and working out all the functional
derivatives, we obtain D = Ey + 47P and H = By — 47M, where P and M are the
polarization and magnetization vectors arising from the explicit dependence of the oscillation-

center Lagrangian on E; and By; they are given by

E

P=2 xZ/dGZJaf*(x R) {mR——a—HJf | (116)

M = Z/dsZJchx R)[ (m;E R+Z—Z—)

‘ (117)
1-bb . mc.: BH (0K,
Also the “free” charge and current densities are found to be
P =Pt )4, /dﬁZ J.8°(x - R)f,,
: (118)

I=3+ Y, /dﬁz J.6(x — R)RS,.

" Here we have again replaced the summation over particles within a species by an integral
over the particle phase space. Comparing the unperturbed part of the above results with
those obtained by Similon' and by Pfirsch and Morrison!® (for neither included the wave

fields), we find that there is & new term in our magnetization vector. This is the p,b x b
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in Eq. (117), which comes from the ¢ term in the Lagrangian ( 110) and is associated with
the gyrogauge. Also, by dropping the resonant contributions, our results would agree with
Ref. 15. Many of the terms in P and M can be explained physically by examining the shape
of the particle gyroorbits.*®

The total charge and current densities are given by p = p f—V-PandJ=J,+4cVx
M + §,P. They must agree with Eq. (14). However, to derive Egs. (116), (117), and (118)
by direct transformation from the particle representation would be extremely laborious.

The conservation laws for energy and momentum can be derived by the Noether theorem,
just as in the particle coordinates. The general form of Eqs. (16) and (18) are still usable if
we change (E, B) to (Eg, By) on the right-hand side, but the definitions of U, S, g, and T

must be replaced by the following:

U = 5=(B3+BY) + P -E, + Y [f258x-RKS, + 0,

C .
Sue = 1By x H) + Z / &2 7,6 x - R)RKS, +S,,
1
8oc = R(D X BO) + Z /dsz *7363()( - R)ms(ullb + vE)fa + 8w (119)

1 1
7.~ (& +BY - B, M)1- LB DE,)|
+ Z/dGZ Z&s(x - R)Rm,(u”b + VE)fa + 7:”’

where K = H — q®,. The subscript oc denotes “oscillation center,” and the subscript w
denotes contributions from the wave fields which will be discussed in a moment. (It must be
said that in the oscillation-center coordinates, the distinction between the particle and the
wave contributions is fuzzy at best. We use “wave contribution” to denote those terms that
come from the variations of the wave fields in the action principle.) These formulas can also
be compared with Refs. 11,13,15.

The gyrogauge term in M also contributes to S,. and 7, ; in particular it makes 7,

asymmetric. This asymmetry can be attributed to the “spin” angular momentum that the
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guiding centers possess. By applying the Noether theorem to the rotational symmetry of the

oscillation-center action (88), we obtain the conservation law for angular momentum:

(10 —T0) = Bt + Bl (120)
where s and S denote the spin density and spin flux density, given by
s = Z /dGZ J,8%(x —R)bp, f, + s,
’ (121)

5= / &°Z J,8(x - R)Rbp f, + S,

Eq. (120) ha; a nice interpretation: the left-hand side is' the external torque on a plasma
element which causes the intrinsic angular momentum of that element to change; thé net
rate of change is the right-hand side.

As is well known, the energy-momentum tensor is not uniquely defined. In particular
since 7, is asymmetric, it can not be equdl to the particle momentum flux density (19).
We can however symmetrize it by the standard procedure. The symmetrized version of.

momentum density and momentum flux density are given by

1 |
(8oc)s = 8o + 5V x5, (122)
(72)s = T2 — %e“"@sk + 50k (ST 4 S — sHel) (123)

It is éasy to verify that (7,.), is symmetric, and that
1 .
6)t(goc)a + V. (7;c)a == [pca:tEO + ZJezt X BO] y (124)

The derivation of the wave contributions to the conservation laws is quite involved,
primarily because we have avoi'de.d using the usual eikonal ’forrn for the perturbations that
~would make the wave fields in the oscillation-center Lagrangian local. Kull et al*® have
developed a method f-or Lagrangians that contain arbitrary order derivatives of the wave

fields. Their method can be easily generalized to infinite order and thus be applied to the
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nonlocal case that we have. (An integral can be written as infinite derivatives, as is done in
Eq. (98).) We shall only display the results here. Denote the wave energy-momentum tensor
by T4 (we use the convention that a Greek index runs from 0 to 3 and a Latin index runs

from 1 through 3), so that 7.° = U,,, Ti° = S% | and T¥ = ¢! . Then we have

T () = ¢ Ly(z) + / d's s*I(z — 5,2)a(s - 9 +35-0)- 0Ey(a)

) d43d4k 6D —tk-s Y =\ av
z/—%ﬂwis,k)e “ Ey(e+s)a(—}s- 9 — ks 3)0VE, (2),

(2m)*
(125)

2

where g#” is the Minkowski metric, I(z, z') is defined by

4
Ie,2') =" / d°Z J,6%(x - R) Z [ (‘21—71.];_410”];65%(9;311‘)—””" £., (126)
s 4

and « denotes a power series given by

e —1

a(z) = /01 dre™ = (127)

z

In Eq. (125), G acts on every z to its left and 3 acts on every z to its right. Similarly,

denote the wave spin density and spin flux density by S*' so that S% = st : then

(S*)(z) = — /d“s s 1(z — s, z)a(s - G +s- _8+) x E,(z)

1 d43d4k oD 1 —ik-s 1 Y 1 =
T3 WEE(wﬁs,k)e ‘Ei(e+s)a(-35: 0 —s- 0) xEy(a).

(128)
For an eikonal wave field E,(z) = a(2)e’®®) 4 c.c., the nonresonant contributions to

Egs. (125) and (128) yield, to lowest order, the following eikonal expressions:

T2(2) = 0°(2) - [0 €ualbl)) — () S (e, k(=) | - a(e), (129)
(8¥)(z) = —1a*(z) x %D—(z, k(z)) - a(z) + c.c., (130)

where k(z) = 00(z). Eq. (129) is previously known,® but Eq. (130) is a new result.
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In summary: We have now obtained the general results of this paper. We have derived
the oscillation-center Vlasov equation (87), the wave equation coupled to the resonant parti-
cles (94) or (96), and the Maxwell equations for fhe background electromagnetic fields (11)
with definitions (116) through (118). We have also constructed the conservation laws for
energy, momentum, and angular momentum, as given by Eqs. ( 16); (18), and (120) with def-
initions (119), (121), (125), and (128). These equations form a complete set that describes

the self-consistent evolution of the Vlasov-Maxwell system.

VII. Linear Gyroresonahce Equations

In this section we consider the linearized interaction of the resonant pa.rticleé with
the wave fields, and derive the coupling equations that can be used to describe linear ion
gyroresonance problems.

We break the oscillation-center distribution function into two parts f = f+ f1, where f
represents the noﬁresonant particles and is assumed to be independent of the gyrophase 8,
while f, represents the resonant particle distribution. Fourier expanding f, in both R and

9:
d'k iVy(6;R,K) |
fl = Z/Wfl(u“apg’k)e Ay (131)
¢
and substituting it into the linearized Vlasov equation
d -
(%) 4+ thm) =0, (132
o .
we obtain (see the justification above Eq. (68)), with K, from Eq. (64),
Dl(u”,pgv Ra k)fl(u”apga k) = (dlf) le;(u”’pg’ R7 k) ' El(k)7 (133)
where D, is given by Eq. (63), and d,f is defined by
D F =t F1o : of | K -
9p, ki
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In Eq. (133) D, should be interpreted as an operator with R — 18/8k according to Eq. (101).
(The R-dependence of d,f and J, is normally unimportant, but if necessary it can also be
interpreted as an operator in the same way.) Similarly, substituting f = f+ fi and Eq. (131)
for f, into Eqgs. (94) and (95), we obtain

¥ .
/——(2ﬂ)4 D(k, k') - E, (k') =27 ;/du”dpg .Zwer(u”,pg,R, k)fl(u”,py, k). (135)

The factor 27 is the result of integrating over gyrophase §. Egs. (133) and (135) are the
basic equations that describe the linear resonant coupling between the plasma and the elec-
tromagnetic waves.

In the following we consider only gyroresonance, for which £ # 0. The £ = 0 case is for
Landau resonan.ce and is physically quite different. We now present a heuristic interpretation
for gyroresonance processes that can serve a guide in seeking analytic solutions for Egs. (133)
and (135).

In the usual approach to plasma wave problems, one eliminates the linear plasma re-
sponse entirely and considers only the equation for the wave fields. Consequently one must
deal with a non-Hermitian wave equation containing the plasma dispersion function. Such
an equation can be very difficult to solve analytically. According to the philosophy of the
congruent reduction algorithm, f, is not reducible since in the gyroresonance region D,~0,
so we must solve Eqs. (133) and (135) together. On the other hand, by keeping the resonant
particles out of the dispersion tensor D we may be able make better approximations for it,
as is often the case.

In our mode conversion approach, we shall call the waves associated with fq the £th har-
monic gyroresonant ballistic waves, since they are the eigenfunctions of the Vlasov equation
in the absence of electromagnetic perturbations. They are also known as the streaming func-

tions and are closely related to the Case-van Kampen waves.’® The dispersion relation for
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the gyroresonant ballistic waves is just the local gyroresonance condition D, = 0. Applying
the Hamilton ray equations (109) to D, as given by Eq. (63), we obtain

0

—R(0)
x=R +£ak

ky
[ (k x b) - b©® J
(136)

: 5(0 kll (0

k=-VRO .k_¢v 2+ 7 (kxb)-bO1.

L
Figure 3 depicts the ray of a gyroresonant ballistic wave and its projections onto the x- and
k-space. The ray equations show that a gyroresonant ballistic wave travels in both x and k
directions in the ray phase space. Consider the simplest one-dimensional (slab) model with

the resonance condition D,(z) = w — £Q(z) = 0, then the ray equations become simply
£=0, k,=—£(z). - (137)

Therefore in this case the phase change of the gyroresonant ballistic wave is entirel;}dﬁe to
its propagation in the k-space. Staying in the z-space, one can see a stationary wave packet,
with varying phase velocity. Unlike Landau resonance, the inhomogeneity of the magnetlc
field is of crucial importance here. Besides giving rise to k, it also effectively separates the
gyroresonance regions of different harmonics.

Another important property of the gyroresonant ballistic waves is their kinetic charactef:
they form a continuum, parametrized by Y and. Py, and can superpose to produce collective
waves such as the Bernstein waves. In this respéct they are very much like the Case-van
Kampen waves. The Hermiticity of equations (133) and (135) (after a trivial rescaling)
makes them easier to solve; and it is from the solutions of these equations one can obtain
the collective Bernstein waves by an appropriate superposition.

A clear picture of the nature of a gyroresonance process has emerged from the these
considerations, as depicted by Figure 4. The upper surface represents the dispersion surface
of an eleétromagnetic wave that comes in and traverses the gyroresoﬁance region. There it

excites a continuum of gyroresonant ballistic waves, which then travel in the ray phase space
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according to Eq. (136). They may come across another dispersion surface of an electromag-
netic wave. If they do, each of them can excite a wave on the second dispersion surface, as
represented by the many rays there. Therefore, in the case when the two dispersion surfaces
correspond to incident and reflected branches of the same wave, a single incident ray can
generate a continuum of reflected rays, which then interfere to produce the phasing effect.’
It is perhaps more interesting if the incident wave is a wave packet. Then because of the
finite velocity of the gyroresonant ballistic waves propagating in the ray phase space, the
reflected waves will emerge after a certain time lapse, giving rise to the phenomenon of linear
cyclotron echo.5!:52

For the purpose of obtaining analytic solutions to the gyroresonance equations, this
picture suggests that we treat the transmission and reflection of an electromagnetic wave
as two separate mode conversions, connected by the propagation of gyroresonant ballistic
waves in between. For each mode conversion the dispersion function of the electromagnetic
wave can be linearized around the respective mode conversion region, yielding a first order
differential equation that is analytically soluble.*”

To conclude this section let us construct the action principle for Eqs. (133) and (135).

The action is a quadratic form, defined by

&k [ d N B (eEe
S= [t [ o [ (k. ) By (K)E3 (8

Dy(wys g, &, k') N o
+Z/du”dpgj, e(d':f,)/zr Fely) pg, K') f, (U”»Pg,k)] (138)

_Z/ (;14,;4 [2w/du”dngwJ (U||>Pg,R k) - Ej (k)fe(“”,l’g’k)J

where
Dy(uy, py, k, k') = De(u”apg,R — i0/0k, k) 6*(k — k') (139)
is the two-point dispersion function whose Weyl symbol is D,(u”,pg, R, k). It can be readily

checked that variations of S, with respect to E} and f; yield the correct equations. The
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action principle makes the Hermiticity of the gyroresonance equations more apparent. It also
suggests a definition of the wave action density associated with the gyroresonant ballistic
waves. Eq. (138) shows that the actual dispersion function for f, is 2rD,/d,f, leading to

the following definition of wave action density associated with f, by

o / duydp, T [ ( f f) m] (42> 22 ) (140)

in analogy to (0D/0w) : Wy, which is the wave action density for an eletromagnetic wave.28

W, 1s the Wigner function of f,, defined by

do .
Wel),py, 2, k) = <1/(2 LS RALES U)fe(’“n Pg”““%")ew'x» (141)

These formulas may be derivable directly from an Eulerian action principle'®5? that is lin-
earized and uses the guiding-center/dscillation-center coordinates. |

* In summary: In this section we have derived the linear gyroresonanée coupling equa-
tions. We then interpreted gyroresonance processes as mode conversions between the elec-
tromagnetic waves and the gyroresonant ballistic waves. We have also shown how the mode
conversion approach may lead to analytic solutions of ion gyroresonance problem in general

geometry.

VIII. Discussion

Although this paper has been prepared with the ion gyroresonance problem in‘mind,
the method that we use here is general enough so that the results obtained can be applied
to many other problems as well. Below we discuss a few of the possible applications.

1. As long as ’relativistic effects are unimportant, our formalism can be applied directly to
the problems of electron gyroresonance.
2. The heuristic interpretation of gyroresonance processes in Section VII applies only to

gyroresonance, i.e., £ # 0. Other than that we have not made any distinction between
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gyroresonance and Landau resonance (£ = 0). Our main results can be used for both
cases. However, since Landau resonances often occur for frequencies much lower than
the particle gyrofrequency, we can significantly simplify our formalism by dropping all
the £ # 0 terms in K.

3. By keeping only the £ = 0 terms our formalism becomes essentially the gyrokinetic
theory,®® applicable to frequencies much lower than the particle gyrofrequency. The
only essential restriction we have put on the perturbed fields is that they are of short
wavelength so that the eikonal approximation is appropriate. The assumption that
w # 0 is solely for the convenience of calculations. To remove it we need to go back to
Section IIT and use Eq. (29) instead of Eq. (25) for the perturbed Lagrangian L,. The
whole calculation that follows can be carried out in just the same way as we have done.
It is noteworthy that we although our calculations require the eikonal approximation, we
have not used the usual eikonal representation a(z)e*®® +c.c. for (coherent) wave fields.
In fact our formulas are fully nonlocal, so in principle one can use any representation.

4. Moreover, we do not even require the wave fields to be coherent. The Wigner function
formalism is well suited for handling statistically random perturbations. (Indeed Wigner
introduced it originally as a classical analogue of the quantal probability function.**) In
this case the angular bracket in the definition (79) or (81) has the meaning of ensemble
average. Ref. 27 contains a detailed discussion of the use of Wigner function for random

perturbations.

IX. Conclusions

In conclusion, we have derived a complete set of self-consistent Vlasov-Maxwell equations
in the guiding-center/oscillation-center coordinates. They include the Vlasov equation (87),
the wave equation (94) or (96), and the Maxwell equations (11) with definitions (116), (117),

and (118). Within this formalism, the macroscopic quantities such as the charge and current
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densities are unambiguously defined. If the knowledge of exact particle orbits is not needed
(such a knowledge may be required for studying particle loss to the wall, for example), we
can treat these equations as the basic equations. There is no need to transform back to the
particle coordinates in order to compute e.g. current.

We have also derived the conservation laws for energy, momentum, and angular momen-
tum for the whole system (Egs. (16), (18), and (120) with definitions (119), (121), (125), and
(128)). An essential ingredienﬁ of our formalism is to treat the resonant and nonresonant
regions of particle phase space separately. The coordinates in the nonresonant regions are
transformed so that particles there respond linearly to the rapidly vé.rying perturbations and
nonlinearly to the ponderomotive effects, while the coordinates in the resonance region are
not transformeci and particles thére can beHave very nonh'neariy.

Then we have derived the rlinea;rized gyroresonance coupiing equationé (133) and*(135).
These equations are interpreted as mode conversion equations between the electromagnetlc ‘
perturbatlons and the gyroresonant ballistic waves. A heurlstlc plcture is introduced that
can be used as a guide in constructmg analytic solutions.

Besides these results, we have also discussed some of the new ma.thematlca.l methods that
have been developed in plasma physics in the la.st decade they mclude the self-consistent
action prmcxples for the Vlasov-Maxwell equations, the Lie transform technique, the La-
grangian guiding-center ﬂheory, the osci]lation-cenfer theory, the ray phase space eikonal
theory; and the linear mode conversion in the ray phase space (plus thé congruent reduction
algorithm). This papef demonstrates how these powerful tools can be brought together to
tackle a practical problem of plasma physics. | |

We have appiied the formalism developed in this article to the analytic solution of
the one-dimensional model of ion cyclotron heating of plasmas. We have obtained explicit )

formulas for the transmission, reflection, conversion, and absorption, for both the majority
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ion second harmonic and minority ion fundamental gyroresonances.® This work is being

prepared for publication.

Appendix A. Lagrangian Lie Transform

The traditional theory of canonical transformations is based on the mixed-variable gen-
erating functions. It is often rather awkward to use because it provides no systematic ways
that can help in developing expansion series. The Hamiltonian Lie transform theory, de-
veloped in the nineteen-seventies, recognizes the fact that canonical transformations form
a group, and by exploiting this group structure it proves itself far superior to the mixed-
variable method (see Ref. 55 for a review of this method). But it is still limited to canonical
transformations. The Lagrangian Lie transform theory removes this restriction by utlizing
the intrinsic geometrical properties that underlies the system and the coordinate independent
tools of differential geometry.

It thus allows us to use noncanonical but physical variables (e.g., the particle velocity v
versus the gauge dependent canonical momentum p), and the results will be manifestly gauge
invariant. This is not insignificant because to prove the gauge invariance of a physical result,
such as the ponderomotive Hamiltonian, that is obtained after a myriad of transformations,
can be very difficult. Below we will summarize the main results; for their derivation and
applications see Refs. 22,23. Ref. 15 also provides an easy-to-follow introduction to the
subject, including the basics of differential geometry, with a good number of examples. For
explicitness we shall write everything out in components.

The starting point is the phase space Lagrangian for single particle motion in an elec-
tromagnetic field, as introduced in Egs. (3) in Section II. More generally the Lagrangian

takes the following form:

L(z,2,t) = v,(2,t)3' — H(z,1), (A.1)
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where 7 runs from 1 to 2N, N being the number of degrees of freedom. It is convenient to
include ¢ as a coordinate, so as to make the problem autonomous. Thus we write Ldt =
v,(z)dz*, with 2* = (t,2), and Yu = (—H, 7). 7 is called the Lagrangian one-form (an older
name for one-form is covector), and its exterior derivative is called the symplectic two-form

(also called the Lagrange bracket), usually denoted by w:

w=dy= %ww dz* Adz", (A.2)

where w,, = 0,7, — 9,7,. The equations of motion in this (2N + 1)-dimensional extended
phase space are Hamiltonian: w,,dz/d\ = 0, where ) is an arbitrary parameter. Setting
A = t, this equation becomes

#=Jwy = JY (0; + 0;H), (A.3)

where J' is the inverse of w;; and is called the Poisson tensor, because it defines the Poisson

bracket

{A,B} = (8,A) J" (9,B). (A.4)

Direct calculation can verify that the Poisson bracket thus defined satisfies the Jacobi iden-
tity. It can also be verified that Eq. (A.3) is indeed the correct Euler-Lagrange equation.
The Lagrangian Lie transform is a near identity coordinate transformation. It uses a

generating vector field g#(z), and can be represented symbolically by

Z — ew’

z, (A.5)

where ¢ is the small parameter, and the exponential is short-hand for the corresponding

power series. £, is called the Lie derivative, defined by the following rules:

when acting on a scalar: ’ L,S = g*d,8;
when acting on a vector: (L,V)# =g"8,VE - V¥, g,
when acting on a one-form: (L), = é”wun +30,(9"7,).
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The use of the exponential map indicates that the inverse transform can be obtained by
simply reversing the sign of the exponent. The Lie transformed scalar, vector, and one-form

are, respectively,

S =efog, V = e oy, I' = e %ony, (A.6)

Note that these are functional relationships: both sides are evaluated in the same coordinates.

Now suppose that the Lagrangian one-form that we start with is itself a power series in

v =70 4 ey 4 24 4 (A.T)
Correspondingly we can make a succession of Lie transforms, represented by
z - [6“:91 e L .. ] z. (A.8)
The Lie transformed Lagrangian one-form then becomes
[=...enebn . (A.9)

Expanding it in powers of € we obtain, order by order,

L =42,

IV =40 — gt @ +8,F,, (A.10)

I =90 - g5 wl® - %yl” WD +00),, +4,F,
etc. We have added a perfect differential to each order except the lowest, which amounts
to making a near identity Lagrangian gauge change. As has been pointed out in Section II,
this has no effect on the equations of motion. Eq. (A.10) are useful for the purpose of
averaging. By appropriately choosing the véctor generators, we can remove, order by order,

the oscillatory parts from «, so that I is slowly varying. In principle this can be carried out

to any order; for our purpose, the second order is sufficient.
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Consider the I'() equation in Eq. (A.10). Separating out the time component we have

I =50 — g - a49+@ﬂ, (A1)
K, =H +guw ("’ — ,F,, (A.12)
where we have used 7t(1) = —H, and T, t(l) = —K;,. There is considerable freedom in solving

these equations. It is natural to set ¢! = 0, so that time remains unchanged. Also we can
set l",-(l) = 0 and obtain
d
(E) Fo=H, —:%,0 _g (A.13)

g = (O;F, + 4, (A.14)

where J¥ now denotes the inverse of wfj), and (d/dt), = 8, + 2(9%9; denotes the total time
derivative along the unperturbed orbit. In obtaining Egs. (A.13) and (A.14) we have used
the unperturbed equations of motion (A.3). Now we choose K, to absorb the non-oscillatory

part of the first order perturbation, if there is any,
K, = <H1 - z'<°>‘7,.(1)> , | (A.15)

where the angular bracket stands for “slowly varying part.” - Fj is then solved by integrating
Eq. (A.13) along the unperturbed orblt since the non- osallatory part has been removed
from the right hand side by K,, we can be sure that F| is. free from secularity. Eq. (A.14)
then yields the generating vectorv field gl, which can be used in Eq. (A.5) to calculate the
actual coordinate transformation. | |

Similar treatment of the I'(?) equation leads to the following:

d

(E) Fy=H,-:%,® _ g +—g (W M)y, + —g w(l) 5 (0 (A.16)
0

1 ..
= <ajF2 +44) — 59! w,g)) J7. (A.17)
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Now K, has to absorb the non-oscillatory parts from both the second order perturbation,

and the quadratic terms of the first order perturbation:
- (0)i 1, 1 ; :(0)i
Ky = (Hy = 205 4 L4t 0 1 a0, 1 i s ). (A.18)

Here we see how a lower order oscillatory perturbation shows up as a higher order correction
after averaging. For the purpose of this paper, we only need to find the ponderomotive K,,
so it is not necessary to calculate g,.

If the original perturbation is in the Hamiltonian only, then these formulas simplify

considerably. Now that 751) = 7,-(2) =0, Eqgs. (A.13), (A.14), and (A.18) become

d
91 = {F, '}, (A.20)
1
Ky = (H, - 3(R B + K}). (A21)

In this case the Lie transform is called the Hamiltonian Lie transform.>® Eqs. (A.19) and

(A.21) were used in Section IV.
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Figure Captions

Figure 1. A dispersion surface in eight-dimensional ray phase space and a ray that propagates

on it.

Figure 2. A diagram depicting a single linear mode conversion in the eight-dimensional ray
phase space. The intersection of the two dispersion surfaces, represented here by a line, is
itself a surface. The mode conversion occurs around a point, shown here by the dot, where

a ray of wave a crosses the dispersion surface of wave b.

Figure 3. A diagram showing a ray of gyroresonant ballistic waves in six-dimensional ray
phase space and its projections in x- and k-space. The projection in X-space is essentially
the guiding-center orbit; the projection in k-space shows the propagation due to magnetic

field inhomogeneity.

Figure 4. A schematic diagram depicting a typical gyroresonance process as viewed in ray
phase space. A ray of the incident electromagnetic wave comes in on the upper dispersion
surface. As it crosses the gyroresonance layer, its excites a continuum of gyroresonant
ballistic waves. The gyroresonant ballistic waves then propagate in six-dimensional ray
phase-space and intersect the dispersion surface of the reflection branch (the lower surface).
Each gyroresonant ballistic wave mode-converts to a reflected wave. In general there is a

continuum of reflected waves that interfere and cause the phasing effect.
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