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Abstract

Equilibria with minimum energy are'constrdcted from
a variational principle ‘in which the énergy of a plasma is
minimized suﬁject to a recently propoéed‘set of. global
invariants. The equilibrium equation is solved in axi-
symmetric, tofoidal'géometry; In order to compute toroi=-
dal equilibria, we exploit the variational principle to
obtain a reduced set of ordinary differential equations
which we solve numerically. We find tokamék—like and

pinch-like solutiohs of minimum energy in toroidal.geometry.

"Based on the ideal and reSistive'stability‘stﬁdies of the

cylindrical limit of these solutions, it is argued that

some of theSé'equilibria“should have robust stability to

modes of low m- and n-number. .




I.  INTRODUCTION
Recentlyl‘z’B, we have'developed a variational prin-
ciple in which the total energy of a plasma is minimized
subjécﬁ to a éet of global invariants. The choice of the
apprppriate’set'of.global invariants is baéed-on a model
of turbﬁleﬁt.reléxatioﬁ dominated bY'a'teéring,mode of
single helicity. Sincé'theée invariants-are'preserved
rigorously by all ideal motions and approximately by the
class bf nonideaiﬁmotionS“of the plasma permifted by the
model, those relaxed stateé,whiéh have minimum'energy may

be’expedtéd'to”be'ationce ideally and resistively stable -

. to the modes for which:ﬁhe model holds good. In previous

?apers, we have solved the equilibrium equation in cylin-
drical geomeﬁry for a»piasmaAwith zero pressure and
vanishing current den§ity on_the-bouhdafy assuming that
equilibrium quantities depéndvonly on radius. A study3;6f~
the ideal and resistive stabiiity of these equilibria has

o ~— T S ,
shown that some of them are stable to a wide band of modes
of low m- and,"n—number. | H
» In this paper, we préesent SOiﬁtiohs to the equilibrium
equation, Which we have derived from the variational prin—
ciple}'in axisymmetric, toroidal geometry. The variational

principle itself offers a natural starting point for the

numericalvcomputation of toroidal équiligiié. ”The“brdéedﬁre

is essentially the same as that used in a recent paper4 on

the computation: .of three~dimensional equilibria, except




~should be~$tab1é*to a wide band of -current-driven instabil-

PEST’ or PEST2.°

Section II we stateithe variational principle'and‘obtain

~ the Euler—Lagrangé'equations deScribing static equilibria-

that it émployé a different variational principle.
Specializihg’to'a pressureless plasma, we £ind that, as in
the case of equilibrium solﬁtions'in cylindrical geometry,
there‘are both tokamak-like and pinch-like solutions of
minimum energy with g=profiles respectivély increasing
and decreasing from the magne£i¢ axiéAto the wall. On

the basis of our egpiotatbry results o6n the"ideal and
resistive stability of the cylindrical solutions,Awe argue

that the toroidal equilibria computed in the present paper

ities of low mode number. The extent of the band of
stability may be made precise by subjecting these equilibria
to a detailed stability test_by numerical.codes such as

5

We now explain briefly the plan of this paper. In

in axisymmetric toroidg! In Section III we deriveﬂfrom ‘o
the variational principle an approximate'set of reduced
equations which deécribe‘theSe:equilibria accurate;y and
obtain numerical solutions. Section IV contains a deéCrip—
tion of the toroidal solutions to thé equilibrium equation
derived from Taylor's model7 of relaxation of toroidal

discharges, and Section V is a detailed discussion of

toroidal equilibria in the present model.




II. ENERGY PRINCIPLE WITH GLOBAL INVARIANTSZI:2
We seek minima of the poteﬁtial_energy functional
- g1 B_ 4+ P |
W -—__[ dT[2_4-> = l} ’ (1)

Yo

for a toroidal plaSma of total volﬁme VO bounded by a

perfectly conductlng wall' B is the magnetlc field, p-
. the pressure, and v the spec1f1c heat.of. the plasma.
The magnetic field' B in a tor01dalqplasma with nested

surfaces may be represented a58

B = ﬁc x ?W + ﬁ@ x ?6 ' - (2)
in"the’maghetic"cdordlnate systemf (¥,6,2). Here V¥ is

the poloidal flux function which labéls magnetic surfaces,

® the toroidal flux function, and 6 ‘and ¢ = are respec= -

tively the poloidal and toroidal angies parameterizing any
"given surface. It:has been shown2 that under the class 1

of ideal Eulerian variations given by

o = -LWy , (3a)
5o = qney , |  (3p)
o = -“v*('p’é) . |  (30)
Gé %, “ng‘z‘~“z;$p . | (3df

where p 1is the density, .q 1the’safetyefactor and g(f,t)

is a virtual displacement of the plaéma;.the"followihg

global—quantities—are strictly—conserveds




Miul = fdru (v,0)p (4)
o v o . 5
‘ 0
Y (R 0 gn/ B\
slv,l = JdTVa‘(‘Pﬂb) T M(——;)- R (5)
0 P
and
Klon ] = fd (v @).X'g» A (é)
Yo - TOe @) = - '
o

Here, ud(T,Q);:vu(?;é) and W, (¥, ) ére'arbitrary
sequeﬁces of basicg functibhs. "The- vector potentlal

A(B = Vx&) is represented by _
K= de-v: .M
assuming that @ = 0 on the magnetic axis and ¥ = 0

on the Wall. :We'hoW&seek minimé of ﬁhe free energy
functional F = W ffgIX&K(wa) + ﬁaM(ud) + Tds(va)] , under
independent variatioﬁs 6?}'6®,i66, Sp and &p . The
Euler-Lagrange equations.for variétions with respect to

vy, o, e; p and p, under the appropriate fixed-boundary

constraints?}.are_respectively.given by

: 3-  -'Sw oW
Fogr -2 [E-__g- - B! ']J,EB _ ~
TV - LNz YT P % T 5 0 . (83
ow 2w
3.3 iz ¥ % . 9 o _3p _
vo JOL [2 57 T2 75 +‘*’o¢] 56 — . 0 (8b)
> >
F¥e = o | | (8¢)

(8e)




7 o= o, 0 o |B - g | 2B _uap
J = z?\a [2 + 5 -I-‘wa],.B - J [ fofe —V’cx—v’\y:l .

>

where 'J E‘($W V XVC) L is the Jacoblan Note that we

have held the tor01dal angle ¢ fixed and identified it
system (R,c,Z). If we-do not fix o, its varlatlon

leads to the Euler—Lagfange equation Fevy = 0, which

is no more than a restatement of. the equilibrium con-

straint already implied by equation (8c), that is, the

current'densityw~3 . should be on flux surfaces.  From e

equétiohs (8a - 8cj, we_get2

3%
(9)

It is readily'seen that

>

3B = Tp o, ) (10)

which implies thatAequatioﬁs (8a '~ 8e) represent magnetei

static equilibria.

We remark that by treatlng the variations 6?, §9,. 8p,

and 6p as 1ndependent, we have. enlarged ‘the class of .

‘motions allowed to the plasma to one that 1ncludes the "

ideal class 1 as a subclass. For example, by relaxing

the requirement'that' §® be tied to &Y everywherefthrough
the equation (3b), we allow ~®-surfaces to "siip",with‘;.
respect ..to Y-gurfaces and effectively remove‘the topolog—'

% of a

ical constraint that the "degree of knottedness"

field line remains fixed.




From here onwards, we will consider a pressureless
plasma. The'qﬁasirideal model of.KadomtseV and Monticello,
and some additibhal’requirements specified-in our earlier

paperzr'leads us' to the natural choice:

W, =X o (11)
where"x’=_qgw %'Q is the helical flux-préserved (approX~
imately) by the dominant mode Of pitch 'qs , and o - is
zero or a positive integer. 7Under this choice, eduations '

(8a) -and (Sb)‘becomé'respectivély'

;;+ .. .   (a;+f2) .d i , . R ;
J+Vg -%Z}\q '——2—'—')( = 0 ,. (12a)
>, 1 y. (a4 2) o _

g-ve - J;kcx a2 x = ¢

(12b) |




III. AXISYMMETRIC TOROTDAL EQUILIBRIA

In order to compute the equilibria determined by
equations (l2a,b) in axisymmefric tofoidailgedmefry, we .
use a variant of the method proposed in Ref. 4. We now
discuss this method and derive the'appropriate'set of
reduced equations. |

In Fig. l;'wefshow the eylindrical coordinate system
(R,z2,2) and_ﬁhe magnetic cdordinateisystem (v,é,c) ,

where v is a radial label, not necessarily identical to

¥.. .. The magnetic field ,E is represented ast
B o= Vo x V¥(w) + Vo(v). x Ve . =~ - (13)

~Since the free energy F is a scalar, it is 1ndependent
of the coordlnate system in Wthh it is expressed For
axisymmetric systems, we will characterize equilibria by

the inverse mapping,

R

i

R(v,8) , (14a)

z = Z(v,8) , ‘ : (14b)
whence, the_foles of dependent and independent variables
are interchanged, and R and 2 become ‘the new dependent
variables. For a preSsureleSs'plasma, it_may be showh by

straightforward algebra that

ra /'ZTY ~
po= 2TT/ dv/ a0 F(R,R Ry, T ze,qf ¥ ,.9,0)
a 2T A2 2
— | N eI Zﬁﬁ - R, S
- jo j ,_ Tt 2 gt & v vJ'

(15)




where v = a 1is the label for the outermost flux surface,
in contact with. the conducti'ngA wall. The ‘nonvaﬁi'shihg
elements of the metric tensor ~§ij. E ('35:)/-8Xi) . (~8§/'8xj)

. for the transformétion'from (%x,v,2) coordinates’ to

(v,0,z) coordinates are '

v = Ry + by r : | (16a)
Ive = ByRg* ByPg T gy - {16b)
2 2 o | ,

9y = Ro +ZE o, - o (16c)
= R? . (16d)

gcc - . 14

and

Vgl ;. /det;gij» = R(RgZ_ -"R Z,) (lee)

(fX - denotes the partial derivative of £ with respect to
¥). The Eulér—La'grange 'equétions for variations with = -

respect to "R and Z are respectively given by4

R (_'a_ 999%;3_-9\79%) L v 9oy
R Ol mer \?Y v ?% vrem ) /Tl Y /el
2 2 : 2
- CPV' 9 -.~%—f-RZ _a..;‘gcc..@VR = 0

2Mgl - v 9t 2 “%v 36 Tql TS
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6. = mR|—¥ (ﬁ_ o0’y _ 3 Fve'y ) L v Fuy
2 Sl e \ %V vrgr %% urgT

] A i
. ‘ 2

® O o 9.
v 9 _ Vv Q- 7y .

T 2Mgll 3v ez 3 RRy 06 Mgl — o . (18)

It may be shown by'linear combination of equations (17)

o~ ~an@ {EBY HRAE o T T nmemme i s e

5@.__E£. = 0 , (19)
gl

‘which may be incorporated in the variational form F at-

- the outset by défining the toroidal fiéld'fuhdtion o

I(v) = —==298 o, (20)
/Il
- or equivalently, by'representing B as.

B = Vg x VY + IVg . (21)

If we dol so, the two equations. (17) and (18) become each

identical to

1 (s Y00y 5 Fyo'v), Ty
G = _— W — T YA + 2 - O r (22)
/Tl Vgl /gl R
which is the Grad-Shafranov equation in inverse variables
for a pressureleés plasma.
There are two remaining EulerQLagrange equations which

are found by vafying Y rand & independently. These are

5 3F _ BF. - | '
<a_v‘ 57, " W> =0 . (23)




and )
9 OF _ dF N\ _
<W_“a@ "5>- =0 (24)
v
where <!> is defined b
.1 '
<a> = 5—/ d6A(v,8) . (25)
0

3 (W 'gee)lh; ZSA_ (EEde
oV v : L, "o \2 Y
diEl o

and

Multiplying equation (26) by v,

(e (n 22 ) o, & (o,
- \ 7 /Tgl VA

Equations (23) and (24) give, respectively,

_Q-ama : :
2738t )% /S = 0

. o S oW
9 iae z y 9%
v (QV ‘“”") + < aq 2 v

N e
Q2
Qo
e
0L2
_l.
e
Q,
N—
< ‘
<
1l
o

(27)

, equation (27) by @v

and adding the resultant equations, we get

g .
_EE_):> = 0 , (28)
AMell )/ |

which-is identical to the surface-averaged Grad-Shafranov

.equation

<J/MgTe > = o

. ' (29)

Therefore,’once equations (17) and (18) [or the equivalent

equations (19) and (22)] are given, Only one of .equations

(26) and (27) is' linearly independent.

' Exp101t1ng “the periodicity of the inverse mapping

wtéquatlons(l4)] ;n e{wand assumlng the equlllbrlabto be

up-down symmetric, we write-
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R(v,0) = jz, Rm(v) cos mb  ,-' (30a)

‘ m=0.

Z(v,8) =- 22 Zm(v) sin moé . (30b)
Ti=1 .

Substituting the Fourier series [equations. (30)] difectly

series converges rapidly (to be precise, the Fourier

"in equation (15) and varying each of the Fourier ampli=

tudes R_(v) and Zﬁ(v) independently, we obtain formally
the folloWing'infihite'set of coupled ofdinary“differential
equations

<Gpcosme> =s 00 . m=0,1,2,... (31)
<6, sinn8> = 0  n=1,2,3... .(32)

We have’nof‘yét chosen any specific flux surface
label v . Following.Ref. 4, we make the choice v = -Ry.
We may not then vary the free energy F with respect to
Ry, but the variation of F .with.reSPéét to both ¥ and
¢ give independent conditioné.f Thus, equatiéns (265 and
(27) , which imply equation (29), are now.to be treated as
independent equations. | |

For numérical Computations,'we-truncate the infinite
Fourier seriés for the inverse mapping~to obtain a reduced

set of equations. Indeed, ‘it is found that the Fourier

amplitudes Rm—f Za1 'decay in magnitude exponentially as
A S D tne—eee g il hdgil s taLe Sapune g 2s

m, n increase) and that for>equilibria with.circular

boundaries, only one coefficient each in the Fourier
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series for R and % proves to be adequate to obtain
accurate numerical equilibria. |Thus, we solve
numerically (by collocation, in the manner indicated in

Ref. 4), the two-point boundary~-value system comprising

the equations

. .. .<Gycosme> = 0, m=0__4(33)
<:GZ sin ne> = 0, n =1 (34)

and equations (26) and (27). The boundary conditions are

~-(see—-Ref. 4}randvreferences thereih):

R, (0) = 0 o o (35a)

ov
Rola) = R, | (35b)
zl(O) = 0 (36a)
zl('a)' 2 Ry, (36b)
TV(O) = 0 (37a)
Y(a) = 0 (37b)
@(Q) = 0 (38a)
o (a) '=v'¢p . (38b)
_Bere Ry, is the distance of the magnetie axis Ffram origin

_of the cylindrical coordinate system. The total toroidal
flux is ZWQ? , and is a global invariant by virtue of

the boundary conditions.
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This 'is an appropiiate'point to emphasize the novelty

of the present approach for constructing equilibria for

'toroidal'plasmas. 'Typically, for preSsureleSs,'axisym—

- métric tordids’oneﬂusually:spedifiésnthéjtoroidalgfiéid

function' F(v) [or g(v)] and solves the Grad-Shafranov

equation. numerically to determine equilibria._ In the pre-~

sent fdrmulatiOn,fhoweverf F(v) [or g(v)] is naturally
determined from the variational principle for those

equilibria which are extrema of the'potentiai energy of

~the plasmas-
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IV. TAYLOR'S MODEL
It has been conjected by’Tayldr7 that in the presence
of a small amount of resistivity the only surﬁiving.global

invariant is
=,f ar =2, (39)
which corresponds to keépiﬁg onlY'thé’first member of the

sequence [ equation (11)]. Equations (26) and (27). become,

in this special case,

s .ge'e) L > o
e Y —— ] = ). ® =. 0" (40)
oV ( v “gH 0°v
5 I _
55'(®v = )-+ AOYV:> 0o . (41)_

In the limit a/R =+ 0, we recover the solutions.in a
straight cylinder with identified .ends, with equilibrium
quantities dependent only on  r in the usual (r,0,2)

. . 7
coordinates. These solutions are

_ Be = BOJO(AOr) (42a)
B, = BOJl(AOr) , (42b)
where B is a noxmalization constant. In this limit,

0
the cylindrical sdlutithpgiven by equations (42a-b) have

only g-profiles which are monotonically decreasing with
radius. But for finite values of the aspect ratio and

a , Taylor's model'permits' q—profiles

small values of AO

T ..._ s e . O o e e e e e e
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which are monotonically increasing and tokamak4like.lo
A closer examination of these ‘tokamak-like solutions shows,
however, that these ‘tokamak-like solutions, apart from
having a finite current density at the edge, have very

weak shear. In Fig. 2 we ‘show a typical g-profile

(Apa = .35, a/R, = 1/5), | We note that g increases from

approximately 1.13 at the magnetic axis to 1.16 . at
the edge. Even if théSe'équiiﬂbria are‘ideally‘and
resistively stablé, they are not very interestipg from
a practicalrpoint of view. -

Continuing with our description-of'tbfoidal*solutiOns'
in Taylor's model; we‘find that-thefe”is aftrénsition from
tokamak-like to pinch—like'solutioﬁs at Aﬁgﬁz 2‘62a/R0a
At precisely the;transition poiht; 'q.z‘f75u everywhere
inside the plasma. BeYond'this trénsition:point, the
g-profiles are all monotdhicgily decreasing with radius,
pinch-like,  and show-little'différeﬁée'fiom the cylindriéal

7,10

solutions, which have been well studied by Taylor and

Reiman.ll

I
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V. PRESENT MODEL
. e .1,2,3 ) , : : : _
In our earlier papers , we argued that the replace-
ment of the entire infinite set of jdeal invariants by a

0,-for a"slightly non-ideal plasma is

‘probably too drastic, ‘and that a well-confined toroidal

on the timescale of evolution of tearing'insﬁabilities.

Based on the Kadomtsev-Monticello model of magnetic

1,12

reconnection: , we have suggested that, apart from KO,

" the global invariant

i BB |
Ky :__’[drx—z—— - | (43)

Vg -

is also approkximately preserved. Equations (26) and (27)

~give, in our case,

<‘a’€-(}£‘v M’HEW) N (*o ¥ TYX)®V> =0 (44)
and |

s [, Y | 3% V» N\

b 2y o

We examine those equilibria for which the current density’

1,52,3

vanishes on the wall. These are obtained by. simply

requiring that

i R » (a6)

In view of the importancel,’-3 of the m=1, n=1 mode for

tokamaks, we report the numerical results assuming the
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dominant mode to be ~m=1, n=1 (qs‘=.l)' for a device of

aspect ratio Roa/a = 5 . As we have emphasized earlierl'B,

the qualitative features of this theory are not very sensi—

tive to the choice of a particle dominant mode.’ Fig.”3

is a plot of (a/Rda)(Zﬁéb)_ZW(A 2

o) s (a/Rg.) (2mey)”

KO ()\O) 7

_which is proportional to the amount of volt-seconds/toroidal

flux in the'sysﬁem.' As in the'c&lindrical case?,,kheﬁezare
two claéses of sdlutions, "tokamak—liké"'(T)‘ and "pinch—
like" (P); For a given value'of.volt-éeCOnds/toroidallfluk,
the plasma willgréiax~into—thé'statuémof lower enefgy
indicated by.the'solid lines. Thezdashed lines iﬁdicate
equilibria for which W is stationary but not minimum.

In the same plot we exhibit the corresponding curve (marked
by A) for the axisymmetric solutions in Taylor's. iodel.
We note:that the'imposition of{anﬁadditidnai COnstréint
raises the‘energy of the system. In Fig. 4, we show a
typiqal q;profile (Aoé ="1) from the minimum—energy
T-braﬁch. We note that g varies from approximately 1l.16
at the axis to 2.16 at the edge,.Which has COnsiderably
larger shear thaanaylorTs tokamékéiike‘equilibria,'aﬁd'is
much closer to experimentally realized tokamak profiiés;:a
On the minimum-ene:gy' P—branch,‘thélforoidal solutions
show'little differende'ffom the cylindrical solutions,

which have been studied in detail in Ref. 3. Experimental

predictions ‘of this model for sélf-reversal in pinches, .

embodied by the so~called F-0 diagram, are not sensitive

1T 1T
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to toroidal effects. 'Since they have been studied in the
cylindrical limit in our earlier papersl’3,,we‘will not

repeat them here.
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VI. CONCLUSION
We have‘constructed-equilibria with minimum'énergy in
an axisymmetric toroidal plasma with the current density

vanishing on the wall, Though the numerical results

.reported here specialize to.a plasma without pressure, the

variational principle prOposedfhere m§¥ b§‘uS§d +to CQQ;”,

struct equilibfia with hdnierohpressure_gradients. The
construction of finite beta toroidal equilibria is left
to future-work;

Earlier .work> on the ideal and'reSistiVe'stability of
the cylindrical-sélutions of our model has shown that there
is a window of tokamak-like, minimum-energy equilibrium
which has particularly robust étability. "We argue that
the toroidal solutions reported in‘the present paper will
exhibit, on closer scrﬁtiny by toroidal stability ébdes,

a similar resiliehce to instabilities.
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Figure Captions

Fig. 1

- Fig. 2

Fig.

Fig.

3

4

' The cylindrical coordinate system (R,Z,Z) and

the magnetic coordinatejsystém‘ (v,0,z); both

are right-handed.

A typical tokamak-like solution in Taylor's model

(A,a = 0.35) with q(0) = 1.13 and ~¢(a) = 1l.16.

0.
Eﬁefgy'Of axiéymmeffic-equiiibfié in.pfeSenf

model compared with thée in'TaYIbr's model (marked
bfjA;);‘iAfron”inaiqéte'direCtion of iﬁcréééin§.
Xy - Labels P and s distiﬁguishlpincﬁ—like

and tokamak—like:equilibria.>'Dashed lines indicate

cequilibrium for which energy is stationary but

not minimum. The dominant mode is assumed to be

m=1, n=1l.

A typical minimum-energy tokamak-like solutions
in the present model (Aoa = 1), with g(0) = 1.1l6

and Q(a) % 2.16
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