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as a class of other low m and n modes, but that there are
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argued that the residual instabilities may be compatible with

experimental observations.
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I. Introduction

In two recent papersl,2 (hereafter referred to as Papers I
and II), we have proposed a variational principle for constructing
equilibria with minimum energy in slightly nonideal plasmas. In
this principle, the total energy of a plasma is minimized subject
to global invariants which are preserved exactly by all ideal
motions and approximately, by a certain class of nonideal motions.
The precise extent of the class of nonideal motions is designated
by a model of magnetic reconnection due to Kadomtsev® and
Monticello, which describes the nonlinear evolution of a tearing
mode of single helicity. The motivation for constructing
equilibria in such a fashion is that it should leadrtq equlibria
>whi¢h afe at bnce ideally and resistively stable, provided, of
course, it 1is possible to determine an optimum set of global

invariants.

In the classic variational principle of Kruskal and Kulsrud”,
each member of a complete class of static equilibria is
characterized by a nondenumerable set of topological invariants.

Taylor® has conjectured that for a toroidal plasma of volume Vo
> >

> > >
confined by a magnetic field B(B = V x A, where A is the vector

potential), the ideal global invariant,

> >
AB

KO=J. dt 2 >

Yo

(1)

originally due to Woltjer and Moffatt, is the only invariant that
is preserved approximately in the presence of a small amount of
resistivity. The Euler-Lagrange equation for extrema of the

magnetic energy
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W=/ dr LN , (2)

5
Yo

subject to the constancy of Ko is

>

>
J=AoB, (3)

where Ay is a Lagrange multiplier.

In Papers I and II, on the basis of the Kadomtsev-Monticello

model, we have attempted to provide a mechanism for the invariance

"~ of Ky. We have concluded (see, for instance, Sec. V of Paper IIL)

plausibly that if tearing modes of different helicities are
strongly coupled to one another, the only surviving invariant is
Kge In the light of this conclusion, it is perhaps not surprising
that Taylor’s theory has provided a good explanation  for
self-reversal in a device such as Zeta in which, for slow
rise~time of the current, virulent tearing activity often
developed into turbulence®. Unfortunately, for tokamaks, in which
the toroidal field B, is approximately constant, Eq. (2) requires
that the current J, be flat across the entire section of the
plasma, which happens only in the event of a major disruption when
a large fraction of the magnetic energy of the plasma is suddenly
released and a sharp negative spike is recorded in the loop
voltage. In particular, the work of Waddell, Carreras, Hicks and
Holmes’ has demonstrated that a sufficient condition for a major
disruption is provided by the strong nonlinear interaction between
the m=2, n=1 mode and higher harmonics, particularly odd modes
such as the m=3, n=2 mode. Most of the time, such strong
interaction is avoided in a typical tokamak discharge. We are
therefore = led . to .the _conclusion —-that -during -a reasonably
well-confined tokamak discharge, Ky is mnot the only surviving

invariant.
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In Paper II, we have conjectured that in a slightly nonideal
tokamak plasma, where modes often coexist without strong coupling

to one another, the best preserved invariants are K; and

> > .
AsB
R = [ ary 22, (4)
Yo

where ¥ is the helical flux function corresponding to the dominant
mode of pitch Qg+ Imposing additional constraints on the system
has the obvious effect of increasing its potential energy.

Knowing that Taylor’s theory leads to equilibria which are too low

~-in. ..energy--to--be --of -interest for tokamaks, we have attempted-to = ~ =

construct equilibria with a minimum = number of additional
constraints; enough, however, to reproduce essential features of a

well-confined tokamak discharge.

_)
We represent the magnetic field B by

> > > > >
B=Vg x V¥ +Vd x V8 , (5)

where the poloidal flux function ¥ labels flux surfaces radially,
6 and ¢ are, respectively, the poloidal and toroidal angles
parametrizing a flux surface and ¢ is the toroidal flux function.

Then, the helical flux function X is given by

We adopt the boundary conditions

‘?=O, . (7)

on the conducting wall bounding thewplasma and

ey e
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¢ =0, (8)

on the magnetic axis. The boundary condition (8) makes 2ﬂ®p the
total toroidal flux, which is a globally conserved quantity in

this theory. It is convenient to choose a gauge such that

> > > '
A= 0V - ¥Vg . . (9

Minimizing W subject to the invariants Ky and K;, we obtain the

Euler-Lagrange equation

} = |Ang + - ; (10)
0t x B

derived in Paper II. -Since we ~are primarily interested ~in
equilibria which may be sustained on the transport timescale,
beyond the timescale of relaxation due to tearing instabilities,
we examine those solutions of Eq. (10) for which 3 vanishes on

the wall. These equilibria are obtained by requiring that

3 Ag
—— s
3,

(11)

where Qp is the value of ® on the wall. Then the equilibrium Eq.
(10) reduces to

)
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It is to be noted that solutions of Eq. (3) (obtained in Taylor’s
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theory) have, in general, nonvanishing J on the edge of the

plasma, in obvious disagreement with experimental observations of

the toroidal current which is usally small near the edge.

There 1is yet another crucial aspect of the equilibria
described by Eq. (3) which deserves comment. In cylindrical
geometry (r,8,z), assuming that equilibrium quantities depend only
on r, it is well known that the driving term for tearing modes is

do/dr, where

Gy
L ]
o+

. (13)

We note that for equilibria given by Eq. (3),

do _ (14)

which, for a plasma bounded by a conducting wall, is an overkill
for the problem‘of instability. In fact, it is because equilibria
obeying Eq. (14) are wunrealistic, that much effort has been
expended in constructing stable equilibria for tokamaks® as well
as reversed—field pinches by optimizing current profiles for which
do/dr 1is not generally zero. We emphasize that do/dr % O for the

equilibrium Eq. (12) derived from the present theory.

This paper is divided into three main sections. Section II
contains detailed solutions in cylindrical geometry of the

equilibrium equation derived from the variational principle. We

describer 7the tokﬁmaklike~'4§pdA ‘Eigghliggwwsolqtions of the

equilibrium equation, which we solve in asymptotic limits to
explain the numerical solutions. In Sec. III, we compare the

predictions of our theory with experimental data on self-reversal

in pinches. In Sec. IV, we investigate the ideal and resistive

R A_mh. S e e = e £ e
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stability of the equilibria of minimum energy derived from the

variational principle.

II. Equilibrium Sdiutioﬁs.ig Cylindrical Geometry

A toroidal device of large aspect ratio may be simulated by a
straight cylinder of radius a and periodicity length 2nR. In
cylindrical polar coordinates (r,6,z), if we- assume that
equilibrium guantities depend only on r, and define §.= E/Z@P, @ =
qSW/ZQP and 9 = ®/2®p, we may write Eq. (12) and the accompanying

__boundary conditions as the two—point boundary-value system,

B.=0, (15a)

r

dB, - - -

—— = -AgBg [1+ 2(¢¥-®)] , (15b)

dr

1 4(:By) = AgB, [1+ 2¢¥-0)] (15c)

;a(r 6/ = "0% ’ ¢

av _ -

E_; = qu BG , (154d)
. ,*_"‘7;"—d£""= Ir,,_g : i - - = _ = o — Z S . = - - . <,l,5e,)




Bg(0) = 0, ¥(1) = 0, #(0) = 0, a(1) = 1/2, (15£)

where we have asusmed for convenience that the radius a = 1.

We note that the solutioms to the system of Egs. (15) depend
on qg and R only through the product qu. In Paper I, we have
argued that the growth and subsequent decay of the fastest growing
tearing mode provides the mechanism responsible for the breaking
of most but not all of the infinity of ideal constraints. From
linear and nonlinear theories of tokamak stabilitylo, we know that

the m=1, n=1 tearing mode grows much faster than the m>2, n=l
'ﬁédéé{h mxiéé;wfgﬁé;ér is experimental evidence on the PLT tokamak
that diécharges in the so-called "internal sawtooth" régimé, in
which the plasma dominantly exhibits "soft" m=l, n=1 activity
uncoupled to weak higher harmonics, is particularly good for
confinement. We shall, therefore, at first discuss the solutions
to Eqs. (15) ‘assuming the dominant mode to be m=1, " n=1 (qs=l),'
given 1its dimportance for tokamaks. We shall see later, however,
that if we confine ourselves to the small class of modes usually
observed by experimentalists, the qualitative features of this

theory are not very sensitive to the choice of a particular

dominant mode.

The system of Egs. (15) has been solved numericaliy by a
shooting procedure. For a cylinder of aspect ratio R/a = 5
(qSR=5), these results (which were published in our earlier paper
but are reproduced here for a more detailed discussion) may be
best understood by reference to Fig. 1 which shows a plot of
V(xg) 2Rfl(2ﬂ¢p)_2W(lo) versus R_lKO(AO)(Zﬂ@p)_Z. There are two
classes of solutions, which we have broadly classified as

""pinchlike" (P) "and  "tokamaklike" (T). The reason for this

nomenclature is that these two classes contain "windows" of

minimum energy for which the g-profiles are  repectively

——monotonically ——decreasing —and increasing; however, " there are

e e “”‘l“l‘ | A e S
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solutions on both of these branches for which the gq-profiles are
not monotonic. For a given value of R'IKO(AO) (ZnQP)_z, which is
proportional to the amount of volt-seconds/toroidal flux in the
system, the plasma should prefer the states of lower energy
indicated by the solid lines in Fig. 1. The dashed lines indicate
equilibria for which W is stationary but not a global minimum. In
fact, if experimental conditions should drive the plasma to the
states of higher energy indicated by the dashed 1lines,
instabilities would presumably develop and force the plasma to
states of lower energy. We compare the energy of the equilibria
permitted by Eqgs. (15) to the energy of the axisymmetric

equilibria in Taylor’s theory. As expected, the imposition of the

additional invariant Kj over and above those imposed by Taylor

raises the energy of the system for the same value of the

constraint.

The arrows in Fig. 1 indicate the direction of increasing

AO‘ In the following subsections, we discuss some interesting

asymptotic limits of Eqs.  -(1l5).

A. Asymptotic Solutions In The Limit 1A0|+m

In Fig. 1; the point O, from which both the T-branches
emerge, corresponds to the limit [Ag[se, The solid 1line
designated by T, which extends from the origin to the point 0, is
parametrized by Ape(0,4+*). The dashed line, which starts from O,
extends upwards and is also designated by T, is parametrized by
Age(==,0). In the 1limit [Agl+>, if we define the parameter € =
l/lo, to leading order in €, Eqs. (15) may be solved by a regular

expansion in €, i.e.,

B,= ) etp (@, S - (16)‘

R e S
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1+ 20¢(0) - 5(0)y = o, (17)
which gives
q(O) = d@(o)/d\y(o) =q . (18)

Thus, to leading order in €, as we approach the point O in the
T-branches, the g-profile tends to be constant everywhere in the

plasma and precisely equal to the pitch of the dominant mode.

Figs. (2e-h) show typical numerically determined profiles for B, S

By, J, and q on the minimum—energy T-branch. All the solutions on
this branch have q-profiles which are monbtonicaily increésing and
are hence tokamaklike. Furthermore, q(r) > qq (=1, for the m=l,
n=1 mode), for all the solutions on this branch, which means that
the singular surface for the dominant mode is removed from the
final, relaxed -state. This - 'is -consistent with ‘experimental
observations and theoretical models of m=1, n=1 sawtooth activity
in tokamaks in which it is seen that when the value of q falls
below one near the center of the plasma, a rapid internal
disruption dominated by the m=l, n=1 mode ensues, flattening the
current profile locally and raising the value of q at the center

slightly above one.l2

Using
N
JxB=0, (19

which is implied by Egs. (15a) to (15¢), and the boundary

conditions (15f), we get

S [ R
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- (q R)zBo
(0) =8

B (r) ——

(qgR) +r
-B-§O)<r) a qSR rBO ’

(qgR) +r
2= 2, 2
- (qgR) By (qR) +r
O <D0, (@
(qgR)

2= 2 2.
(qgR) By (qgR) +r
5 in

E(O)(r) =

wWhere

2
- 2 (qSR) +1 ~1
By = [(qgR) 4n —_— .

(qgR)

It is readily seen that

oo 2 (}\O) - T "l"""" T _é "":_2"”: TooTTe T
V(hg) = =4 [ drr (By + BL) ,
0 R(2w¢P)2 é i 6 " 7z

2 ]
(qgR)Y" L. . .

(20a)

(20b)

(200)

(20a)

(20e)

(21)

‘“‘T"m"‘l“l‘ T e e ]‘“ T i
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and
Ka(A — —

=2 —_— ], 22
R(ZHQP) é drr r R (22)

For [Agi»» in particular, using solutions (20) we find the
asymptotic vaules V + 2B, RflKO(Znép)—z *> (2qSR)_1 for the point
0 in Fig. 1.

If we carry the regular expansion (16) to one further order

in €, we get

3

B{D(r) = 2458 - - B(qszR) -+ Cp (23a)

2 2

[(@R)+"]  [(qR) "]
2
- 3(q.R) r C
D = - T (230)
[ (qgR)"+r] 4s
..(l) (qu)3 Clr
vy (r) = 3/4 5+ Gy (23c)
[ (qgR)"+r"]

P =g =t
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( R)3 R C r2
e (r) = 3/4 8 S Cy s (23d)

Z VARIVA
[ (qu)z.l.rz] (qu> +r

where Cl and Cy are arbitrary constants of integration, to be

determined by the boundary conditions

B{1(0) =0, ¥((1) = 0, 3(1)¢0) = 0 ana 3¢1(1) = o. (24)

=l
Of these boundary conditions, Be( )(0) = 0 is satisfied trivially,

but the three remalnlng condltlons glve rlse to an overdetermined

set of algebrach equatlons. It is, therefore, impossible to
satisfy the boundary conditions to 0(e) by a simple regﬁiar
expansion of the form given by Eq. (16). This suggests the
existence of a boundary-layer(s) at an endpoint(s) of the interval
[0,1]. For the boundary-layer analysis, it is convenient to omit

Eq. - (15c) -in favor of -Eq.- (19); thus, the set of equations we"

attempt to solve comprise (15b,d~f) and (19) [which imply Eq.

(15¢) ]+ Explicitly,

dB, - - -
€ —— = - B[ 1+2(¥-9)] , (25a)
52
1.4 72 0
— + + .2 =
5 == (B, B ) —~=0, (25b)
v -
“—— = qRBy , (25¢)

s
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49 _ 3 (254)

subject to the boundary conditions (15f). Since the solutions of
Eqs. (23) to 0O(l) in € satisfy the boundary conditions, we
subtract them from the total solutions at the outset by defining

the tilded quantities

B, = B{O) + B, By = BSO) + By, v= ¥ +¥, 530 4+5 . (26)

Substituting the definitions (26) in Egs. (25) and subtracting

the equations determining the zeroth order solutions, we get

aB - dB{®

—0 ~ o~
~er_d?z~=' —2(Be+Be('))(‘1’-<I>)~-—-we"ar~ R S (26a)

~2 =2\ 2 —(0)=
B +By) Bg+2B50)B
d (7 =(0) . = =(0 ztBg |, Bot2Bg "By
E(BZBé ) + ByE{®) + )+ - =0, (26b)
av ~
- 4R Be s (26¢)
@ .3

dr ...

(26d)

e e e e
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The boundary conditions on the tilded quantities are

By(0) = 0, ¥(1) = 0, 3(0) = 0, &(1) = 0 . (27)

We first explore the possibility of having only one boundary layer
at r=1, (It will turn out to be the case which agrees with the
numerical solutions). Equations (23a) to (23d) are the solutions
for the outer region. Then, the boundary condition 5(1)(0) =0

yields at once

Cp= 2 . (28)

Since the boundary conditions on ¥ and & in the regular expansion
(16) are violated ony at 0(e), we have g, 3 = 0(e). We define the

strained variable y according to

r-1=z le|®%y, (29)

where o is an exponent to be determined, which implies

= et L

— . 30
dr dy (30)

Then, from Eqs. (25¢) to (25d), we find that ge, B, = O(lell"a).
It is now easy to see from Eq. (25a) by a "dominant balance"
argument that the only allowable value for the exponent o is 1/2.

We define new variables ®y, ¥y such that

5 = € @1 s (313.)

and

e _h—m._. [ e e e e

e
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¥z e ¥ . (31b)

In terms of these variables

sgn € iEliii.ifi
g R dy

o
<>
]

(32a)

de
sgn € |e|1/2-——— . (32b)

o=}
]

- Substituting Egs. (32) into Eqgs. (25a)-(25b), and neglectihg

subdominant terms, we get, respectively,

2
d"e, 0) ngo)(l)
‘fT-'—" ZBe -(1)7[\1’1—‘451] & - g o -~ (33a)
dy
and
2 2
d 2 1 d¥
+ = 0. (33b)

z" z T2
dy (qR) " dy

For the homogenous part of the coupled Egs. (33), we assume the
solutions to be of the form exp(uy), which is substituted in these

equations to obtain the linear algebraic system

<m,,, ,I_.,r,,_/ [

— 7,- -
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u”-28§0) 28§0)(1) K
=0, - (34)
2 u2
H 7z __wl__
- (qgR) _|
which has nontrivial solutions if and only if
2 2 2
W [ n-28§0) - 28§00 (1)(q R) ] = o. (35)

Equation (35) may be trivially solved to give the four roots pu =
0, O, i(2§quR)l/2. To complete the solution, we need the

particular integrals for Eqs. (33); these are

¥y =0, . (36a)

50

dB

9, = 1 z_, (36b)
236(0)

The double roots p = 0 and the particular integrals (36) all lead
to solutions which are analytic in € and are already included in
the outer region solutions (23). The root u = —(ZiquR)l/2 is not
permissible because exp(py) diverges in the "distinguished limit"
e+ 0, y+ -, which corresponds to the outer limit of the inner
region. Thus, the solutions in the inner region are a linear

combination of the outer region solutions which are analytic in ¢

_.and .the solutions. ... ... ...

- ““h" w1 -1t

T —
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¥, = C3 exp &2qusR)l/2%], (37a)

%, = —(qSR)2 Cq exp &ZquSR)i/ZA, (37b)

which are non-analytic in €, C3 being an arbitrary constant. The
two remaining constants C; and Cy are determined from the two

remaining boundary conditions, g(l) = 0 and 5(1) = 0, which give

2
Z(qSR) +1
€ =~ T T : (38a)
"'”""”ZqéRf(qéR)”+l}'“""”" T e T
and
o QR T e e R L
Cy = 2 . (38b)

[ (qgR)"+]

We obtain, finally, in the limit [Ag| +> =

2— 2 2 2

¥(r) = (qgR) By (qgR) +r L1 Crr 1

2 " Z g | T2 %q R

(qSR) +1 0 \ S
(R’ |
3 q 2 —
tr Sz 7 — C3(qqR) exp (ZBoqullol)l/z(r‘l) (39)

[ (qqR) "]

and

- '{"}r e e e e -
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2= 2, 2 2
= — +

o(r) n -
2 2. 2

(qSR)3

[(a R) 4]

3 2 =
+7 7 = C3(qgR)" exp {(2BoaRIrgDY 2(x-) ¢ |, (40)

where Cyp, Cy, C3, and Eb are given, respectively, by Eqs. (38a),
(28), (38b), and (20e). We may easily determine Eé(r) and E;(r)
by differentiating Eqs. (39) and (40) and using Eqs. (25¢) and

(254). Indeed, these analytic solutions reproduce accurately

: numerically'détermined*solutionS”on the T-branches "in the vicinity

-of the point O,

B. a/R = expansion

We mnow show that the solutions on the T-branch may be
represented approximately by an expansion in a/R. We mnote at
first that Eq. (12) may be written as the following system of two

second~order equations:

a (1 ae 2 qg¥=2 | gy
&<§&)= ~=oto [” i & (41a)
p
a av as¥? 49
E<H)=Ao[1+ 5 = (41b)
p

where x = f/é, Eo éﬁgik“éﬁd‘ﬂdw;mRAO; The Boﬁﬁdar§ éénditions are
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w(1) =0, O _ 4, (42b)
dx

We expand ¢ and ¥ in the perturbation series

0= 1 efn 9(20) | (43a)
= § c2n (2
v= 1 e y(20) (43b)

To 0(l), Eq. . (4la) may be integrated trivially. The result, - - -

which obeys the boundary conditions (42a), is

2
® = r
oL/ (r) 5 (44)
a
which may be substituted in Eq. (41b) to give
— % = {—— - = -x“). 45
I [x = { @p }] 20gqgx ( @p 20 px(1-x7) (45)

Equation (45) may be solved by expanding in a complete set of
eigenfunctions for the homogenous equation. This expansion is

precisely

[o]

W(O)(x) = @P 2 a, Jy (knx), (46)

where the sequence k satisfies

ﬁ“m‘l
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Jo(k,) = O. (47)

Equations (46) and (47) insure that the boundary conditions (42b)

are  satisfied. The coefficients a, may be determined by

substituting the expansion (46) into Eq. (45); we get

164 1 )
b R B Tk 8
Kk (k+2gqy) T1Ckn)
Therefore,
w ' Jo(k,r/a)
v = - 16mge —— S (49)
n=1 ko (k +2RAq,) 1(kp)
From Eqs. (44) and (49), we get for a=1 - - - - - - -
B,(r) = 1 (50)
— ) 8}\ J (k r)
By (r) = : hi (51)

2, 2
n=l K (kK#2hgqR)  J1(kp)

It may be shown that the infinite series in (51) converges
absolutely and uniformlyls. Furthermore, since k, determines
zeros of J; and the denominator in the infinite series carries the
term k:, the series converges . rapidly.. In Figs. 3 and 4, we
compare numerical solutions of 56 on the T-branches with the

analytical approximation derived by retaining the first two terms

of the series. Even for €3 = 1, the agreement is good, as is seen. . .. . .

in Fig. 4.

o —

- “_.1]4“,’,
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We have so far discussed in detail those solutions of Eqgs.
(15) which are on the T-branches. As shown in Fig. 1, there are
two P-branches, both of which are designated by P. The solid line
is parametrized by -2.5 < A3 < 0 and the dashed line by 0 < Ag <
6.5, In Paper I, we had made the claim thaﬁ both the T- and”thg
P-branches emerge from the point O on the presumption that O
corresponds to the limit |Ay] + « on all four branches. However,
a more careful numerical search on the P-brances has not led to
any solutions in the ranges Ag < =2.5, X\p > 6.5. We have not
found by analysis of Egs. (15) ;n obvious~ reason for this
perplexing detail, but since it does not change the overall
physical picture, we shall not dwell on it further. Figures

(2a)=(2d) show E;, Eé, 3; and q profiles for a typical equilibrium

Vrin Ehéwﬁinchlike window on the minimum energy P-branch. The

q-profiles in this window are monotonically decreasing and reverse

sign near the edge of the plasma.
The solutions on the T- and P-branches may be distinguished

by - their -asymptotic behaviour for  small- Xge ~In the next

subsection, we consider this asymptotic limit.

C. Asymptotic Solutions in the Limit [Agl = O

If Ay = 0, Eqs. (15) may be solved trivially to give

0, @

) _ .
r /2, and ¥ = 0 , (52)

= |
Il
J—t
-

[vs]
D@

I

for which V(AO=0)

on the T- and the P-branches have different asymptotic properties

2 and kg(Ag=0) = 0. For Ay *» 0, the solutions

which may be understood by the following '"dominant balance"
argument. We assume that as [Agl + 0, all solutions ~ Iloiv- The
term on the L.H.S. of Eq. (15b) or (15¢)~ Ilolv, the first term
on the R.H.S. ~ Ikolv and the second term~ IAO]2v+1. The method

' ' :
T U S U S

vt ettt ittt e

e —ef-dominant-balance-gives—usTtwo—possible values —of Vv T="70;

"'h‘m R I B R T T T T e ey
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which corresponds to balancing the L.H.S. against the first term
on the R.H.S. and v = -1, which corresponds to balancing the

L.H.S. against the second term on the R.H.S.

Here v = 0 describes the asymptotic behaviour of the
T-branches for [Ag| » O. The valid expansion for the solutions in

this case is given by

B,= | A§B™,
n=0

etc. The solutions, correct to 0(Ay), are

- — o Apr R N I N

By(r) = 1, By(r) = —— (1= 3), ¥(©) = 0~ (x” = - =D

and

- 2

o(r) = r /2 , o . . . . (53

and show good agreement with numerical solutions on the T-branches

for small Ag.
Here v = -1 describes the asymptotic behaviour of the

P-branches for -|Agl + 0. The expansion in powers of Ap in this

case is nonuniform and given by the series

Ag B (54)

etc. To 0(A5l); we have from the system of Eqs. (15)

S T E



b~

%[r%-n}'=ggdo{wﬂJ_g«n], (55b)
[@(-1)]' - 4 55, 1), (55¢)
o(-D" = g () (55d)
’ ig‘i)(O) =0, ¥"Dc1) =0, 310y =0, 3(-1(1) =0,  (55)

where primes indicate differentiation with respect to r. To 0(1),

‘we have similarly

5,0 = 5D | 1z (7 -50)| - 5,0 [FD _ 50| csea

L 5@ -5, [122 (70 - 59| + 5,0 [3-0 _56D] | (o)

O SO (56c)

QO JON (564)

Y N

A e —
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By (9)(0) = 0, ¥(O(1) = 0, 3(0(0) = 0, (V1) = 1/2 . (56e)

Therefore, the solutions on the P-branch are given approximately

by
_ 3N —0y, (57)
Bz(r) o AO + B,

etc. Equations (55) and (56), not essentially much simpler than
Egs. (15) from which they were derived, have been solved

numerically. The numerical results, summed according to (57),

show good agreement with numerical solutions of the P-branches for

) =1
small Ag. 1In Table I, we verify the Ao scaling of the solutions
for small Ay by demonstrating, for instance, that the quantities

Xagé(l) and Aoié(l) are approximately constant.

III. Comparison With Experimental Data on Self-Reversal in

Pinches

In Fig. 5, we compare the F - 0 [F = Eél), 0= Eé(l)]
predictions from the present theory with experimental data from
Eta-Beta II.lq We indicate the theoretical curve assuming the
dominant mode to be m=1, n=1, which is also the mode for the
numerical results reported earlier. As discussed earlier, this
choice is appropriate for tokamaks. But for pinches, it is likely
that the m=l, n=l mode dominates in the very early phase of the
discharge and is succeeded by m=1 modes of higher n-number such
that the singular surface [defined by q(r) = qs] corresponding to
the dominant mode falls within the plasma during relaxationm. The
dashed 1line in Fige. 6 is the prediction from the theory assuming

the dominant mode to be m=1, n=5 (qS = 0.2). We note that the

“Fesults of the theory do not change markedly. We have repeated

B iy ¢ SU S —
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the calculations for a few other low n-numbers (n<l0), and have
noticed some but not drastic movement of the value of © for null
toroidal field. In Fig. 6, we show the graph of V wvs.
R—IKO(ZWQP)—2 for the m=l, n=5 mode. We note that the graph is
very similar in structure to the one in Fig. 1 for the m=1, =n=l
mode. The qualitative features of the tokamak-like and pinchlike
profiles are also similar. Typically, since most toroidal devices
in practice have aspect ratios from 3 to 10, and there are usually
a few modes that are dominantly excited, we may conclude safely
that the value of © at which the toroidal field reverses may vary
to some extent from one experiment to the other depending on the
aspect ratio of the device and the dominant resistive modes, but

will, nevertheless, lie in a reasonably narrow window. Perhaps it

" “should be emphasized here that agreement with F — © predictions

from experiments is not a definitive test for the correctness of
relaxation theories such as the present work or for that matter,
Taylor’s theory, the progenitor of much activity in this area. A

more crucial test dis the outcome of the computation, perhaps

numerical, of the rate of decay of magnetic energy and the global

invariants from the three-dimensional resistive

magnetohydrodynamic equations.

IV. Stability of Minimum Energy Equilibria

The stability analysis is performed by means of a computer
code which integrates Newcomb’s Eq.15 from the origin to the
singular point where m=nq(r), and from the wall to the singular
point, using an adaptive numerical integrator. (This is different
from conventional reversed-field pinch terminology,9 in which
rational surfaces are defined by the relation m + nq(r) = 0. For
both cases, m > 0 but the sign of n is opposite for the same value
of q). The equilibrium magnetic fields Bg(r) and B,(r) are fitted

to cubic spline functions and then used to evaluate the

.-coefficients ... of .. the ... differential equations. .. Ideal M.H.D.

el T e
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instability is indicated if Suydam’s criterion is violated at the
singular point, or if the solution to Newcomb’s equation passes
through zero before reaching the singular point. As the solution
approaches the singular point, it dis fitted to analytically
computed power series solutions. The ratio of the coefficients of
the two independent solutions is computed , and the integration
proceeds until convergence is obtained. The ratio on the left and
right of the singular point are then used to compute the quantity
A’ of tearing mode stability theory.lG’ A more detailed

18
description of the code is given elswhere.

Using the code described above, we have investigated the

stability of the minimum energy equilibria lying on the T— and the

7mf;Bféhéﬁé;Wﬁ(E:é:;ﬁﬁiﬂggér equilibria lying on the solid liﬁés in
'Fig. 1) to fixed-boundary low m and n ideal and resistive modes
with  singular surfaces inside the plasma. The reason for
confining our attention to low m and n modes is twofold. First,
the Kadomtsev-~Monticello model, which guides our choice of global
invariants, is primarily valid for m=1, n=1 modes in tokamaks, and
the process of minimizing energy subject to invariants
approximately preserved in a discharge dominated by a tearing
instability of 1low mode number may be realistically expected to
lead to equilibria stable to low m and n perturbations. Second,
it is well known that the instabilities most deleterious to
confinement are those with low mode numbers, and it is therefore
sensible to investigate at first stability of any set of

equilibria with respect to these modes.

The tokamaklike minimum energy equilibria, indicated by the
solid T-line in Fig. 1, is tested for stability against the
m=l n=l, m=2 n=l, m=3 n=2, m=4 n=3, =5 n=3, and
m=/ n=4 modes. In Sec. I, we have shown by asymptotic analysis
that for a tokamak discharge dominated by the m=1, n=1 mode, there
is no singular surface with g=1 inside the plasma for solutions on

the minimum energy T-branch. The stability of these equilibria to

= the ~“other=—modes " listed-abovemay-be-summarized -as-follows. ~The ~~
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equilibria are all ideally stable to these modes. There is a
window at © ~ a/R, in which the equilibria are resistively stable
to all but the m=3, n=2 mode. In Table II, we list the numerical
results for a typical equilibrium (XO=1) from this window of

stability.

From the work of Waddell, Carreras, Hicks and Holmes7, we
know that the most dangerous instability for a tokamak discharge
is the m=2, n=1 mode which destabilized nonlinearly the m=3, n=2
mode and other higher harmonics, finally resulting in ma jor
disruptions. It has been emphasized7 that the m=3, n=2 resistive
mode, if present, may be innocuous by itself because it saturates

at a low amplitude. These equilibria may thus be classified as

“non-disruptive, and perhaps describe relaxed states in a

well-confined tokamak discharge.

This pinchlike equilibria, which lie on the solid 1line
labelled by P and contain solutions Witﬂ q < 1, monotonically
decreasing and reversed on the outside are trivially stabilized
with respect to the localized low m and n modes mentioned in the
previous paragraph because there are no rational surfaces inside
the plasma for those modes. However, rational surfaces are dense
in such equilibria for m=1 modes of large n-number, and we have
found our equilibria to be ideally unstable to such modes. The
existence of these residual instabilities in a model of relaxation
dominated by a tearing mode of single helicity is not surprising,
and points towards the need for a global constraint better
preserved than K; in strongly turbulent discharges such as those

seen in reversed field pinches with slow current-rise.

Conclusion

In this paper, we have solved, numerically and analytically,

for minimum—energy equilibrium states of a cylindrical plasma with

== no-pressure.- -These equilibria-have been constructed by minimizing -

e e

1
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the total magnetic energy subject to a set of global constraints,
which were recently proposed on the basis of a model of turbulent
relaxation dominated by a tearing mode of single helicity. We
have found both tokamaklike and pinchlike equilibria of minimum
energy. We have examined these equilibria for ideal and resistive
stability. It is found that the relaxed equilibria are always
trivially stable to the assumed dominant mode. Furthermore, there
is a narrow window of tokamaklike equilibria which are ideally
stable to the important low m and n modes, but resistively
unstable to the m=3, n=2 mode. For pinchlike equilibria, we have
found residual high-n instabilities. In future work, we hope to
remove the restriction of a dominant tearing mode of single

helicity, and construct equilibria which are stable to a wider

band of instébilities.
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o AgB, (1) A(Bg (1)
0.1 0.41 -0.31
0.08 0.39 ~0.31
0.06 0.37 -0.32
0.04 0.34 -0.33
0.02 0.32 -0.33
0.008 0.31 ~0.34
~0.06 0.22 ~0.36
~0.04 0.25 -0.35
~0.02 0.27 ~0.34
~0.008 0.28 ~0.34
~0.006 0.29 ~0.34
~0.004 0.29 ~0.34
~0.002 0.29 -0.34

Table I

Demonstration of the Aalscaling of the solutions

on the P-branch for small AO'

B e T
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for a typical solution (AO=1) in

the minimum~energy windon on the T-branch.

AI
Position of Ideal Resistive
Mode| Number singular surface stability stability
1 1 no singular stable stable
surface
2 1 0.980 stable ~11.41,
i
stable i
3 2 0.741 stable 7.57,
unstable
4 |3 0.529 stable -1.00, stable |
5 3 0.854 stable ~4.60, stable |
sf,
7 3 0.894 stable -11.96, stable g
]
Table II Ideal and resistive stability report
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Figure Captions

Fig. 1

Fige. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Energy of equilibria in present theory compared with energy of
axisymmetric equilibria in Taylor’s theory (marked by A).
Arrows indicate direction of increasing AO. Labels P and T
distinguish pinchlike and tokamaklike equilibria. Dashed 1lines
indicate equilibrium for which energy is stationary, but not

minimum. The dominant mode is m=1l, n=1.

(a) E;(r), (v) Eé(r), (¢) Eé(r) and (d) q(r) for a solution on

the minimum—energy P-branch. (e)ﬁé(r), (£) Eé(r), (g) Eé(r) and -

(h) q(r) for a solution on the minimum—-energy T-branch. The

dominant mode is m=l, n=l, and the aspect ratio is 5.

Analytical approximation for Eé(r) compared with numerical
result (qs=l, Ao=l, a/R=1/5) for typical tokamaklike

equilibrium.

Analytical approximation for Eé(r) compared with numerical

result (qs=l, Ao=l, a/R=1) for typical tokamklike equilibrium.

Comparison of theoretical predictions with F- @ plot from

ETA-BETA II.

Energy of equilibria in present theory compared with energy of
BFM (marked by A) assuming the dominant mode to be m=1, n=5.

Dashed and solid lines have the same meaning here as in Fig. 1.
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