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Abstract

The theory of unfavorable curvature-driven instabilities is
developed for a plasma interacting with a hot electron ring whose drift
frequencies are larger than the growth rates predicted from conventional
magnetohydrodynamic theory. A z-pinch model is used to emphasize the
radial structure of the problem. Stability criteria are obtained for
the five possible modes of instability: the conventional hot electron
interchange, a high-frequency hot electron interchange (at‘ frequencies

larger than the ion cyclotron frequency), a compressional instability, a

-background . pressure=driven . interchange, - .and..-..an . .interacting

pressure-driven interchange.
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I, INTRODUCTION

Experimental evidenceT'2 has shown conclusively that plasmas
containing hpt electrons can be stable in magnetic well configurations
that would be predicted to be higﬁly unstable in conventional
magnetohydrodynamic (MHD) fluid theory. However, conventional WMHD
theory éan break down because the hot electron drift frequency is larger
than the conventional MHD ordering. Specifically, the hot electron
curvature drift frequency can be larger than the predicted MHD growth

rates and even larger than the ion cyclotron frequency. These effects

need to be included when considering an appropriate theory for hot

~electron instability, and thus predictions different from those of MHD

theory can be expected.

Several authors have included additional physics in describing the
stability of hot electron plasmas. Krall3 considered the effect of cold
plasma on the hot electron interchanée instability and showed that, with
a sufficiently large amount of cold plasma, the mode is stabilized.
Berk” extended Krall's model to describe stability when the hot electron
drift frequency exceeds the ion cyclotron frequency. Dominguez and
Ber‘k5 treated the electromagnetic aspects of the problem in a
self-consistent fashion and verified the results of Krall3 and of Berk.u
They also showed that a hot electron interchange mode, distinet from the

conventional MHD mode, can exist at frequencies above the ion cyclotron

—rr T




-3
Given a mechanism for stabilizing the hot electron interchange, it

6 that the diamagnetic well produced by the hot electrons

had been shown
could stabilize the background plasma as long as its beta, Bor Was less
than half the hot electron beta, B,, where the beta value of a plasma is
defined as B = 2P/BZ, with P its pressure and B the magnetic field
strength. However, Van Dam and Lee7 énd also Nelson8 showed that the
background plasma is stabilized with respect to a background
pressure-driven - interchange instability only if a more stringent

condition is met, viz., Ba < 2A/R, where A is the annulus thickness and

R the unfavorable radius of curvature.

However, Van Dam et 31.9 then developed a generalized eneréy
principle (similar to one developed by Antonsen 53_31.10) to account for
the high hot electron drift frequency, which predicted a stability
picture more pessimistic than even the conventional Kruskal—Ober‘man11
energy principle. Hence the theorétical explanation of stability in the
Elmo Bumpy.Torus (EBT) appeared elusive, However, it  can be shown 1°

that this new energy principle only yields a sufficient condition for

stability, (if particle resonances are ignored) so that a prediction for

instability requires a more complicated modal analysis. Recent .

independent calculations by El Nadi12’13 and our gr‘oup14 have

established that a new compressional mode is present if the background
density is too high. The unstable compressional mode 1is seen to be

responsible for the pessimistic energy principle prediction. However,

with the modal analysis, stability is found to be possible at moderate

background plasma density values. This compressional mode has also been

applied to tandem mirrors by Rosenbluth.15
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All the works we have alluded to (with the exception of Ref.13) use
models that describe stability at one radial point. In this paper, we
develop a Self-consistent hot electron plasma theory that attempts to
treat radial aspects of the problem more realistieally. In addition, we
have analyzed some aspects of the axially-dependent problem, which are

discussed elsewher'e.16

To treat the radial problem, we model the plasma as & z-pinch with
a hot electron annulus present. The z-pinch model has the virtue that
magnetic field 1line curvature is present in a natural way, rather than
by being introduced through an ad hoc gravity. In this model, the
system has two ignofable coordinates, and a second-order radial
differential equation can be derived for the response of the system.
The mode structure across the annulus can then be determined. We find
that there is a set of short-wavelength WKB modes that are similar ¢to
those of local theory, although the geometry places restrictions on the
perpendicular wavenumbers that strongly affect growth rates and
stability 1limits. In addition, one finds layer modes, with long radial

wavelengths over the annulus region.

In Section IT we derive the basic differential equation for the
z-pinch model. In Section III we give an overview of the modes
contained in the differential equation. In Section IV we analyze the

mode structure of our equation. A summary of our results is presented

in Section V, and any reader not inte(e§tgq inﬁE@ewgetailgqragglygiswrigﬂr

referred to this final séction.
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II. DERIVATION OF RADIAL EIGENMODE EQUATION

We will derive the radial eigenmode equation for a hot electron
plasma in a z-pinch model as shown in Fig. 1. The hot electrons are
contained in an annular cylindrical shell, and the magnetic field is in
the —é direction. Note that the 6- and z-directions of the z-pinch
cylindrical geometry then represent the (anti)toroidal and poloidal
directions, respectively, of a bumpy torus. The symmetry in the 6 and z
directions enables us to obtain an exact radial differential equation

for the system.

In equilibrium the hot electfons create a diamagnetic well that can
be wused to stabilize the background plasma if the hot electrons are
passive to perturbations. However, as the hot electrons are not
passive, several types of oscillations can arise that may cause
instability. The frequencies of interest can be comparable to the ion
cyclotron frequency, but much 1less than the electron ecyclotron
frequency. This simplifies the analysis, since the electron response
can be treated entirely in the low frequency limit. It is, however,
necessary to keep the high frequency response of the ions. The simplest
method 1is to take the ion response in the cold plasma limit. However,
because finite background pressure is important in the theory, we will
treat the background electrons with finite pressure. Our analysis will

be in the zero Larmor radius limit so that perturbations conserve the

lowest-order magnetic moment.

- .
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We will formulate the equation in terms of fluid equations, with
the pressure response being determined from the second moment of the
Vlasov equation. For the inertial response, we need only account for
ion dynamics. Since the ions-are taken in the cold plasma limit, we
obtain a relatively simple finite frequency expression for their

response.

We shall assume charge neutrality and also E -« b = 0, where E is

the electric field and b 1is the unit vector in the direction of the

equilibrium magnetic field. The fluid equation for the system is

(1)

|
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where the pressure tensor P is defined as
3
P = ) Fsepd po (2)
~ J

p is the mass density, V is the fluid velocity, F: is the distribution

J
function for the jth species, and electrons are treated relativistically
so that the momentum p is related to the particle velocity v by

=-1/2

2
p= mjyy with vy = (1 -v /c ] . In the zero Larmor radius limit,

the pressure tensor has the diagonal form

2An
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where ¢ Py = H - 2uBe - mjc y H 1is the relativistic -energy, and

2
M =p,;/2B is the magnetic moment. Equation (1) can then be written as

seol = -1 (Pl+_)+v- B[l — (. (B
B

A convenient reduction of this equation is to take the scalar
product of B with the curl of Eq. (4). After some  algebraic

manipulations (see Appendix A), one obtains the equation

.. (6Je B\ 2
g [Bxoy] +8° (B ) (fi"—g—"‘>-(§xn,<_) . 26-82—-90

+o7 . (BxyB) = 0 . (5)

~ ~ . 2
where g = (b + Y)b and o =1 - (P, - P J/B" . Note that in the z-pinch

model, Eq. (5) is trivially satisfied in equilibrium.

The equation for Fj(g,H,u) satisfies the drift kinetic Vlasov
equation, which in the low frequency, zero Larmor radius limit takes the

form

3 ~ 3Fj .BFj .
T—+Vllp°sz+!d‘—§?+Ha—H= 0 ' (6)

e Where - e
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]JbXVB p A ~ A Exb
Y§or = =[x (B MR ]+ 52 (8)
a;msPY  A5myPY
T . u 3B
B o= qE vy +a4E; « yg + §EG-§E . (9)

For the z-pinch, the equilibrium drifts are in the % direction,

and - hence the equilibrium distribution can be taken as a function
Fo(r,H,u) . The radial pressure balance condition for Eq. (1) then 1

yields

z 2 (p, - P) |
QB L ) 2 B g L (10)
R S A ] I

where =-1/r is the field 1line curvature and P" 1 the equilibrium

pressure components.

We now consider the 1linear response of the perturbed fluid

equations to a "displacement" ¢ , defined in terms of the perturbed

electric field §1 as

E'I (r) XE
= i exp [-iwt + ikz] (11
— = w — R—— e - i e e S JE— — ——— =

iuw
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where we restrict ourselves to flute-like perturbations. From the

induction equation, the perturbed magnitude of B is

B,] = —é ° 2 X (;X"B‘) = r.?.[—ad? (grB) + ikngJ (12)

where B = {B| .

The linearly perturbed z-component of Eq. (4) yields

-iwpVy, -ik(BB; + P 4)

k;[-szgz + iB é% (BE,) - iPi1]J;- (13)

The perturbed velocity Y1 is obtained using the response of a
cold ion fluid, which is simply the 1linear response of a single

particle. Hence we have

-i0¥y = (V1 x b) wyy = iwwyExb au)
“tu¥yxk + wy3¥q = -lowgg ' (15)
where Woi = qu/mi is the ion cyclotron frequency. Solving

for -iwpy1 yields

~1wp¥y
cl

T |
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where X = wyyw /(wg; = w ). Hence, Eq. (13) may be written as

oo dB 2 dEp ) [
-1k£rB i + 1kPl1 = (kB g - iB -37?)\ + Ap ng - 1.;9— Er,) .
g ¥, ci /

We now obtain the perturbed version of Eq. (5), which has the form

. B d - . kB ‘
wkoBVqp + fu — = (ervy,) +i — (BBy = P,4) = 0 , (18)
or
3 P
B d i d 1
wkoBV gy + Gu — - (orvy,) +k — l:kgz - F e (&,B) -_2_} = 0 .
(19)
The perturbed pressure components P and P are given by
_ 1 11
<P"1)J § - B '(BP"/QB z dHdyB ¢ (u123‘ (20)
PL1 = 2 = aPl/aB ,p", b/
where the perturbed distribution function f. 1is determined by the

J

linearized form of the Vlasov equation given by Eq. (6).

7 For BP”/BB and BPL/BB , We may use the identities

U ._._——_—_jl“r-T“_-._ «TA_—r — — ‘-
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3B J 1

The linearized form of the Vlasov quation (for no

electric field) is

Df . F. uB . .
J _ N 1
$e ¢ Y41t L5y <1w71'%j+qj§11 Y4
where
D . _ .
-1-)? = -1(0.) ot wdb - wcv) = =10
" _ ku dB
db = gm.By dr
quJBY dr
2
kpy
w = -
ev s
_ quJByr
and
~ UB1
¥d1 . r = -1 - lw?,'r. .

|

9F 4
9H °

(21

(22)

equilibrium -~

(23)

(24)

(25)

(26)

27)

i
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Equation (23) is then solved for fj to yield

k OoF oF ) . :
— %y E 2
£ N G O A O ) (28)

where B is the perturbed magnetic field strength in the Lagrangian

sense:
o o0&
0B r ,
Solving for Pi1 and P"1 then yields

APy
@, LG ===,
i, BaB/ g% £, + BBG,

P = - |
11 - dr r
(1 -6Gs) 2. .
- [1395+i_._ﬁ3 £, + BBG, (30
dr r 1 °r
, . ,

: '.dP" B G3 . o :

Pyp = =Ep | + —= | + BG,B (31

where we have used the equilbrium conditions

dP 2

1 dB B
—_ = =B = - 2
dr dr r ° (32)

— 17
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—_— 1 - ,
3B o (33)
we have defined
k 3F oF
3P 2 Bar  “3H)
2Py [amawe \9 (34)
T Ranr ; ] ’
BB 3 ipy i famyy
| k_3F  OF
3Py ES , ’ qu ar oH
= — - dHdupip !
BoB Ay HHGDP i Omay (35)
J J
k' oF oF
————— e ()}
1 ) 3 qu ar oH | v
= == 2, | dHduip i : (36)
B Qmsy
J
In our z-pinch model, Dy is a constant of motion. Thus,

F is written as F(p,,u,r) , and if we -use the identities of
(21) and (22) for 8P, /3B and 3P, /3B, Eqs. (34) through (36)

be rewritten as

3F YWey 3F
B 8r  py 9py

= 1 y-
k_3F YWeoy aF )
.qs:B 3r o} opy |

- e L7, (357)

YR

71T
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. (367)

ml

k_3F Y@y 3F
z dpudupu 1 8F mjq4B dr  py 3Py
3 ymy [ Py oy Y&

Combining Eqs. (17) and (30) leads to the relation

I a-ey o . . . S _ _
[ik 2 B2 + =2 0 - ikB2 (1 +Gy) ad?zlir. ) (37

r Wi

whereas combining Eqs. (16), (19), and (31) leads to

23 (1 =G,
{-k g° 2 _ AkpB —2— £, -

r Wei |

S| o

d
a (r‘kpgz)

: 3
1[' %?-él (Pl + P”) + i E%T (o + G3) - 1BAka Ep

3 (1 = Gy) dg /
-1p° 2 g_r_;B4 o —2 g0 . (38)
r dr r dr Wai

Combining these equations, (37) and (38), we finally obtain the

governing differential equation:

{

AR I i | | e st R
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2
Ak r(1 + Gle o 4 [ A1+ G1)prJ q
3 _ | =

+
|
+

r wciQ

CoA( = Gy) + o 2K (g
W
+ 4 e = 0
dr Q - ’
\ 2 2
where & =£,., V, =B /p is the Alfvén

2.2
and Q = 1 + G1 - Ak VA .

(39)

speed,

!
IR
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III. GENERAL MODE STRUCTURE

Let us briefly discuss the general structure of Eq. (39) before

performing a detailed analysis. We will show how the wusual MHD modes

arise and how they are altered in a hot electron plasma.

In conventional MHD theory, one assumes small drifts, that

is, W43 <K w and

K BFj « o aFj

g:B or 3H °

J
and also y = 1 (nonrelativistie). In this limit we find
.. - 131’1_25 [ gHam? PFy T AR (30)
L B o m; py 1 Y8H B2 - "L ¢
6o, = 120 —21 dHd R S L] (41)
2 * B 2 L R T -4 2

N

Gy = -2—1 | dHdulp s =138 (42)
3 < B ! LT 2

7T

TTTm
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If we consider w/w,; << 1 and set (1 + G1)/Q =1, Eq. (39) then

i
becomes
(1) (2)
2
2
[k - L4 ro iLJ.E - 2
pr dr dr : VA(1 + BJ_)
(3 ,
1-2)
A 1 d 1 3 2
‘ — (P P — — = 0 .
+ 7 EZ e (P, +P) + s CI B T+ 5] {E

(43)

Equation (43) recovers modes associated with double adiabatic
theory. In the limit of large k, we may balance terms (1) and (3) to

find

¢ 1 4 103
w =—1-§ZF(P”+PL)+F\O’+—B"- ’ (uy)

2

whieh 1is the interchange mode for double adiabatic theory including
terms from compression, This leads to the wusual instability that is
driven by the product of pressure gradient and curvature. In addition,
there is a stable oscillation obtained by balancing terms (1) and (2) in

Eq.(43), which is the compressional Alfveén wave:

Hr——
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2 2.2

Y where kP ~k? - d?/dr? .

Now for a hot electron plasma, the above results are altered

considerably because the natural ordering fof hot electrons,' when

1
|VB/B| = }A"bi > 1/r , is (with qq = -tel)
k 2odF oF
BN T
qu ar v oH
Wip > w, Way

The condition Ab << r means that the high pressure of the hot electrons
is mostly supported by a deep diamagnetic well in -equilibrium force

balance.

If we now use the expansion

2
(w = w.y ) A A\
_ w1 _ e ©, O[(_;i) ] : (46)

n

Ol =

we find that Egqs. (34) - (36) may be approximated, for Ay <L'r , as
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-1 dP,,./dr \ dpP, /dr
1T+Gy = -.i(£.9§.> (1 - Ih S ( - -Bio) s D
B dr ' BdB/dr - \ BdB/dr ¢
Bie dPyp/dr
G L

2 2 ' Bas/ar (48
_ 3 . , .
where "e" vrefers to the background plasma and "h" to the hot electron

plasma and where

2
_k'<§E>' 2
_ \dr kme< Vy > g
wdb = ot ™ d_]"‘ (50)
q Bz_d_<_r.lﬂ\) qu
€ dr\ B/
with
1 9Pp
-7
2 Bm dr .
e
<Vh> =S — . (51)
_d_(&w)
dr \'B
[It can be shown that the form of Egs. (47) - (49) is correct, in

the A,/r << 1 1limit, even for hot electrons that are relativistic, |
The result is that, in the hot electron 1limit, the differential

equation, (39), is found to be
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(1
-AaAb< A prady (1= 85 = —
Yoy 2 | Tov / d
\ k™ + — ' dr
3 o + q Q dr lg
@) (3)
2 dP,, 3P,
. o r}\p _ 2( le e )
;? Q dr r
A
d (Pe) e (01 e Lo
|7\ ) ]
- rk B - ks ey
x 7 ., w Ar '
b »111 60 - 2.2
oy Obpk Vp
) )
pAWA
}\p(OL -8"0/2) - > ak 1 -8 _.—w‘—
+ wpk(20 = By o)A . L
weiQ ?
= 0
where

= " B(dB/dr)

(52)

(53)

(54)
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and

= Dgpedy

oy T (55)

€l

with the quantity Q that was defined following Eq. (39) as being given

by

-al
Q = b{(1 - 6 --Ji-) SN (56)

Equation (52) has an entirely different structure than Eq. (43).

Now, if we balance terms (1) and (3) of Eq. (52) in the limit
W W r L/2 w
1 >> [ — Y T3 (‘_‘) 1] R ] Blh : []
[ m k) Va \ 8y Wei

we obtain

1 dB d»(PLc)
R Ar AnN — 27}
r” dr f1 Lra Ple)
L a drt ;2_ -
7 8

This is the dispersion relation found by Van Dam and Lee' and by Nelson

. for the low-frequency interacting interchange mode. At low B, such

2
that 15> - (r/a)(d/dr) (P, /B'), only the cold plasma pressure drives

— e S o oI o £, P E—— e 1P o e e, et

i
X et
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the interchange instability, and stability is achieved when the magnetic

gradient of the diamagnetic well overcomes the curvature

Q.
o

i
lel . (58)
I

A\
S|
-
g

However, the sign of the diamagnetic term changes when-

P
'%%(?)2 1, (59)

in which case the interchange mode is destabilizing., Well above this
threshold, when

P
d [ “le
() >

Qs

Eq. (57) becomes the usual expression for the interchange mode in the

weak curvature limit,

2.2
2 kK Vy |
. [_12;_ (P, + Pi)J , (60)
kK, Lrs 9

where now the total pressure enters.

Balancing terms (1) and (2) of Eq. (52) in the 1limit

w/®%,, << 1 gives rise to a compressional magnetic instability, rather

eV

than the compressional Alfvén wave of the usual MHD ordering. For this

instability, the ldcal dispersion relation is seen to be

i
177 17
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2

2 2 By

— . (61)
r

We see that this mode is unstable when 66 <1 and Ab/r >0 ; roughly
. the same as the conditions to stabilize the interchange mode. Thus, if
we assume w/ﬁcv << 1, when the interchange mode is stable the
compressional mode is not. The recent analysis of Van Dam gg.gl.g
showing that the low-frequency energy principle is more pessimistic than
conventional guiding center MHD theory is due to the presence of this
mode. This mode is closely related to the magnetic trapped particle
mode reported by Rosenbln.lth“4 and has been independently found by

Fl-Nadi, 12

It should be also noted that the conventional hot electron
interchange, with w << Wei » cCan be obtained by balancing terms (1)

and (3) when m/ﬁcv >> 1. It is this mode that is stabilized by cold

background, as reported by Krall.3

5

The high-frequency hot electron interchange mode” is obtained by

observing that if wgg <Ko K 50v and n, = n, (with n, the

background ion density), then the last expression in term (3) of

Eq. (52) cancels most of term (5), with the remainder of term (5) being

2 - 2
balanced with term (1 to give W= = weB Kk A/K ,

-1
with A = =p (dp/dr).

ST T T e ‘_‘!.I‘”IW“—T"T —— ‘l‘ 9 i e e e o
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IV. DETAILED ANALYSIS

We now analyze the modes of Eg. (39) in more detail to obtain
stability criteria. If Ab/r << 1, we saw that the kinetic terms can be
expressed in terms of density and pressure. However, in actual
experimental operation, the value of Ab/r is not much smaller than unity
(wheré we éssociate r with the experiméntal magnetic field radius of
curvature), so that the forms in Eq. (49) can be quantitatively
inaccdrate. Alternatively, we can choose a simple hot electron

distribution function of the fornm

Pin(r)
Foo= m 8(p,)é(u = up) v , ' (62)
h e Il 0 0 Z
[ B (Mg ]
where Plh(r) is the perpendicular hot electron pressure,

2 2
y02 =1+ 2uB(r)/m c, and the parallel hot electron pressure is zero.

‘This distribution allows us to treat Ab/r arbitrarily and to have a

tractible algebraic form. For this distribution, Eqs. (34") - (367)
become
1+G1 =

HoB . - (Blc - BIlc) d [ Ple\}
Wil + By = Bin—777) ~Wey [Vt ———+r 5| = ||

2YO mec r B
w-(ﬂdb '
e (63)

B

i
1T 1T
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Ble
G2 = —-2-—- ) (6’"’)
and
3B) ¢
G3 = 2 . (65)

Here we have assumed that w 1s greater than the background plasma
drift frequencies and used the nonrelativistic fluid-type response of
Egs. (40) - (42) for ‘the background plasma species. Also, we have
defined effective curvature and gradient-B drift frequencies for the hot

electrons (both evaluated at the transverse energy) as

ku .
gy, = - ——2 (66)
QeMeY o

ku
o, = —o BB (67)
qemeYOB dr

We have been able to show that using these forms for G1, G2, and G3,

rather than the forms in Eqs. (47) - (49), leads to qualitatively the

same stability criteria as when Ab/r KL 1.

The radial eigenmode equation, (39), admits two types of modes:
"layer modes" with &(r) nearly constant over the hot electron layer
and decaying outside the layer; and WKB-type modes with krA =~ (n + v)nw,

_ where k.

is the radial wavelength, A the length over which rthe

background pressure falls off in the layer, and v ~ 1.

N VS — e
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A. Layer Modes

For the layer modes, we integrate Eq. (39) across the electron

annulus, with the assumption that & (r) is nearly constant, to obtain

2
2 2 2.2

r+dr Aork” + W Aer kKB 'G-(1-G2)

[ ) P 2 2 r 3 Q

r- wCiVAQ

k;
U)ci Q
(6) "
. Ao (1 4+ G1) r de 9 ( BZ)
= '—-———Q————EEF'PK P“ -
(8) (9)
pA(1 = Go) + p k. r(1 + Gq) o
, _ o Wei |
Q r- ., (68)

where r~ and r* are-to the‘inside and to the outside of the layer.

We define

~ (69)
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where «~ = k! is accurate if w/kVy, 1/kR, 1/k(r, - R) << 1,

with ry the wall radius and R the location of the layer's center,

the latter to be identified as the average radius of (unfavorable)

curvature in our z-pinch model., Simple scaling allows us to neglect the
following terms in Eq. (68):
Term (1) << Term (6), if kA << 13
Term (8) << Term (6), if 1/kR << 1; and
Term (5) << Term (9), if 4 << A4,
Further, we note that - the pressure at r- is Jjust the background
pressure since the iocation of r~ is chosen so that the hot electron

annulus pressure is negligible there.

1. Background Plasma Interchange Layer Mode

' First, we look at very low frequency modes  where

w <K kVpy, o Wy s Which allows us to neglect terms (2) and (9) in

cir
Eq. (68). Hence we evaluate the G terms in the limit w + 0. For
simplicity, we neglect B compared with unity and take G2 = G3 = 0.

Therefore, in Eq. (68),

1 P
A4 r dB \ ‘ r le

Note that if a finite P"h were to be included, the essential form

would instead be

o St

e Rt B B 1
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. \ L P dpP, .
14+Gy = _:(”dB). <1+ .z “’). 71

Rdr . 0 Z
Bdr Plh B dr
Then, in Eq. (68), we are left with terms (4), (6), and (7), which yield

the equation

e B )

- | dr

2
i:( B_)
dP, . )_dr" 2

k
- 1+
r ' ET dr

2
= 0 p T )RC™ - kZP”c(r’) + %?-[Bz(rf) - B2(r+)] . (72)

This equation reduces to

e
t

(73)

where K "I {ki and where we assume -(17P, J[dP, (r)zdr] = 1/A on the
outer half of the annulus and (-1/P, JdP, /dr << 1/A on the inner half
of the annulus. The term ;75?3575;7 is evaluated by averaging over
only the outer half of the annulus. If. —(R/Bz)(dPlc/dr] <K 1, we. see

that this mode is stable when (R/B)(dB/dr) > 1. This is a stable flute

2
interchange. However, when -(R/B J(dP,,/dr) > 1 [with parallel

e e e e




-29-

pressure, the criterion is -R(dPlc/dr)/B2 > 1 - (dpP/dr)/(B dB/dr)f,

the background plasma beta instability threshold of Refs. 7 and 8 is

surpassed and this mode is unstable.

Near this critical beta threshold, we need to keep
frequency-dependent terms in the expression for G1 to avoid a

divergence. Doing so, we find that the dispersion relation becomes

2 k! . -
0) = -——!—l-- - =P "c(r )
Rp(r™)

b

+ 2 2 v
r . wr dB\ d (B ) w d~(P . P
S s -l el B il 0 I el in* Fle}
7 Kk VA B dr | dr \.2 /. Woy dr
+ . dr -

"_ e oW L w T dB

r © 7 7 B dr
evl k¥, J

(74)

2
with ¢ = 1 + (dPlc/dr)r/B . We assume that the interesting response

occurs when

We then need only include the wunity term in the numerator of the

integrand in Eq. (74). If we further assume that e is constant on the

outer half of the layer and dPlc/dr negligible on the inner half and

also that

e e v o e e et ek e e e 3o 2 e P ene b .

. —
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-1
2 2
(5) <%
w < \Per/ -
Woyl

we can integrate Eq. (74) and obtain

2
ikiB A/A
W = - b . (75)
Ro(r7)(e - w/wcvl)

In Eq. (75), the P,o term has been dropped for simplicity. Also, for

the layer modes, we have defined the fractional change of the magnetic

field strength from outside to within the hot electron annulus layer as
2 + 2 2 . . sy e N .

[B (r*) - B (R)]/2B" (R) = A/A,. We then find the instability criterion

to be

2. 173
< . 3 | kiB A/A
€ €op = ET73 . - i , (76)
Ro(r )wcv.L

with the growth rate, Im(w) , maximized at g = 0, where its value is

2 173
VilkiAw
Ity = 13 (Jf-__c_&) , 7
2 : RAb

2 2
with Vo= BT(R)/p(r7)-. S —
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The self-consistency of our assumptions for this marginal analysis

requires

S
T A s A\ (78)
| s e ‘A’Z‘ 3 A_ *

The left-hand inequality in Eq. (78) arises from the

assumption e,.<< 1, and the right-hand inequality arises from the

cr

2.2
assumption w <K k VAAb/Rw We will not consider the violation of

cvl®
the right-hand inequality as it is incompatible with subsequent

: : 2
stability criteria that will be discussed, if Bp < KA.

However, if the left-hand inequality of Eq. (78) is violated, that

2 2
is, if IkiVy(a/84R) >> wg, , the threshold for instability can be

reduced, If in this limit we assume e = 1, then integrating Eq. (74)

across the annulus yields (in the integral we neglect terms proportional

2 2 2
to w /k V)

2 iV, As! Boyy

W = - ,
Wovl

2 2 2.2
where §J = —R(dPlc/dr)/B and where terms proportional to w /k vy

(79

have been neglected in the integral. Assuming Ab/r << 1, we then find

R S B

|
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2
_ R dP)e ¢ & AR . s
o2 dr 27 :kivAA - er °

(80)

: - 3 3 :
Substantially above this reduced threshold, when Gg >> R-Ggr/Ab}’ but
still below the critical beta threshold of Eq. (76), the growth rate is

- that of an interchange mode due to the background pressure only:

el - 1/2
Y = -—l—L—-[Plc(r') + P"c(r')Jf ) (81
Rp(r™)
where we have included the contribution from the P term in

e

Eq. (74).

2. Compressional Layer Mode

Another solution to Eq. (68) is associated with a zero of the

Vg

denominator Q. Let us define wg such that

Q(wo,roJ = 0 N (82)
9 Qlugyrg) = O (83)
'a—r‘ (Do,r'o - .
We shall show that in fact the eigenfrequency can be wo for thin

annuli. The demonstration follows from keeping terms (2), (4), (5), and

(6) in Eq. (68) and then expanding about wo and ry, using

oWt E = wgy - and - r* = ro=rge If-we —are at- marginal stability

[BQ/awo = 0), then Eq. (68) becomes

e T




£+
S22 _
~ws (A N 2.2 20
( ar” 2o _24_0” . krB R VY |
- Pei VA:” 0 ci
-ARo(r") [k| =~ 5 o) (84)

. r™ .9 w™ 3 Q-
| N T WysTy

B ( 0%0) 77 (Y070 o

Assuming that the integral in Eq. (84) is peaked at r =r,, we evaluate

the numerator at ro and find

' 2 2
2 2
(w’ ) _ U k Bp .
— = 7 Z T ATz
“o g Q_?a 9 Mearge (¢ ) ] "o
wg — [ roe(r
ar oJw
) (85)
From dimensional scaling we have
2 2
2 Q. Q 9 Q. Q
-z T -z T
or A ow LUO
A k2V2A
Q ~ _B’ AT —_——A b’
r r
so that
2 e 2 2
- 2 2 92 w . 2w '
(.9—‘) S R (N LS ——— (86)
wo wey| K2y “eiFlp

Ccl

~which- vanisheS'aS““"kAmva”’(but"with””AB/R“*finite).' However, because

of the large coefficients, the requirement that w’/wo be small can

et et o et e e i 2
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become a stringent condition on the subsequent analysis, for realistic

physical parameters.

Now, to consider Eqs. (82) and (83) in more detail, we take a model

where

I3

P, = o (87)
/ (1 + r7%/A%)
| - r
i
Pog s r© <0
PC = . (88)
PcO .

’ r > 0 .

1+ r’z/Az)

Here, Py = P/, since the parallel hot electron pressure is zero, and

the background pressure Pc is taken to be isotropic.
If we assume that B” = B(ro +r°) - B(ro) , the change of the

magnetic field strength, is small compared to By = Blry), the

equilibrium condition can be written as

B°By + P, = -r"—r0 , (89)

__with P, =P, + P,. Therefore

g
- It abbeend JRL alhie s ) - ammn iy SUTTREE L
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B” = _BO‘[fL.+ % ! ] , r->0 , (90)

where PO = PcO + PhO‘

Equations (82) and (83) in normalized form then reduce to

|
|
|
|
|
|
|
1 ) 1
Q(y,x) + X - y ” - 0, (91

1+ 8 X
Vol :
) 1+ 8 X ' y 1+ XZ)K )
V=T ——— (1.3
(1 +x ) y01
9 §(1 = 3x25 §o(1 - 3x)
5_)_(. Q(y,x) o« - _ 5 i + 5 7 + 2%
(y - DU +x7) + %68 (y = DU +x ) + X8,
= 0 , (92)
with
5 = 2Ph0ro 5 _ 2Pc0r0
s Ty c T T 2 ¢
AB AB
|
S v, = Yei f
= , of = , ‘
Yoyl Wevl
2
X = ! K 2=
PoWeve

' 2
where we have chosen o(x) =pg/(1 +x ). Numerical solutions of

% | VOO
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Egqs. (91) and (92) for marginal stability are given in Figs. 2(a) and
2(b) for 8, =0 and .5, respectively, and for various values of §.
The stable region is generally above the curves (for low background ion

density), although for sufficiently small § it is possible to have

stability below the curves (for high background density).

The general structure of Figs. 2(a) and (b) can be explained
2
: 2
analytically if we take &, << 1 and assume (y - 1)(1 + X } < §%.
2
Then Eqgs. (91) and (92) are satisfied for x = 1/5, and we need to

consider the dispersion relation

: 2
ofy L) = =10 83y =0 . (93)
/2 y-1+,318 ) v 2
.v5 11 -]«
Yei
The validity of the assumption (y - 1) < &x requires

2
either &8 >> 1 or « >> 1. The latter condition 1is satisfied at

marginal stability when ~ 1. We see that this mode 1is unstable

Yei
with too much density. The density threshold is very low when Yoi © 1,

and there is no density threshold when = 1. However, as was

Yoi
already mentioned, the validity of our layer analysis is marginal
near Vy,q = 1, and for this case a more sophisticated theory 1is needed

to obtain a realistic threshold density.

If 6§ > 1, the stability criteria obtained from analyzing the

cubic dispersion relation, Eq. (93), are given by

i
DU | NS
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— > 9 if yaq 2> 1, (9u)

—— > 38 (¥4 if oy, << 1, (95)

and

— > , 1f yo 1 (96)
evl (yci - N

2 2
where Voyl = 0oy 7k and V, = By/pg.

If 6 1is not too large, it is also possible to have stability at
high ion density. This can be seen analytically by solving Eq. (93) in

the limit when y << 1 and «k <X Yoi» namely,

3 3
v —ay +¢ /.83 = 0 , (97)

with a=1- .31 . The roots of Eq. (97) are stable if

<< 138 . (98)

Thus, as long as § < 3.23 , there can exist a stable region at high

density, as_indicated in Fig. 2
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B. WKB-Type Modes

The second type of modes to consider are short wavelength ones that

can be described by WKB analysis, where d/dr is replaced by ik As

P
a rough guide we will use the quantitization rule krA ~ (n + Vn)ﬂ. In
Appendix B we show that vt = 2 for a special model and for a
barticular mode. For simplicity of presentation we will take
Vg = 2/m in the quantitative calculapions that follow. Using the
particular results given in Egs. ‘(63) - (65) for a delta function

distribution and with the background pressure taken to be isotropie, the

local dispersion relation for Eq. (39) is

2
2 w
k(1 +6,) -
Va
5 1
2 2 2
KV, /P B (1 - 8./2)
..,._A .'1+G1———2?-\—2- 4_+L-_3._0 +____.._..3_,_
k(1 -8./2) (1 -28./2) :
s 20 S c - L X(s+g) = o0, (99)
Woi R AR wciA

where R 1is the radius of curvature, A = -P/(dP/dr) = —p/(dp/dr), and

~ ) P
w(® + B) = wyyy [1 —g--—g- (‘l +§é.))}}
140G, = B (100)
0 - Wy

T — -~
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~ B]JB
B o= p-—B0 . (101)
2yomec

Equation (99) can be expressed as a fifth-order polynomial in the

normalized frequency y = w/wcvi :

5 N 3 2 '
y +4y +By +Cy +Dy+E = 0 , (102)
with
~ 2 2 2
A = - + - T B -1+_-<_) (103)
Wevl Weilooy Woilay B By, a
2.2 vk | 284 /2) ). %
9 ~ o o—_ - ‘ A
k V(1 + 8) L Be ;
B - 1V b
= - > -
Way We iAWy
V2
et (1 - Bo/2 + - nL)
Rchvi b
k2VL+ A
A N 2
+_.2___2_A__ [nﬂ + B) +—R£(1 - Bo/2 )}
Woy]WeiRAy
2 2
- _.~£_<§’) !.1 N '31' _ éc -p (1 +..—.~._c.> (104)
Bh E)}‘1
2 2 2, . 2 2 4
C = 7 + 7 +ty—y— + —y—
)

evl Abplay | Bpllayl  “Weoy Weilph

A tr’Tlr”“T“"I"“"“" e e
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~ ~ 28
:_<§> 1 - By + PBLA (1+_~_S-.~?._ (105)
QBh Bh Bh
kzvq
A ' ~ b 2.
Woy RAp
2
~ "('éh" Zéc) PR _ (106)
9ok |4 By
2. 4
—_— k VAI‘Sc
2AbchVJ_
B\ p \ [ 2 f
= _G)( °><‘._iz>\" (1 +_~_°__7‘:’_) (107)
By /\ 90 By By
We have defined the following quantities:
n
p = B (108)
Ne
kzv N
g = VL . (%) % (109)
ki“.)an L
B = RY - 8+ 3 (110)
B = B !ﬁ ;= Bc + Bh
g = 1-RF (piam) o g g (111)
A 2 Ay ¢
B.A A B, + 28 = 1
n = 1 c’b —:—3- B b ~h NC (112)
2A 2 CR

e e e e




A
2A 30}, °b A
r = _— - -] = =21 - ) =
['+5) (1-%) R0 - g
é+2é -2
- C(113)
In the approximate forms of coefficients A - E of Egs. (103) = (107),
and also in the approximate forms of Egs. (111) = (113), we have

neglected terms of order Bo.h and A/R compared to unity and used the
1

relationship n, = [meyo/uoB)Ph derivable from Eq. (62). We will

assume BR/A 7 0(1) and therefore use these approximate forms in the

analytical investigation of the modes of Eq. (102) that follows.

1. High Frequency Modes

To study the modes with frequencies w >wci , we keep only the A,
B, and C terms in Eq. (102) and justify this procedure a posteriori.
9 .
Well above threshold when y = -C/A, we find the compressional
. . o 2 2.2 ~ ~ o
magnetic instability, w = -k|Vp(1 -8,)/(By - 1), in the limit

2
p < 2Bh(A/R) ’ and the high-frequency hot electron interchange

.2 2 2
instability, w = 'wciqo[kiA) ’ when p =1 and dp >> 1. The
2
marginal stability condition for these modes is B = 4AC, which can be

written as

B S | SU— ‘1*‘1*"“""]
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As a cubic equation in p, Eq. (114) generally has two roots near

p ® 1 and another at very small p £ (A/R)2 << 1. However, the larger
of the two roots near unity is spurious, being always greater than
unity, whereas physically the hot electron density may not exceed the

ion density. We now analyze Eq. (114) in these two limits.

a. High-frequency Hot Electron Interchange.

For this case, we take p ~ 1 and thus heglect the right-hand side
of Eq. (114), obtaining a quadratic equation in bp. There is one
physical solution (i.e., with p < 1), which leads to an upper 1limit
on p for stability:

2

1 - 172
[1 -(f,-+sc), ] : (115)
| 3 . .

Equation (115) is therefore the stability condition for the
5

p < py

high-frequency (w > wci) version of the hot electron interchange mode.

Notice, however, that for small values of q as specified by

i P—



if By << 1, (116)

P4 exceeds unity and then this mode is stable.

b. Compressional Mode,

For the p << 1 case, we analyze Eq. (114) as a linear equation,
3 2
neglecting the p and p terms. The small root ) provides a

lower bound for stability:
: 1 \ 2 .
p > py = a (7;) Bh (B~-1)(1- Be J(1 -

Equation (117) is the stability condition for the new compressional

~

magnetic mode.12'13 It shows that at negligible Bor instability can
arise with too much background plasma. It also shows that when éc =1,
the root 'p2 vanishes and this mode is stable. Hence, associated with

the compressional mode are both a density and a beta condition. Only

the latter was obtained from the energy principle analysis.9

C. Disappearance of Stability

The assumptions employed in deriving the stability ecriteria of

Eqs. (115) and (117) for the two high-frequency modes fail when

-1 ~ )
sz1-q =-B8,=~0. The root pq minimizes at zero when s = 0,

ﬁﬁiiéumbz ﬁbéc&ﬁéérﬁigféé: Therefaféjwwwhénwrémwis suffiéiéhtly sh;ii;”7W”
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the roots Py ‘and po can coalesce, with the result that stability

disappears altogether.

We can analyze this case by solving Eq. (114) with the assumption
2 3
p~ s <K 1. Thus, neglecting the p term, Eq. (114) becomes a

quadratic,
2 2 A\ 2 o~
p - %s p + G%u)d (8-1 = 0 , (118)

Wwith s<<d =1~ éc . Equation (118) shows that no real roots
for p are possible, corresponding to the coalescence of jof and Po

and the nonexistence of stability, when
s o= (1-1_%) < eu b, B, (B - 1)(1 ) (119)
A a - BCJ. Lﬁf h (B - Beo .

Note that Eq., (119) is quantitatively accurate only for small hot
electron beta values (Bh < .25). Nonetheless, we conclude from this
analysis that a region in wavenumber space exists for which there is no
stability. A similar conclusion has also been reached by E1 Nadi.13
However, ~since this intrinsically unstable region is somewhat narrow in
parameter space, we expect that more realistic geometrical effects need
to be taken into account for an accurate application of this theory to
the current experiments, where stable operation has been empirically

determined,




high-frequency analysis which has keptzonly the A, B, and C terms is
generally accurate if k2p1/q(kiA) << 1 ., This is not a serious
restriction on the analysis, although the marginal stability condition
for the high-frequency hot electron interchange mode near q = 1/4 must

—45-

Finally, dimensional analysis of Eq. (102) establishes that our
2

be somewhat modified if k/klA R

2. Low~frequency Hot Electron Interchange I

To study the conventional (w < wc-) hot electron interchange

i
mode,3'4 we consider the B, C, and D terms of Eq. (102). By dimensional
arguments, one can show that this procedure 1is Justified if q << 1

and Bo << Bh The typical growth rate for this mode well above
threshold is given by W = -wivlp/qo(klA)z = —wiipq . The stability

2
condition for this mode, C < 4BD , yields another upper limit on the

density ratio p:

2
P < py = g (ka) a9 (1 -85 . (120)

3. Low-frequency Background Plasma Interchange

In order to investigate the background plasma pressure-driven
interchange modes, we vretain terms B, C, D, and also E in Eq. (102).

_The dispersion relation can then be written (for p<< 1)as ... . .. . . ... .. |

T
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+TBC<1+—:‘S'~£> = 0 , (121)

2
with T = p/qp(ka)” . Observe that t© <1 is essentially the
condition for the low-frequency hot electron interchange mode to be
stable (when éc K1) . In the following analysis, we will

assume T <K 1,

The well-known growth rate above threshold for the background

2
plasma interchange instability is obtained from y = - E/C as
2 2 ~ ~
w = - \'E— ) L RA ) v . (122)
Il (1-8,)

The expression of Eq. (122) follows from treating the hot electrons as
rigid and non-interacting, and it dis valid for éc KK 1. We will
first analyze the stability for this case and then consider the case
where the Dbackground plasma interacts with a non-rigid hot electron

annulus.

| A e
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a. Non-interacting Background Interchange (Bc << 2A/R)

In this case, we analyze the pure background interchange mode, with

stability determined only by terms C, D, and E in Eq. (102).

It can be seen that there are two possibilities for achieving
stability. If the hot electrons create a sufficiently deep diamagnetic
well according to

By 2 L;—A--?Bc ' (123)

intrinsic stability can be obtained. However, even if Eq. (123) is not

satisfied, stability can still be achieved if

— 8('._> if 8y, >> 1 and By/8, < 1. (124)

This latter stabilization mechanism arises from the difference in

density between the ions, N, and the electrons, Ng of the

background plasma, the difference being the hot electron density. Thus,

since n, # Ng » the ion ExB rotational drift is not completely

cancelled to lowest order. This results in a frequency shift

W”bfopoftidnaiﬁﬂt5 W(nc”—wgé)/agi;*bmﬁ fsgﬁfﬁe inﬁéfchange mode, which, in

[
. S
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a manner analogous to finite Larmor radius stabilization,17 produces

stability if 1 « p is large enough, as specified by Eq. (124).

b, Interacting Background Interchange (g, ™ 2A/R)

~

In the situation when Bc ~ 1, we must analyze the cubie equation,

2
(121). We may drop the linear term under the assumption 1 <K d /3 ,

with d= 1 - B, again. For small d, two roots of the cubic

dispersion relation coalesce and lead to instability if
- 28
_ T e 2 1}
d = 1—80 < 3 E(1+—~_—T’> . (125)

The maximum growth rate occurs when d = 0 and is given by

~ 1/3
) 28 \ |
Im(w) = zg'wcvi E[T ((1 - -2 ) 3 . (126)

4, Numerical Solutions

In Figs. 3 and 4, we present a set of detailed plots of the
marginal stability boundaries of the short-wavelength WKB modes
described by Eq. (102). The stability criteria are a mixture of density
and ~beta limits. — Thus, Figs.” 3 and 4 are dual plots of the background
ion density n, and the background plasma beta Bo as functions of

~ the hot electron density n, and bet

By, » for fixed temperatures. . .. . . .

B L S ——

—
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The values for B8 and A/R in these numerical plots are arbitrary,

that is, not restricted to having values small compared to unity.

Fig. 3 is for EBT-S parameters: B = 5KkG, A = 1 cm, R = 20 cm,

rp = 10 em where rp is the experimental annulus radius, the
2

relativistic hot electron energy is (y - 1)mec = 500 eV, Be = ncTec'

Tec = 200 eV where we note that the electron temperature is then equal

to Tecnc/(nc - nh), which for most parameters is essentially Tege
Figs. 3(a) - 3(f) are for various values of the poloidal mode number
m= krp (m = 1,3,6,8,12, and 20). For these parameters, the

2 32
quantity qp = 7.6 , with g = .,019m /(1 + 2,5x10" m ).

To interpret Fig, 3(a) for m = 1, for which q << 1, we observe
that the lower ion density bound for the hot electron interchange mode
given by Eq. (120) is satisfied. For EBT-S parameters, in fact,
Eq. (120) will be satisfied for all m values, and hence the lower
frequency hot electron instability is not excited. We also note that
for very small q , the upper n, density limit of Eq. (117) for the

compressional mode is always satisfied. Hence the upper stability limit

is the critical background beta criterion7’8 given by

a0\ 2 | Bh)'( 21 )."l
BC < f(-ﬁ—)}‘ 1—Bh+T(1+? ‘1+—R_; 9 (127)

where we have included small corrections of 0(8) and O(A/R) in the
analytic result of Eq. (127), - ~The -left-hand stability boundary in

Fig. 3(a) is given by Eqs. (123) and (124). 1In the upper part of this

left-hand boundary,‘thg_quantitx_vrr&;g negligible compared to unity and

- e ——

I



-50-
the stability condition can be approximated by the deep diamagnetic well
condition on Bh given by Eq. (123). At lower background
density, T 1is larger and stabilization can be achieved for smaller By

in accordance with Eq. (124),

In Fig. 3(b), for m =3 (where q= .17), we observe the
stability boundary associated with the compressional mode, which is
given by the inequality of Eq. (117). For fixed background temperature,
this condition has two roots for the background density, one
where B.R/2A = 1 and one for B, R/2A << 1. Hence, in Fig. 3(b),
there 1is an additional band of instability where the lower curve is the
density threshold for the compressional mode, whereas the upper part of
the instability band shows that the compressional mode stabilizes as the

critical background beta limit of Eq. (127) is approached.

Fig. 3(c) presents the stability plot for m = 6, where q = .68.
In this case the small region of stability near the critical Bo limit
is not resolved in the figure. The lower ion density band of stability
is now determined below by the high-~frequency hot electron interchange
given by Eq. (115) and above by the compressional mode of Eq. (117). In
Fig. 3(d) for m=8 (where q = 1.05), we see that this island of
stability has disappeared, in accordance with Eq. (119). For
higher m values, a stability window reappears, as shown in Figs. 3(e)

and 3(f) for m= 12 and m = 20, respectively.

e et
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Figure 8 exhibits stability plots for parameters corresponding to

the proof-of-principle EBT-P device: B = 10 kG, A = 1.5 ecm, R = 26 cm,
ry = 18 em, (y - 1)mec2 = 1 Mev, and T,, = 2keV . For these EBT-P
parameters, q = 3.0x10-3m2/[1 + 1.7X10—3m2]. Figures 4(a) - U(e) are

for m= 1,15,20,35, and 60, respectively.

In Fig. 4(a), the wupper Dboundary for stability is the
critical g, 1limit of Eq. (127), and the left-hand boundary is given by
Eq. (124). The lower boundary is the physical constraint n, = ny for
small hot electron beta values, since the stability condition for the
conventional hot electron interchange, Eq. (120), is satisfied.
However, for Bh > .6, the low-frequency hot electron interchange mode
determines the lower ion density stability boundary. The stability
picture 1is similar for m = 15 (where q = .49) in Fig. U4(b), except

that the lower density stability boundary now arises from the

high-frequency hot electron interchange condition given by Eq. (115),

In Fig, 4(e¢), the stability boundary for m= 20 is shown
(@ = .7T1). 1In this case, the new band of instability is due to the
density limit given by Eq. (117), with the two roots being present as
discussed in Fig. 3(b). In Fig, 4(d) for m = 35, where q = 1.19 , the
stability window has disappeared in accordance with Eq. (119). A very
thin stability region exists just below the critieal Bo limit of

Eq. (127). 1In Fig. U4(e) for m = 60 (q = 1.52), stability reappears.

e
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For the EBT-P parameters chosen in Fig. 4, we have

therefore, a wide band of wavenumbers can satisfy Eq. (119),

qO = 1.8;

resulting

in instability. This feature is observed when one compares the results

shown in Figs. 4(a) - Y4(e) with those in Figs. 3(a) = 3(f).

T ﬂ"r“m"“r*rw*“ b
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V. SUMMARY OF RESULTS

We have developed a self-consistent theory for the curvature-driven
instabilities of a hot electron plasma in a z-pinch model. One can
apply the results of this theory to a bumpy torus if one associates (a)
the radius of the annulus in our z-pinch model with the average radius
of curvature of the magnetic field sampled by the hot electrons and (b)
the wavenumber Kk in the 2z-direction of symmetry with the poloidal
wavenumber m/rp , Where m is - an integer and rp is the

experimentally measured minor radial position of the hot electrons with

respect to the magnetic axis.
The stability picture that emerges is as follows.
If the dynamics of the hot electrons can decouple from those of the

background plasma, and if the hot electron beta, Bns is sufficiently

large so that

L7
By > _R_-esc , (128)
where A 1is the hot electron annulus half-width, R the radius of

curvature, and Bc the background plasma beta, then the hot electrons
create a diamagnetic well that stably confines the background plasma.

Generally, the conditions for the decoupling of the hot electron

_dynamics are that:

Jon— i S DY
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(1) The background ion density , n, ,be sufficiently high so that

C 1]
the ideal MHD growth rate for the low-frequency hot electron
interchange is sufficiently less than the curvature drift frequency

(calculated using the perpendicular energy) and also that the

high-frequency hot electron interchange mode not be excited;

(2) The background density be sufficiently low so that, roughly,
the curvature drift frequenéy is 1less than the compressional Alfvén

frequency; and

(3) The background plasma beta, B,, be sufficiently 1low,

namely, 8, < 2A/R.

Conditions (1) and (2) indicate that a window in the values of the
background plasma density for stable operation may Be present,
Condition (3) sets a 1limit on the background plasma beta that can be
contained. These conditions need to be studied carefully when a
complete survey of parameters is considered, particularly the finite ion
cyclotron frequency. There then arises a range of parameters where the
stability window can disappear. To improve on the stability picture at
these parameters, it will be necessary both to solve our radial
eigenmode equation more accurately and to introduce additional physics,
such as the axial variation of equilibrium quantities and the effects of
finite Larmor radius. We leave the study of these effects to a

subsequent investigation.

e
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To be more quantitative, we note that we have found two types of
modes: (a) short-wavelength WKB-like modes where a substantial fraction
of a radial wavelength, 2“/kr' fits across the outer edge of the hot
electron annulus of half-thickness A (somewhat arbitrarily we have
chosen krA = 2, which is the longest wavelength for one particular
model); and (b) layer modes whose radial wavelengths are long compared

to the annulus thickness,

For the short wavelength modes, even when Bh > UA/R - 280,

four other types of curvature-driven instabilities were found:

(1) A low-frequency (w < wyy) hot electron instability. This
instability is driven by the hot electron pressure and is predictable
from MHD theory. It is stabilized if the hot electron to background

ion density fraction satisfies

k2A2 & R 2
n
h 1 . c
— { 1 - — 12

n 5 % ( 2A ) ! (129)

c

2 2 2
where R 1is the radius of curvature, kL = kr +k ,
: 2 2 2

dg = Voy /Wil = (v = De /(2ywcewciRA), ymee  is the mean

relativistic energy of the electrons, Be the background plasma beta,

and o - the electron and ion cyclotron frequencies (in units of

ce,i

radians/sec). Since dg > 1 in present EBT experiments, this criterion

is readily satisfied. For reactor-like devices, however, this criterion

becomes quite significant.



~56- |
(2) A high-frequency hot electron instability that is driven by the
hot electron pressure when frequencies are comparable or greater than
the ion cyclotron frequency. To excite this instability one generally

needs

2
1
qQ = —4qy > T " (130)
k)
Stabilization is achieved if
2
n
L . (131) | |
N

This 1is not a stringent criterion as long as qg#* 1/(1 - BCR/ZA).
However, when q = 1/(1 - BoR/24), the above condition goes to zero,
indicating that there is no stable value for nh/nc. However, this
result probably depends on our idealization of the mathematical model.

A calculation incorporating more realistic physical effects is needed.

(3) A compressional Alfvén instability is excited if the background

plasma ion density , N, » 1is too large. The stability condition

requires

’ (132)
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where Bh is the hot electron beta. This condition gives a reasonable
upper density limit if q# 1/(1 = BoR724). However,
when q = 1/(1 - BCR/ZA), the above condition has no stable operating
region. In fact, when q = 1/(1 - B_R/2A), the compressional Alfvén and
high-frequency hot electron modes coalesce, and analysis then shows that

there is no stable operating regime (assuming B.R/2A << 1) when

, Bpd A
(1-%) < 32—;’-{(-2%- ) : (133)
[Eq. (133) requires B, < .25 for its validity.] We note that
if dg <1, we can avoid this unstable region. If d >> 1, only a
relatively narrow band of parameters is resonant, and the introduction
of additional effects may yield reasonable stability properties.
However, if g ~ 1, we conjecture that even more realistic modeling

will have difficulty in finding stable operation.

(4) A background pressure-driven mode arises when BOR/2A > 1,
which is the basic background beta limit discussed by Van Dam and Lee7
and Nelson.8 At fixed background temperature, this condition also limits
the background density. In order that this background beta limit be the
governing limit for stability, rather than the density limit of the

compressional Alfvén mode, we require

fUA N
T; > \(?r); Bpdo for qo << 1. (134

if, for qg »>> 1, we assume that a more realistic theory will spread
= - - - — - O._ SRR T Ty BT R Rt St o .
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the denominator of Eq. (132) so that it has a minimum value of order

unity, then the condition of Eq. (134) is altered to

T
C f A 2A -
_— > 1= { - ) S
T .(R,;) Bh (1 _Rsh‘) for qg >> 1, (135)

where T 1s a number of order unity.

For the long-wavelength layer modes, we do not find the hot
electron pressure~driven interchange modes, since the hot electron
pressure has no net change across the annulus layer. We still find
background density 1limits due to the compressional Alfvén-type mode.
If kAq0 << 1, the stability limit for this mode is similar to Eq. (132)

with q = dg» viz.,

2
n B
EE. > 7§.qo , (136)
c

where we have assumed RB/2A >> 1 and BCR/ZA 1. For kAq, >> 1,

the stability condition becomes

2
Y Bh .
— > — . (137

However for kAqO + 1, we find that there is no stability region. Here

too, more realistic calculations are needed, In particular, the

-
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condition for Jjustifying the layer

when w i*= kv

c cvl®

We find

approach

breaks

down

that the long-wavelength background pressure-driven

interchange layer mode is also limited by the condition Beo < 2A/R.
However, for some parameters the background beta 1limit can be
substantially less. For example, using Eq. (80), we have
e HkAqq
Beo < Bcrit = TT'Mln 11, -
. 2A h
271 - =— |—
. RBh fng
= 28 win |1, 4ka o, (138)
R 27( 1 - 2A '82
RBy, | B

where we have bounded n,/n, by Eq. (136) and assumed qg << 1.

since kA can be as small since A/r, the eritical Be

reduced below 2A/R, as By incfeases to moderate values that are

less than unity.

Thus,

limit can be

still

It
1T
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APPENDIX A

Derivation of the Parallel Current Equation

By using the identities

2
IxB = —z(%)‘ +BTB (8.1
(B =P { P =Py
Y-B = YP +BB-Y, 2z )+ 7 ! BYB, (A.2)

which follow simply from the Maxwell equations J =VxB and VeB = 0,
and by assuming a diagonal pressure tensor of the

form P = Puéé + P, (- bb) with b = B/IBl, we can rewrite the momentum

equation pV = JxB - VP as
L] B2 .
pY = =¥ k(j;‘* Py ) + oBeYB + BB+Yo , (A.3)

. 2
with V = dV/dt and o =14+ (P -=P)/B . Our objective now is to
calculate the component along B of the curl of the momentum equation,

(A.3).

First, we operate on the right-hand side of Eq. (A.3):

A 2
B+ ¥x -{-V(% * Pl) + oB+YB + Eﬁ-zc.]

~

2
= Beyx [a(gxg) + (o = DY (-%?-) + BB+Vo ] . (A.4)

oo b

R
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Consider the various terms individually:

B-x[o(JxB)| =

2 2
-20J+(B*VB) + B<V(0J*B) - B (J*Vo) - oB (V-J), (4.5)

where the 1last term in Eq. (A.5) may be dropped by charge neutrality

(V':‘I = 0);
2\, 2
BeVx | (¢ = 1) ¥ (Ei—)] = (BXVO)’V(E—» ; (A.6)
~ ~ L ~ . 2, ~ ~ ~ 2.
and
B.Vx(BB*Vo) = (BJ)(B+Vo) . (4.7)

Therefore, the right-hand side of Eq. (A.4) contributes the following:

[ 2
Be¥x E-Y(%?‘* Pi) + oB-YB + Eé'zcﬂ

2 [ 0d B\ (.2
= B g-z (-B—2—>| - (§XE)°Z\(B + PJ. - P">. (A.8)

[B-YB - bb-v (B°/2)]/8" is the magnetic field Lline

1T >
n

where k = b-V

curvature.

Operating on the left-hand side of Eq. (A.3) produces

BeUxpl = U+(oUxB) + p¥ed o (4.9)
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We shall assume that the ion motion is transverse to the magnetic field,

ie., V=V,.

Finally, use Eq. (A.3) to rewrite one of the terms in Eq. (A.8),

viz.,

2
(Bxg) *¥ (—— - P"j - Ve d, = p¥n(bx7B). (A.10)

.2 [od-B) g
Ve (Bxp¥) + B BeY |—5= ) = (Bxg)eY |5 = Py,

+ oV+(bxyB) = 0. (A.11)
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APPENDIX B

Model Radial Calculation

To estimate krA’ we consider the following model.

Define r” = r -'R (where R is the annulus radius in our z-pinch model

and also the radius of field-line curvature) and choose

( -1/R P < A
-1/Ab , -A < r° < 0
1 dB
29 . B.1)
B dr ‘ < (
1/Ab ’ 0 < rv < A
\ -1/R , r° > A
( P rr < 0
. r’- AN
= 1 = - 0 < r < A B.2)
P <’ o ( A‘) ’ (
. 0, r > 0 .

Furthermore, we assume the change in B(r”) to be small relative to B,

2 2 2
take R >> Ab, and assume w4 << k VA' w <K w w >> Wi

cvl?
and k <X ki' We will describe the Alfvén compressional instability.
With Q = 1 + G1 = -B/(R dB/dr), the relevant terms of the governing

differential equation [Eq. (39)] are

e ice—t—eypr——o—g——— ———



d dg 22 (R%> '
_wp | _dr = .
ir (pa‘-) -—Bz—- 5 13 o . (B.3)

The local dispersion relation in the outer part of the layer

for y = ~-inw at r° =0 is

ly2 172

k. B
/ B r Ab )
= V, i —— = —_— . B.4
Y krA'(dB) I/Z(R (B.4)

R—
dr

We wish to determine the eigenvalue of the spatially varying problem in
order to estimate kr‘
Using the profiles in Egs. (B.1) and (B.2) and defining x = r”/A ,

we find that Eq. (B.3) becomes

d gt Ra 2 y2 e+ (
— (1 - x) —=— (1 -x = 0 0 <x<1 B.5
ax ¢ i ra A v ¢ ’ )
b* A0
d2 R Az 2
——Z(ez')-_A__z_Y £" = 0, -1<x<0 , (B.6)
dx b Vg
2 2
where V,q =B /pgq .
2 2 2 12
Assuming Ty = [(RA vy /(8 Vo) ] is reasonably larger than

unity, the solution for &~ is

T = A exp (Tyx) . (B.7)

R da ﬁ"ﬁ‘ln’“—r - e
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The nonsingular solution for g* is a Bessel function:

et = Jo[zg Iy (1 - x)s/z] . (B.8)

The eigenvalue 1is determined by equating logarithmic derivatives
of t¢¥ and £~ at x = 0, which yields
=Jo” I

= . (B.9)

1 = —_
Jo Jo

where J6 represents the derivative of J0 with respect to the entire
argument. The solution to Eq. (B.9) for the lowest mode is 2T/3 =% 1.4,

or

Vg [0y \ /2
y = 2_%9(_B>) . (B.10)

kA = 2 . (B.11)

T T ‘“ii'r"nr -
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Fig. 2.
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Figure Captions

Z-pinch model for a hot electron plasma: Hot electrons
are located in the shaded annular region, with background
plasma existing in the region occupied and enclosed by

the annulus. Magnetic field is in the -6 direction.

Marginal stability curves for the compressional layer
mode, with & as the parameter for each curve and for the

two cases of (a) 8§, = 0 and (b) 8, = 0.5.

Marginal stability curves for the short-wavelength WKB

modes, calculated using EBT-S parameters for various mode

number values,

Marginal stability curves for the short-wavelength WKB
modes, calculated using EBT-P parameters for various mode

numbers,




Fig.

1

T




107!

1073

1074

10~

1072
Q

B

10~3

10°4

o

1072
(8]

B

1073

ORNL-DWGB(-!?C?S FED
I S R P B R =
4 : M=3  UNSTABLE -
- = 1a
- /f C UNSTABLE “-STABLE 10
- A '? =
_ ‘A // =
= £ 7= //
- 4 £ 10'®
- Z STABLE
Zaa
22
—— 4 i
= 4 =
= % — %
— — | 4012
— =0, — ny=n. I
| | | I Al l | |
T T T T T S T T T T T =
(e) :STABLE m=6 o | (¢ _sTABLE m=8 O
- -t —10'4
L UNSTABLE I UNSTABLE Z
- JF — 10*?
L STABLE A | 7
L —— - —— —= 40
» . =T e 3L -7 MmN =
i S R S S N R
L] [ 1T T 3 T T T T T 3
() m=12 2| () m=20 7
= | E 1o
- UNSTABLE ENN UNSTABLE E
- — = T
= __——" E 10'2
: //// nH = [ é :
et O T N
0 0.30 0.60 0.90 0 .90
B
l I | l l | | | [ ] | | |
0 5 10 15 0 5 10 15
ny (x10*) ny (x 10!

Ne

+ 7




Bc

Bc

Bc

Ton

1072

1073

1074

1071 L,

1072

1073

1074

10~}

1072

1073

1074

ORNL-DWG81-17073 FED
l l | I I | I | I
(a) m=1 — (6) m=15 —
"'1////// UNSTABLE—| B UNSTABLE—| 10'*
- ¢ UNSTABLE -
- 7 -
= STABLE = o
= = c
= / ne | E= —
— 74 ) é — E
| | | | 1 [/ ]
] [ I L | | i
(c) m =20 {d) m=35 —
= UNSTABLE —| 10'%
= STABLE = :
= = UNSTABLE — 10'3
= Z E 3 <
UNSTABLE . — sl - .
= -~ Ty n = E =7 M — 10'2
— 7~ = = 7 =
- 7 O = 3
— / — ~ 7 —
./ : L/ -
! 1| || l / | || |
0 0.30 0.60 0.90
N [ l B
(e) m=60 — H
= 1 I L | |
= = 0 1.2 22.3 33.8
~ STABLE UNSTABLE ] ny (x10'")
= ] 1043
= = ) |
[~ — c “
s |
= 7 MHEne = 10'? i
= 7 E |
-/ - |
-/ _ |
/A T |
0 030 0.60 0.90 ]
Bu |
Y I |
0 .2 22.3 335
Ny (x10')
i, T




