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Abstract

A plasma sustains fluctuations of electromagnetic fields and particle density even
in a thermal equilibrium and such fluctuations have a large zero frequehcy peak. The
level of ﬂuctuation; in the plasma for a given wavelength and frequency— of electromag-
netic fields is calculated through the fluctuation-dissipation theorem. The frequency
spectrum shows that the energy contained in this peak 4is complementary to the energy
“lost” by the plasma cutoff effect. The level of the zero (or nearly zero) frequency
magnetic fields is computed as (B2>0 /87 = —21—W3T(wp/c)3, where T and w, are the
temperature and plasma frequency. The relation between the nonradiative and radia-
tive fluctuations is elucidated. Both a simple collision model and a kinetic theoretic
treatment are presented with essentially the same results. The size of the fluctua-
tions is A ~ (c/wp)(n/w)}/?, where n and w are the collision frequency and the (nearly
zero) frequency of magnetic fields oscillations. Perhaps the most dramatic applica-

tion of the present theory, however, is to the cosmological plasma of early epoch (say
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t = 1072 — 10%sec after the Big Bang). Implications of these magnetic fields in the

early Universe are discussed. Quantum mechanical calculations are also carried out for

degenerate plasmas.



I. Introduction

Flictuations of various physical quantities near zero frequency have been the active subject of
research for a long time and a quite subtle one at least since J ohnson' and Nyquist? discussed
the subject. (One could begin citing even earlier works such as Einstein.) Some other early
experimental works include Brophy and Rostoker® and McWhorter* in semiconductors and
some of the latest include papers by.R. Stenzel® and Zhang, DeSilva and Mostovych® in
plasmas. In 1957 Kubo” published a general theory on the fluctuation-dissipation theorem.
Rostoker et al.®® and Dawson et al. %! have theoretically looked at fluctuations in plasmas
in a slightly different approach. In particular in Refs. 9 and 11 radiation from plasma has
been considered in detail.” Many of the previous authors on this subject were aware of
the subtlety involved in low frequency fluctuations, including the work by Kadanoff and
Martin,'? in which the relation to hydrodynamics was pointed out. A great deal of plasma
works are compiled in Sitenko’s book.’® To our best knowledge, however, we were unable to
find a concrete expression of the low frequency spectrum of fluctuations of, say, magnetic
fields in a thermal plasma. In the present paper, theréfore, we investigate frequency spectra
of magnetic fields and other physical quantities of a plasma in a thermal equilibrium near
zero frequency.

Our investigation is based on the fluctuation-dissipation theorem.” The derivation of the
frequency spectrum of magnetic fluctuations in a nonmagnetized gaseous plasma is presented
in Sec. II. We will find a peak around w = 0 for magnetic fluctuations as well as for other
physical quantities. The magnetic w = 0 peak will be interpreted as the evanescent energy
component of electromagnetic fluctuations “screened” in a plasma below the plasma fre-
quency. In Sec. III We briefly discuss kinetic and collisional effects on fluctuations. We will

find that the lifetime (or the inverse of frequency) is related to the wavelength of fluctua-




tions. Further, we will find that the amount of fluctuations of w = 0 is greater for hotter and
denser plasmas. These findings lead to Sec. IV, in which the most spectacular application of
the present theory turns out to be to the primordial cosmological plasma. We will describe

some of the consequences of the present theory.

II. The Fluctuation-Dissipation Theorem

In or near thermal equilibrium the plasma has thermal fluctuations, whose level is related
to the dissipative characteristics and the temperature T of the plasma, as formulated in the
fluctuation-dissipation theorem.” We find an expression for the fluctuation spectrum of the
magnetic field in an equilibrium plasma as a function of frequency. This is accomplished
by deriving the magnetic fluctuations in wavenumber and frequency space (B?), /87 from
the fluctuation-dissipation theory, then integrating over wavenumber. (B?) /8 is nearly a
black-body spectrum at high frequencies, but, we are interested in low frequencies.

The following derivation closely parallels the work of Geary et al.!* We look at waves
in a homogeneous isotropic nonmagnetized equilibrium plasma. We assume a wavevector

k = kZ. The strength of electric field fluctuations may be found in Sitenko!?:

1 ') h _ _1*
St (Ei Ej)y, = 9 erw/T _1 {Az'jl - Aijl } ) (1)
where
k(K k;
Aij(w, k) = — (k—zj - 5ij) + €5 (w, k) (2)

where ¢;;(w, k) being the dielectric tensor of the plasma. Since Faraday’s law is B = %5 x E,

and we have set k = £Z, we find
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where the subscript 1,2, and 3 refer to z, y, and z. We then have the total magnetic

fluctuations as

BX).. i A R i 1 ik .k
( tg;)k T 9 helT _ 1 o2 {A221‘ + Az — Ay —Am }, ()

where c.c. refers to the complex conjugate.
In order to establish A;;(w, k), from the equation of motion of a plasma, here we introduce
a multi-fluid model of a plasma. As a simple and analytically tractable model consider the

case with finite and constant collisionality:

dv o 6)

ma"—d_t_=eaE’_77amavoz)

where « is a particle species label and 7, is the collisional frequency but can incl}}ggt.he
viscosity effect. We can show that a description of electron dynamics more a,cc'ura{:ve:cthan
Eq. (6) such as kinetic treatments leads to better mathematical properties. We note fhat n
should tend to zero for very short wavelength EM waves because for large Wavenurﬁi;ers k
the photon shifts momen-tum by a large arr;ount so that the iriteractirig electron population
before and after the interaction becomes very small. However, for the sake of analytical
tractability and physical transparenéy we take this simplified constant collision frequency

model as illustration of the essential physics. Fourier transforming (6) gives

— WMy Vo = €q B — Ng My Vo (7)
which yields the current j,
w? '
. o ta x .
(—iw +7a) jo = ar E (8)

‘The susceptibility tensor X,;; is defined to relate j, to E such that
jm' = —iw Xm-j(wk)Ej(wk) . - (9)
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The dielectric tensor ¢;;(wk) is given by

eij(wk) = 65 + 47 > Xoij (10)
SO
(w ) w;
wK) TP 6 11
4:7I'Xa”_7 w(w-l—ma) 13 ( )
and
w2,
eij(w,k) = 5,‘j - Z m&j . (12)

In an electron-positron plasma (as we will apply the theory later to cosmology), we have

Wpet = Wpe- and ne+ = 7, = 7. Equation (12) becomes

w2

(w, k) = 6;; — ——E—§;; 13
€ (w, k) j w(w + i) J (13)
where w? = w2, +w?2,_. We now obtain
R
w(w +1in)
272 2
Aij = - k “p : ) (14)

1 —

c® k? w?
Tw? w(w i) )
Combining Egs. (5) and (14) after some algebra, we obtain

(Bz>kw _ 27iw 2 kzcz

= w, .
87 FwlT 11 (w? + 2kt + 2w (w? — w? — 2)k2c + [(wz —w2)? 4 Uzwz] w?

(15)

Integrating Eq. (15) over wavenumber, we obtain

(B%), _ 2hw 27 (@)3 /0°° da:( z? (16)

8 ew/T —1 2722 \ ¢ w? 42t

where z = k ﬁ and the primed quantities are normalized by wy.. Note that Eq. (16) diverges

with 7’ = n/wp. fixed.



The fact that we get high wavenumber divergence is not surprising, since we have, up
to this point, based our calculations on classical fluid equations of motion with a constant
collision frequency 7 independent of k. We need a better theory to handle this difficulty.
‘This may be done by a kinetic theory which includes more exact collision effects, wave-
particle interaction, etc. However, by doing so, we overly clutter our expressions so that we
lose track of which effects give rise to zero frequency fluctuations and which do not. So, we
proceed instead with this semi-phenomenological theory of collision effects in this section.
However, we can show that both approaches yield essentially the same frequency spectra.
In order to overcome the large k divergence, we let 7 tend to zero first; then we integrate
over k to infinity. This will bring the high frequeﬁcy expression. This procedure physically
corresponds to the vanishirig cross-section of collisions as k — co. We still need the correct
plasma expression in the low frequency expression. At high frequency and high wavenumber
(w, ck > w,) of Eq. (15), this function has a substantial value only where w? —c? k? —w? = 0.

A high-frequency, high wavenumber limit is obtained by letting n — 0. We take this limit
with the aid of a standard definition of the Dirac é-function: Integrating Eq. (15) over

4 k? dk from 0 to oo with the above consideration, we obtain

(B%),, T / wﬁ 2 1 h 2 213/2
8 _2’”600) wz-i-czk?k dk+27rc3 eﬁ‘“/T——l(w wp) (17)

This expression (17) reduces to the familiar black-body radiation formula in the limit w, — 0.

o0 2
As the magnetic energy density is / dw (B')
-0 2m 8T

in the electric field, we see that this is the standard black-body spectrum. The only difference

and half the energy in a black-body is stored

of the second term of Eq. (17) from the conventional vacuum formulation is the presence of
the plasma cutoff w,. |
We now break up the integral of Eq. (16) into two intervals: one from zero to ke, and

the other from key (Or Zews = keut ¢/wpe) to co. In the first integral we keep 7 finite since




the range of this integral includes w ~ O(n), while in the second integral we let n — 0:

(BZ)w _ 1 ﬁw' /<wpe>3 ‘[ Tcut T
— —— 27 /0 dz(

4

st % elue/T 17 e w2 )zt + -
h(wl2 _ w;2)3/2 : wp 3
ot il — /2 k2 2
+ 27r(e(ﬁwpe/T)w’ - 1) ( c ) . © ( c kcut + wp) ’ (18)

where © is the Heaviside step function. The second term is what we have obtained in the

above. Note that the divergence of w — 0 is removed:

2 ! 3 Tcut 3
lim 50w — o 1)2(%> ~1-/0 dg = — 2= <°"’”) Tewt,  (19)

w—0 87 WZ(ehwpew'/T — c n' 2 n’ Whe c

where the second equality holds for the classical limit T' 3> Awp.. We determine Keys (or Zcut)

from the requirement that the frequency spectrum (18) be smooth at the joint between the
low-frequency spectrum and the black-body spectrum. This gives a range of possible values
Of Eeys. Feu is fixed by satisfaction of equipartition law in the known limit. The size of ky
thus becomes approximately keys ~ wpe/¢(Tcut ~ 1). This determines the spectrum intensity
at w ~ 0. This intensity does not vary sensitively with kc. We show in Fig. 1 an example
of the frequency spectrum of Eq. (18) of magnetic fluctuations. Near w = 0 the spectrum
goes like w™2.

We now discuss the wavenumber spectrum. In the limit 7 — 0 the integral of Eq. (15)

over w gives

(B hk?c? 1 LT w?
8 (eh/T(wg+k2 )iz _ 1) (wg + 2 k2)12 wg +c2h?

(20)

First, note that, once again, w, — 0 gives the standard black-body result arising from
dk
(2m)®
that given for (B?), /87 by Geary et al.'* They obtained this expression via the Darwin

the first term. (Remember: (B?)/8r = /oo 47 k* <Bz>k /8m.) The second term is
0

approximations. Our result satisfies both radiative and non-radiative limits. Note that when

A(w? + ¢ k)12 < T, two terms together yield

(B?) |
——8—;—1—(- -T, (21)



giving the equipartition law of classical statistical mechanics. We can show that this limit
is obtained also by using the Kramers-Kronig theorém.
The integral over the zero frequency peak gives rise to the expression of the magnetic

energy density near the zero frequency (i.e. non-radiative modes) as

2,0 2\0 Tcutwp/c 2 2\0 3
B) By ot AR B L (%) n, ()
0 0 ¢

8w 2 8« (2m)® 8t 2«

Another observation of interest may be made. The energy under the w = 0 peak is
approximately equal to the energy “deficit” around the plasma cutoff w = w,. The energy
under the peak is evaluated from Eq. (19) as ~ T'(w,/c)34/72. The energy deficit, using the

Rayleigh-Jeans formula, is approximately

/w,, do T ? = iT(ﬁy
—wp 2T 27 & 3m? c/
This is pictorially shown in Fig. 2(a) with hatched areas with / and “.. This result may be
figuratively stated that the electromagnetic energy cutoff by the plasma w < wp. is sq_geézed
toward the zero frequency fluctuations when compared with the black-body radiation vy_:ithout
plasma.

We also compare (Bz)w=0 /87 to the pressure produced by w = 0 fluctuations in the ion
densiﬁy. Consider the longitudinal E-field fluctuations: ’
& =y (i -a2"). 22

(Once again, k = kZ.) The definition of A;; shows

. _ -1 __ 1 )
A]_l ——'611((4),1() ; All = —'——-———611 (w,k) . (..44)
By taking
kD wp;
611(w,k)—1+—k—2—-m , (25)
we find
(E:z)kw _ hw nw; . (26)

8r T =T a1 4 kB /k2) — "+ n2wr(l + kb7
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~where kp is the Debye wavenumber. Notice that while (B?)  is inversely proportional to 7

at w = 0, (E2)_ is directly proportional to n at w = 0. Mathematically, this stems {rom
2 1.2

the term 5 which is present in Ay, and Ags (transverse fluctuations) but absent from Ay
w

(longitudinal).

Using the Poisson equation, we obtain the charge density fluctuations

2
D C e/ - (27)
v € -1 (w2+w2kf)/k2-—wp,-) +n?w(l + k3 /k?)?

Now, this is total charge fluctuation. If we are interested in the ion density fluctuations, we

use
k3

8n; = €. b6pefe , where ¢, = 1 + —= 2 (28)

to obtain
k 2 2
<5nf> o Ny ke dk 4rk? |1+ = kp kz 5
w  eh/T — 127 e? (27)3 k? 9
w2 +wr B —wi| +n%w? (14 3
(29)
In the zero frequency limit w — 0 we have
n 1 28 _

where kp is chosen as the cutoff since density fluctuations will be correlated very weakly for

wavenumbers higher than kp.

ITI. Kinetic and Collisional Effects

We find that the physical basis of the zero frequency peak is due to collisions (or other kinetic
dissipation) or more precisely collision-induced quasi-modes. Imagine an individual charged
particle, say, an electron propagates in a plasma, which itself is composed of an ensemble of
such electrons (and other charged particles). With finite discreteness of the charge, the elec-

tron can contribute to a current fluctuation due to this ballistic motion of electron over the
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time until it encounters collisions (or other kinetic dissipation). Electromagnetic field fluctu-
ations are induced from such a current fluctuation. However, the low frequency component
of the field fluctuations finds itself that it cannot propagate, as it is evanescent, as distinct
from the high frequency component Which can propaga,te in a plasma as photon. Thus this
gives rise to défnping of the field fluctuations. Therefore, the lifetime of the fluctuations is
related to the collision time (or other kinetic dissipation time).

The transverse part of the kinetic dielectric permitivity is given by

2 k2 m \1/2 w2 6—m'u2/2T M 1/2 e—MuZ/ZT
wo=1- S ()" [ S ()" SR
(w, k) = w? t 27T w? JL —w+ kv + 27T L —w+ kv (31)

Where m is the electron mass, M is the hydrogen ion mass, w,. is the electron plasma
frequency, and wy; is the ion plasma frequency. The subscript “L” attached to each integral
sign is meant to specify the contour taken in each integral over the Landau contour.®

As indicated above, we are interested in fluctuations at frequencies and wave vectors in -

the regime

S Ve, Vi

x| €

where v, = /T'/m and v; = 1/T'/M. In this regime, we can approximate A by

21.2 2 2 h
Auwok) =1 - S e Lo riff 2 (32)

w?  w2k? vPk? 2 vewk

Therefore, we obtain

B2 2,/Z aw?, k% v,
(B _ Vi (33)

- 2012 _ 284 — 9,12 ;132/002Y2 L E 22,04 4252 [0y2
87 (WPk? — 2kt — w2 w? [v2)? 4+ § otwh wik? [v?

Here we see the qualitative confirmation of our earlier results: (B?), /87 has a finite
maximum at w = 0 as long as k? < 2wZ,/vZ. True enough, (B?), /87 had a maximum at
w = 0 in the cold plasmé, regardless of the size of k. In any event (B?), , /87 in the zero-
frequency peak is on the order of T'/2 for small enough k. A rough approximation of the

total energy density contained in this peak is then T'/2 times the k-space volume contained

11




within the necessary wave-vector cutoff, divided by (27)3. If we choose key = wpe/c again,

we find, once again,

(B, _ T 1 (ﬁ’ge_)s . (34)
8 2 672\ ¢

From Maxwell’s equations with all the terms on the right-hand side except the source

term (the third term) written in terms of E, we obtain the dispersion relation of the quasi-

modes:

UJZ

2 122 P -0. 3
w k*c __1+i77/w 0 - (35)

In the low frequency limit Eq. (46) yields the dispersion relation

k2 ¢?
w=1

LU2 77 * (36)

P
Or, equivalently, the spatial size A of magnetic field fluctuations for a given lifetime 7,(= w™?)
is

Mre) =27 ;c_ (n )2 . (37)

P

Equation (36) states that the lifetime 7, of magnetic fluctuations (or maybe called “magnetic
bubble”) of size A is proportional to the size squared (7, o< A?); the larger the size of the
bubble, the longer it lasts.

This entails an important ramification. Suppose two magnetic bubbles touch or collide
with each other and coalesce into one. The time for coalescence of magiietic bubbles involves
reconnection of magnetic field lines. It is generally known'®” that this process (or related
ones) is much faster than the diffusive time related to Eq. (36). Thus the coalescence time
is much shorter than the individual life time. Therefore, before bubbles die away, they can
form a coalesced bubble when they collide with each other, as long as they collide frequently
enough. Once a larger coalesced bubble is formed, its life time is substantially longer, as
Eq. (36) shows the life time is proportional to the square of the size of the bubble. It is

possible to imagine that once larger bubbles are formed, they become even more long-lived
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and may be able to encounter more opportunities to collide with other bubbles. In this
way a preferential formation of larger bubbles may become possible. This process is not far -

different from that of polymerization.

IV. Cosmological Significance

We have found that the amount of zero-frequency magnetic fluctuations is proportional to
Tn%? according to Eq. (22), where n is the electron density. Theihigher the temperature
and density, the greater the magnetic field fluctuations of the plasma become. Note that
Tn? = Pnl/? so that the zero-frequency magnetic fluctuations have stronger dependence
on the plasma temperature than the pressure. This is why the most remarkable application
of the present theory is found in the cosmological plasma. In fact during the radiation
epoch of the cosmological time [i.e. 1072 second after the Big Bang till the 10 second the
main constituents of the Universe were photons, electrons (posiltrons) and ions (primarily
protons)] the temperature T of the photons and. plasma is inversely proportional -to the
scale factor a.of the space time metric!® and n o« T°, so that (B?) _, o« a~'}/2; while
P « a~*. Since a(t) x /% during the radiation epoch, this means that the earlier the ephoch
is, the greater the relative importance of the zero frequency magnetic field fluctuations to
the plasma pressure is. In other words the plasma beta B(= 87P/ (B?) _,) o a*? and
around ¢ = 10~2 second f is nearly unity. At the very beginning of the radiation epoch (we’
may call it the plasma epoch as well) the present zero-frequency magnetic field fluctuations
were most impressive, and we will start from then (prior to this epoch our knowledge on
strong interaction is not sufficient enough to make any prediction). First, the present theory -
provides a mechanism for seed magnetic fields, which may help structure formation in the
later Universe evolution. However, there are a few important questions. The typical spatial

size of fluctuations is ¢/w,, far, far smaller than any macroscopic cosmological scale. How

can such small scales grow to cosmological macroscales? This is the question we will focus
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on in the rest of the present paper. In addition how large is the magnitude of magnetic
fluctuations at the time of recombination (¢ = 10'®sec) in the course of cosmic expansion?
We defer this question to a future publication. Thirdly, can the magnetic fluctuations leave
enough imprints on plasma density fluctuations for galaxy formation and at the same time
not contradict with the observed highly uniform and isotropic cosmic microwave background?
We will address this question briefly at the end of the present paper. .

The process of successive coalescence (and its reverse) and decay of magnetic fluctuations
in otherwise nonmagnetized plasmas is considered here. As our magnetic fluctuations have
the lifetime greater for greater spatial sizes [Eq. (36)], we expect a “polymerization” of
magnetic fluctuations (or bubbles) to occur. To illustrate this in a simplest possible way
mathematically, we model this process as follows. We consider the magnetic fluctuations are
all composed of a typical size a (which is about ¢/w, according to our findings). Our spatial
scale herewith is normalized by this size a. When two such structures coalesce, its linear
size becomes i = 2. If three form a linear chain, ¢ = 3 etc. For the purpose of simplicity'
we consider only linear chains. There is a physical reason why the linear form is preferable
for magnetic fluctuations, but detailed discussions on this are skipped here. Let n; be the
number of chéins of length (¢ + 1)a. The lifetime of the elementary fluctuation according
to Eq. (36) is 76 = A?/n. Then the lifetime of a chain with length ia is 79:%. Since the
coalescence time scale is much shorter than 7,7, the main time scale for the growth of the
chain is determined by the “collision” frequency of bubbles. This is (ngvco), where ng is the
number density of i = 1 bubbles, v is the typical velocity of the fluctuation, o the area (or

“cross-section”) of the bubbles. Then we obtain the following kinetic equation

= —-————— + i1 (no 'UO') , (38)

for all 2 > 0. We can add other coalescence processes such as s-th polymer with n — sth

polymer on the right-hand side of Eq. (38), i.e. Es% ni—s (ns—1 vo) etc. For brevity sake, how-
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ever, we neglect these higher order processes herewith. In the expanding Universe Eq. (38)
can be regarded as in the comoving coordinates. The physical quantities are related to the

comoving quantities through

n; =nk a® (39)
c=0fa"? (40)
v=1vPa"? (41)
To=T18a* (42)

so that the corresponding equation in physical space to Eq. (38) may be written as

9 p
Enf +3Hnf = —;T?Z-";—GE +ni_y (ngvPo?) (43)

where the superscript p indicates physical space quantities. Note that H =4 /a and 7§ is
" (usually) assumed to be invariant if other quantities are fixed (i.e. the temperature\etc.).
Also note that the second term on the right-hand side is invariant. In the followi“ng we
mainly treat Eq. (38) instead of Eq. (43). “

We wish to solve the set of equations (38) under an appropriate boundary condition.
In usual thermodynamics, thermodynamical equilibrium is understood as uniformly given
elementary units. Thus we take no(t) = no = const. By adopting non-dimensional units

n;/no — n; and t/7o — t, we have
= —— + KN, (44)

where k = 79 (ngvo). In this section, for simplicity, we assume & is constant and much less
than unity.

A stationary solution of (44) as ¢ — oo is

ni = K(il)? ~ (ﬁi)% for i>1. (45)

€
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Equation (45) says that in a stationary problem (¢ — o) there is always an infinite chain.
Of course when an infinite chain begins to appear, we exhaust available elementary bubbles.

This time ¢x and the size ix of bubbles at which the deprivation takes place are given as
tx =Tk~ (46)
ix=ex"1?, (47)

Together with the initial and boundary conditions, we obtain'® the number of polymers of

size 7 at time ¢ as
. . } 1 1
n(i,t) = O [kt — (¢ — 1)]exp [z—l-{—;] <?——l> . (48)

When we include the cosmic expansion (h = 794/ a, the normalized Hubble parameter),
the growth time of the largest magnetic filament formation is greater than but on the order

of tx, which is calculated!® to be

n % p1+b :

Including the relaxation processes in a plasma, which are 4 dependent in Eq. (49) and &, we

obtain!®
~itb, 27
2 16

_1+b, 3.9

by & G{) P ~ (%) : (50)

where b is an index between 0 and 1, depending on the relaxation process of the plasma, and
t1 is the beginning of the polymerization (we can assume ¢; ~ 1072 sec). Equation (50) shows
that ¢4 = £;(t/¢1)* where a = 2/3, which implies that the horizon size magnetic strings are
almost surely formed quickly within the Hubble time scale. |
This implies, therefore, that during the radiation (i.e. plasma) epoch large spatial scale
magnetic fluctuations can be formed, which could imprint their signatures on the plasma
density. Zero-frequency magnetic fluctuations cause isothermal rather than adiabatic fluc-

tuations in the plasma density. Therefore, the magnetic fluctuations can serve as a good
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candidate to carve out large structure formation in the plasma just prior to the recombina-
tion epoch with enough amplitude but without leaving any signature of inhomogeneity or
anisotropy in the cosmic microwave background radiation (CMBR). This can be an expla-
nation for what is believed® to be the nécessary density fluctuations én/n ~ 1072 at the
recombination epoch in order to generate present galaxies based on N-body computation and
the observation constraint?* on CMBR of temperature fluctuations §F/T < 107*. However,
there remains a puzzle: Why the generated density fluctuation of én/n ~ 1073 does not
create a corresponding photon red (or blue) shift in photon frequency in CMBR as required
by the general theory of relatively'®? This effect was first poiﬁted out by Sachs and Wolfe.22

The preceding finding in the present paper, we believe, appears to give a possible reso-
lution to this problem. This is because the process of polymerization during the radiation
epoch is so rapid that by the time of recombination large spatial structures are created in
a time scale shorfcer than the photon diffusion time; the opaque plasma made the photon
diffusion time over large structures nearly equal to the aée of the Universe at that time. This
implies that a photon which was originally emitted in a plasma prior to the density structure
formation suffers the blue (or red) shift depending upon the sign of density perturbation, as
the photon does not have enough time to escape out of this particular spatial spot. Upon the
recombination the mean free path for this photon becomes nearly infinite and thus will be
eventually observed by the terrestrial observer. When this photon travels out of the original
density structure, the photon now has to climb up (or dovs/:n) the gravitational potential so
that it will acquire the exact same amount of frequency shift but this time it is a red (or
blue) shift, correspondingly. As a result, the total frequency shift of this photon since the
creation during the radiation epoch till the present day observation will be zero.

In conclusion, we have calculated the frequency spectra of fluctuations of magnetic fields
and other physical quantities. We have found a sizeable zero-frequency peak in the magnetic

frequency spectra. The amount of the magnetic fluctuation energy at w ~ 0 is proportional to
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the plasma temperature T and the three halves power of the electron density n. The higher
the temperature and density are, the greater the magnetic fluctuations. Thus the most
dramatic implication of the present theory is on the cosmological primordial plasm;. Intense
magnetic field fluctuations of the order of 10'®G may be expected at t = 1072 sec after the Big
Bang. Such magnetic fields may form larger spatial linkage through the process of successive
coalescence (and its reverse). This physical process may-be able to account for necessary
cosmological constraints for large structure formation during the course of the evolution of
the Universe. A great deal more work, however, is necessary in order to substantiate the

above points as well as to explore other possible effects.
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Three days prior to the delivery of this paper at the American Physical Society meeting
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this paper to the memory of these three colleagues, who dedicated their life to investigations

of plasma physics and plasma astrophysics.
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Figure Captions

1. The frequency spectral intensity S(w) = (B?), /87, e.g. plasma 1 sec after the Big
Bang. T = 10'%°K; n, = 4.8 x 10%°/cc.

(a) .En(S (w)/So) plotted linearly in w. Zero-frequency peak is at the top of the graph,
where ;90 is the normalization. .
(b) In(S(w)/So) plotted linearly in w. Zero-frequency peak is at the top of the graph,
is seen to be higher than black-body peak.
(¢) €n(S(w)/So) plotted logarithmically in w. Low-frequency line has slope around
—2. Rises to peak at w = 0. '-

(d) £n(S(w)/S,) plotted logarithmically in w. Note suppression of black-body radiation

around w = Wpe.

é. Magnetic fluctuation spectra (a) Schematic plot of the spectrum of magnetic fluctua-
tions (Bz)w /87 in a thermal plasma with temperature T, plasma frequency cc}p. The
zero frequency peak has the height inversely proportional to the dissipation (such as
collision frequency) and the width proportional to itself. The black-body profile is
hardly modified. Only the low frequency (w < wy) is severely modified by the plasma
effects. (b) Schematic plot of the spectrum (B?), /8. The shaded area corresponds

to the second term in Eq. (20) and to the shaded area in Fig. 2(a).
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