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ABSTRACT
A kiﬁetic theory”for toroidal systemsAwhich‘iﬁcludeé
the effects of collisions as well as instabilities is
constructed. This yields a pair of evolution eguations;
one for the spectrum and one for the distribution function.
In addition, this theory yields a toroidal generalization
of?the usual collision operator which is shown to have many

similar properties, conservation laws, H theorem, to the
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usual collision operator.




I. Introduction

In the mid 1960's the plasma kinetic theory for infinite
homogeneous plasmas was characterized by two approaches; the
Balescu—Guernsey-ﬁenard equationl valid for strongly stable
modes and the quasilinear approach of Drummond and Pinegﬁ/éor
unstable modes. The first approach has convergence problems
as the Landau decrement approaches zero while the second approach
does nor relax to thermal equiiibrium. In addition, the con-
nection between the regimes was éoorly understood. This connect~
ion was elucidared by Register and Obermaai//;ho succeeded in
unifying the transport due to both stable and unstable modes in
a single framework. This reﬁbvedvthe'divergences in the

earlier theories. 1In addition, it made possible ‘a systematic

‘calculation of electric field fluctuation amplitudes when the:

modes are weakly stabl%.

In the 1970's a similar situation exists with regard to
kinetic theory in axisymmetric systems, especially" tokamaks
On the one hand, there is neoclassical transport theor?é/énvolv—
ing only stable modes; on the other hand, there are various
quasilinear theories in ‘toroidal geome of which the most
useful appears to be that of Kaufmann}{/y

Our purpose is to produce a unified kinetic theory for
axisyﬁmetric systems. We shall employ Kaufmann's ceordinates
J, 8 and use the techniques of Rogister and Oberman. In

the next section we shall discuss some mathematical prelim-

inaries. In: Sec. {III we shall derive the equation for



the fluctuation amplitude. - In;SQQJJIV we shall derive the

particle kinetic equation. = In Sec. 'V we discuss some

properties of the particle kinetic equation} Finally,

in Sec. VI:we discuss our results and offer some speculations

about future work.




II. Mathematical Preliminaries

We shall approach the problem of toroidal kinetic

theory using Kaufmann'ss’6 coordinates J,0 where
J = (M,P,J) (1)
with
Vzc S .2 e ’ e aas
M= o w . P o= mr - gV, I = '2;55. T
~ (2)

Here © ¢ is the toroidal angular Velocity, o 1is the téroidal
flux function, B ' is the corresponding polgidal angle, Y
is the poloidal flux fundtioﬁ} W is the usual magnetic
moment, and R isathe major radius; In addition, .9 is

~

defined by

It

where Gg,w and 0. are the angles corresponding to ‘M, P,
and J. PFor a further discussion of the'coordinates see

Ref. 6.

In terms of J,0 we define the Klimontovich function N

N =

n ‘ ‘ '
ZG[J‘ - Ji(t)]d[g - gi(t)‘] > (3)

1=0

where n is the number of particles and Ji(t), ei(t) are

th

the. of the 1 particle at time " t. The equation for

5
D

N ma written as

K
o
0



N , - 0 de .\ d OH _
7t T 99 (HE'N) - 37 (s@‘N) =.0

or

— F = e - 5 * = 0 . (4)

Now, we define the Liouville function D({Qi},{gi},t) where

{ii} = (gl,gz,’..,.,gn) and '{gi} =_(31.,32, ++,0) subject
to the normalization
Jatg;y ate;d play,t8,0,8) = 1 . (5)

We further define the s ‘particle correlation functions

0

S . 0
F (Ji,.il-"i

s’ S

~

reenrtd) =

; S
= Jataate o (o) To(z, - o%)e(e; - o9 -
(6)

Finally, we define the ensemble average <> by
<a> = _[d{gi}d{gi}n(-{gi},{gi_})A , (7)

and

A = Aa-<a> . ' (8)
Combining Egs. (7) and (8) with the definition of N it is
easy to see that ‘

<N> = pl(g) (9)
and

1

5)




where P is FU(J),9),01,8,) - F(3,8,)FNg,,0,) , the
irreducible part of the two-particle distribution function.
Because the 6's are ignoréble coordinates, Fl cannot
depend on 2, while F2A and P can only depend on- gl - gé
In addition, we introduce the Fourier transform in the

ignorable coordinates |

(@ =3 i ¢,

T IR A ¥

~

with

1
£ = o do exp[-ig- 1 £¢
g (zw)3/“’= 149, ‘,J

“~~

where % is a vector with integer components. Thus, we. can

rewrite Eg. (10) as
} [ (2,-3,)F (2)) / | o
P (3,0 ) Fo—mn2 o ML e el
,L ’%’ ~L7~ / (21T)3 &r&l | |

* ’ ..
< 8Ny (J7) GNgl (7,)> i

Now, we follow the procedure of Casé(/é;d define the

local time average Operator
t+7 , '
A = 2im —l—/ A(t')dt' ,
and find

3 =1_ 3 - 3 s PR '




and

. . . l
-ag, - (13)

]

SR

~

. .
3g 0Ny *+ iL-00N

with @ =‘8H0/3£ . Note that since Fl is constant on the
zeroth - order time scale, we may replace Fl by Fl to this
order. We note that our Eq. (13) is exactly the Fourier

transform of Kéufmann'sS'Eq.’(ZZ).
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In this section, we shall derive an equation for the time

The Spectrum of Fluctuations

evolution of the spectrum of fluctuations in a torus in the

case where mode-mode coupling is not important.

We start by Laplace: transforming Eg. (13)to obtain

-i(w

where

Sl -

A A ’
_&.g) 51\]"& = Ang(t:O) -

and ,ﬁ

. -~ oF
fd 2, NI B e) gy

ISEIPRS

~

4

- (14)

we have, following Kaufmann, defined

1
(2’rr)

is the Laplace transform of the electrlc fleld E

. The reason.
coordlnates for describing N are the
natural coordinate

position x.

i/idwe exp-i% -6} ev(J 6) olx - £(2,2)] '

's and 6's while the

for the appearance of the jz s -is that the natural

for descrlblng the electric field is the

Note that in the infinite homogeneous medium the

natural coordinates for N are X,V so this eomplication‘does

not occur. In addition,we note that we have assumed the

radiation gauge here.

We now compute the fluctuating current

55 (x) =(2m3 Y
1 2

. ®
- Jg (%1J) 8N, (t=0)
\:R/QJ A 9
! ~ w=%+9 ‘

. 3
i f 3 (x12) 31D 1
- = d’}\{ll dJ AL . ,QJ. OF™
v - (0-2-Q) ~ o ad

F

(15)



where the usual Landau prescription must be used to analyti-
cally continue the integral into the stable half plan in w.

We combine Eg. (15) with Maxwell's equations to obtain

D'E = VAV E) —_—7 B
30 (x]3) 3, (x'|3) 1
J X J J X o ~

- c, E /dex' (“-’Q{N“ A~ g %%) E(x')
. w = 29 ~ ~ /=7
= = Ccyuw E U/AJ :Lbz;—-GN (t=0) , ’ (1e6) .
B’/
cy = ég-(2ﬂ)‘ .
, c

Note that if GN (t=0) ' were an analytlc function, then the
1nhomogeneous term in Eq. (16) wouldjglve no contribution to

A

the Laplace inversion of E ; however, this is not the case

here.

- T — -

It is clear that EP; is a>very cpmplicated operagg;; hd&eVer,
two things are clear. First, if w is nearly real’Dpéig;.A
approximately a Hermitian operator and ﬁhus has orthonormal
eigenfunctions. .Second, in the short wavelength limit the
eigenfunctions of Qpare local Fourier modes and thus are approx-

imately orthogonal. Therefore, we shall assume that £here

veXistS“a‘Sethféigenfunctions E, (x) such that

D%E, = AawE,

and . ! . ' ) ' o (17)
(Ea|Bar) - fdz B () B (B = 6g a0
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The assumptiqn of a scalar eigenvalue equation in
Eg. (17) permits considerable simplifications in the notation.
This assumption does not preclude the existence of several
branches to the dispersion relation,_since'this can be treated
by the freedom in the function label "a". AIf a tensor eigen-

value equation were,required, the entire analysis would be -

viéxaéﬁiirtﬁéwééﬂe”ééWﬁhééwféiigﬁéwégéééznghat ~1/A ‘would be
replaced by l/(det]A)FAFA ‘where"QFA is the transpoée of

A is assumed

~

the cofactor matrix of the tensor A . Since
to be regulaf, the only sihgularities in the Laplace
inversion would come from zeros of the determinant. A o

property of the an's which is easy to verify is that

afalZ,) = 0 ar s

where Doy ‘is the anti-Hermitian part of EP

We now define

(Ea-llz) =1 (a,2,9) p
and
u(al&lg). = l,}\(a(&/g’)l-; ’ (19)

and expand
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Therefore, Eq. (165'becomes
A*(a, 2 J)GN (J t=0)

A(a, w)w (w) = =-c ag < , (20)
DI

or, after the Laplace-lnver51on

‘ _ § : o ‘ . g .
wa(t) = ¢a(0) exp[—lwat] + ic,
o=+1
A (a,2,0) 6N, (J,t=0) L-Qexp[-if-Qt]

~ | . @en
AMa,L-Q)

~

with )
o

* _

K”(a,&,Q)ﬁﬂg(g,t—O)@a

'N

6%(0) = ic :E: {99 - .
a 0L ]~ (0 - pe) oM(a,0) /00l _ o

~

where mg is the most.unstable (least stable) root of
Aa,w) =0, with Re(w))/|Re(u))]

We note that to the order of interést,»all of the terms
effecting the slow time scale evélution.of the plasmalwill‘be
of the form <§E¥6t> or <€§?§ﬁ> . However, terms involving
products of éi and ¢;l will always be'oscillating and will
be anihillated by the timé.averaging opérator. ‘Therefore, the
effects of ¢i and ¢;1A on!the slow time'scéle evolution of
the plasma are independent to second order. This corresponds
to the fact,in infinite homogeneoﬁs medium: , that waves with
positive phase velocity and waves wiﬁh.negafive phase velocity
contribute ihdepéndently to quasi-linear diffusion.> It is
convenient to also separate the positive‘and negative "phase
'velocity" parts of the second term in Eq.‘(Zl)_ .Therefore,

- we define wg
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vo() = ¢g exp(—iwct) + icg

dJA*(a 2 J)6N (3, t—0)£ flexp (= 12 fit)

<2 — . o
3 B |

, Aa,2+9)
D o

<

Where>.D§ is. the part of J space with 29/ 42|
This corresponds to Roglster and Oberman 53 ‘division of velocity
‘space into reglons w1thv k v greater than or less than zero.

(The region with ‘£°Q = 0 can be harmleSsly“inCluded in either

S so long as we assume that wg % 0.) It is easy to

1 -1
check that this division of J. space is sensible. For example,
for far untrapped pertieles L0 is approximately k”v”«+.£gQg
so the division- is into particles with parallel velocities

'greater'or léss than -ngg/k” - We now take: the time oerlvatlon

of Eg. {22, and-obtain .

dmg
aE | |
A" (a,%,J) 6N, (J, t=0 L2 - % -
-iw w + ic j{:u/;J ~! &( ) ¢ )l(w &+Q) expl 12 Qt]
‘ A(a Le Q) ' -

(23)

' Note that the integrend in Eq.r(23) is regular as Ya approaches'

zero. Now we multiply Eg. (23) by wg* , ensemble and time-
average the resulting equation, and add it to its complex con-

jugate to obtain

i
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(¢}
=2y, I

* , *

~

A& 0) o

N ,v'v... " O* .~ é-* ) | . . .. 3
exp[;wa t] Wy . : expﬁ-;&iﬁgtl&lyﬁl :
X —— ' + .
o* . 3A At (a,f,+Q4)
6Da - &1fgl)<iﬁi (a,w))- ok e
! | v, _
+ c.c. , : - (24)
where we have abbreviated Q =_g(£l) and so on. (Note thét, és

fmentioned before, the product of ¢ = %1 terms does not contri-

bute to the slow evolution of the plasma because these terms are:

always oscillatory.) The crucial point is that the quantity in

the brackets in Eg. (24) is regular as Ya approaches zero.
Therefore, we have the freedom to deform the contour in any
consistent way. We choose the deformation S%(see Fig. 1)

: *
below wga and above wg . This deformation allows us to show

. *
that the terms proportional to exp[—i(z-g‘—wga)t] or
exp[i(&-g - mg)t] decay to zero as t becomes large. This

/
argument is due to Rogister and Obermah&.. Consider the term

o‘*

in the brackets proportional to expl[-1i(2.Q - wafyt]. It is
. : *
regular at &fg_=.wg and the contour passes below . £+ =.w§ .

J—-.
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Therefore, we can push the contour into the lower half LY
plane without getting any residue from 'wg = 20 . It is

easy to see that the integral aldﬁg this‘confoﬁr, which avoids
the singularities of the integrand; is sﬁrongly damped.

In addition, the terms. in Eq. (24) which are proportional

to P2

B ™ A o ————m

finally obtéin

[ see Eq. (10)] are also strongly damped. Thus, we

319 : ‘cz. _ 2y (Q-Q)zd(a,z,J)Fl(J)
- = 2y_I. - mEfﬂjzz dJg ‘ : . (25)
= L 5o _ [A(a,2-9) |

We note that to this'§rder,'the differenéé‘bétween. Fl(i}t=0)
and Fl(i,t) is unimportant and we resynéhroniZe Fl to
FL(T,t) . | |

Equation (25) is a‘fundamental’resultAQf-the theory. It
predicts the SPectrum"of fluctuafioné'including both the

emission of waves by the particles and the_growth of the waves.

In the case where all vy < 0 Sit implies in steady state

2
cr., ala,,Jd)
g = 952/@ = i (26)
m)y” ) o [Ata, L) |
~ S

and Soggives the proper deformation of the contour .as vy_ -+ 0. .

a

We note that this sort of effect could be crucial for under-
standing cyclotfdh_emission from plasmas due to the presence

of the nearly undamped Bernstein modes.
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IV. The Particle Kinetic Equation

We now turn our attention to the derivation of the particle
kinetic equation. This equation will contain the unstable
modes of Kaufmann'gi/:aper as one special case and the toroidal
generalization of the Balescu Guernsey Lenard equation as
another; The arguments will be similar in many ways to those

of the last section.

We start by writing the expression for éNz(t):

TN
i

iy (t) = 8N, (t=0) exp.[-ig-}gﬂi}—: o
, SR £ | ¢§(0) exp[—iwgt']
+ E - exp [%IQ,"Qt] at' | 2ra(a,L,d) o]
a,o o - - Ya
L Zar s
Z | S, ggny) <1721
| 21 po :
X ex -['—'i!i‘-s\zﬁ<tf;"" T L | 27
X exp [-igy@ e el e (27
Now, we compute
8 =l _ 3 AT AN S = 8 .
L T T35 <8I N> = - g% L (28)

where
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where
. o
t+T / ¢a*
1 * 1 . o%
r = 55 d+ E LA (ag,4,7) 5 exp[lwalt]
- -t—T a.l':G/ al
' Ala,, )
' 1 Nl ~1
- ic E ‘ dJl6N£ (T ,t— ) — egp[%g -
- O 72: o lf: M”ﬁ UVN A‘(a ll Q )
AJtD }

£
'SNR(J,t=Q) exp[—i&;g;] - Ev&}(ai,&,i) ]C at! exp[—i&-&(t—t')]
~ . N y v . O

82,5

*
¢g'exp[-iwo £] éN2 (35, t=0)2" (ay, 2y, d,)

| ] 2,
X [—2 - + c, i E dJ :
. 5 - Aayify0))

W .
)

B'F]_.,

‘ . .' ' . ~ (29)
X e§p[—1&2 2,t'] 35 '

Note that the time-average operator'Williannihiiate all terms
in I' which dd not Satisfy 0 =0' , therefore we will not
consider these ferms further and pull the single 0 sum outside
the'ensemble,average'operatof. We tréat the contribution from
the first term in. the second { } in Eq. (29), the term due

directly to the initial value of SNQ,B/BQ-EiV ,
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. " { ‘G*
; [ET . . ‘<¢al(0)6N&(gtt_o)> S
—2—5/ R G eXP‘[l(‘wa - &
£

i w_ -
-T ‘ - ay

+ 'CO E : d.Zl_ - : 'eXP[i&l'Qlt']".;;,
~1
(30)
'vvt+T . % . 'Fl(J)
' : : o o T
Liy 2t 02" (ag LD ey + =5 May.9)
J £-T o ' (2m)
*
(e} -
exp[L(wa = &.Q)t}
1 L. &
o K3 * ’ 4 ( )
L. ,Q-Q)dl\, A (ag, 40 R)
— ~ ~ dw "~ ~

where we have used Eg. (1l) and neglected the strongly decaying

contributions frOm;;P . Note that the term in the large

parentheses in Eqg. (31) is regular as Ya approaches zero and
' ' 1

that the first term is negligible for stable modes. Therefore,
by arguments analogous to those in the previous section we see
that the first term proﬁides the analytic continuation of the
second as Yal passes through zero from the stable side. In
the case where ' al. is a céntinuous variable this corresponds
to deforming the contour in aq spacé above the poles of
A*(al,w?) . In the case of a discrete spectrum we replace‘ fal
by £}al,A) with
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- 1 ’ 1 2
f(a,A) = j{: £, ——— exp [- ——-(a - a. ) ] : - (32)
- aj “! (2mh) 2 . 2A ~A j | |

and perform the same manipulation as in the continudus case

and then take the llmlt as A -+~ 0 .

Therefore, we can flnally wrlte'thleirst term, EAV, as
SRR ..<a.1,&~£z> A

where the<L§4'superscript on.the summation indicates that we.
have used the confbur prescription'alfeady;discussed.‘ This
term is the toroidal, eleetromagnetic, generalization'of'the"
polarization drag felt by a partlcle due both to partlcle"‘
discreteness and the stlmulated emission of" unstable waves.

- We now turn to the remalnlng terms in E.. With this

definition we can write the second diffusioh term
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‘ t+T
§ : * 1
ED (al'laz) = / &)‘ (al’,%,'JJ,’Q;}‘(az'&’i) "2"6/ dt
‘ o t-T
¢";
E 0* exp[lw t]+ S E ./h CSN'Q (Jl,t—O)
! ~o
o o . . :
A(al'zl’le ¢a exp[—lwa t] ~ exp[-i2-Qt]
X == expligeat]ll X |2 [ - 2 ~
A (agifyt8y) “a NS RS
4oL v . 22
Z " (a 2,J2)_~
+ dJ GN'Q (J.,,t=0)
S NG h,, 0,
exp[—i(zz'fﬂ )] - expl-ig-Qt] A Fl .
1R = £50R5) A ~
We can effect a considerable reduction'intthe.algebra by
defining thé& operators
fg; w. = ,l . - (35)
= (g - w) + 8

since then the second terms in each of the parentheses in

Eg. (34) can be shown to give a rapidly decaylng contribution
to the equation."We_note that the introduction of _g does
not change the equation because each of‘the-parentheses in

Eg. (34) is regular at the resonance. Therefore, the diffusion

term becomes.



+

X

20

. o* (0} +
exp|ifw - w t]g o E ag. F (J )}\(a )
[ ( a1 az)‘ o “a (2'”) /

2
eX:;'_S[—:Lw t .0
A @yrky . Ty) - = ;; e
A(azl&l'szl) walA (al, ,Q,l'Ql)
!
1 .
(wc* 2,0 ) [BA*( )] SPEL Gy g
— ’.~ £ . w A ~
a; — ) (Ba ]« )
w=w_
B
.0
wn s )]
= - eXp[_lwa th »° +
7.
“a, 24~y hay, 2y+8)
L% . 1 o
0l Ma,, 2,08 (0 - g .0 )[4 (@yr0)
a 1 ~1 ~1 ~L
2 2 oW g
: W=
a, ;
L 0
~1~1 o*
exp[lfc Q t]gz % Ql - 5% exp[lwalt:l Ig, 00
a; 2
JREY *
< _ 1 ' exp[lﬁbfﬂlt]— l;(}l exp[lwg]
210 ) Aan, 8y "Qq) 0 21
A (ag,2yoRq) 0@y 20y a;
2.8 ' 1
. Nl ~l . aF -
exp[—lﬂ,l Qlt] gg, 'Q’]_ 2, - G exp[ iw thg&,wo 5]
~I~L N a, 2

(36)
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As in the derivation of the spectrum we note that the

* .
quantity in the brackets is analytic in w’ p w’ as vy
e ay a, ay
or Ya approaches zero. As before, we deform the contour
2 . . o
in J to be always above «° and below «% . Then, we
~1 » a, ag -
can write
19 ,
T (4 A \ * . ' a; . +
Dplapap) = ), A0 (ap & May LD [ —ty bay,a, oF o
. . : Iw I ~" a
, O a 2
~ - 71
2 » Aai, L :J')A*( 2,,34)
c : a4, e aq5y r
+ 03 4 dilele) . 1721721772 Z‘Nl.va
(2m) ' A (ag, fy-p)h(ay, 2q40,)
2 . . o
(2, 000) : ' —
+ N1 RT + R oF .
ng':AQ' e, A 5 g,Q,mO GallaZ' Y + ¥, (37)
IR L Iw_O'.’?l ~ .al B ~ .
1 :

where VY is a stronglywdecaying transient due to terms like

fFl(Qi)exp{i(&rQ. - wg )t] . We have also used the fact that

' 2 . _

the time average of exp[i(wg —vwg )t]l is a delta function
' 1 . 2 _ .

in aj, a, thus for simplicity assuming nondegeneracy of the

modes.

We now combine Eqs. (28), (29), and (37) to obtain
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19 2
- E Rza(a 2 J) a2 g;‘wc +'(£%5'  , dJ F (J )

2, 2 o a '&l\
(a8, 3.) | (2:90.)2 | 1.
% rR1TRL + ! WU L ES
—72 | %,0.-0. - 99,0 37 =
IA(arﬁl'Ql)l ~'~1 ~L lwo ~afy ~
a

4ﬂ 2 3
¥ ZZ sz (a,%,3) A (a; z,g)(—-z-) (2m* ) [az,
a %0 a; c.!

Ay 70
* -
Lz, Magy g e sD) - e
XEA) = 9,000, "3y L f - (38

Equation (38) is sufficiently compliéated,to warrant some
discussion. The first drag term hés been discussed before.
The term proportional to Ig is Kaufmanh's diffusion due to
the unstable waves. The second term in the bracket is the
scattering of particles by other particles.v Howevef; note
that this term is well behaved as the'dampipgrrate'approaches
Zero. Thé off-diagonal a, al‘ sum is again particle-particle
scattering and feéults bécause the natural coordinates for the
electric field and the natural coordinates for F are not the
same;'fhat is, it corresponds to inner products of the form
(2ﬂ)_3fdg_gg(i,g) Ea.(i,g) which are not zero even though the

usual ~x-space inner product (E
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N
W

Equation (38) ,used in conjunction with the time evolution

g

p [Egq. (25)1, providéé5thenc6mple£éAdésériptioﬁ ofuplésma

of I
kinéggéméheory.and transpoft ig émgééiﬁé whéréhﬁéde—modé )
coupling is unimportant. Typically,the terms proportional
to Ig will be dominant if unstable modes are present; how-

eVer, as saturation is approached the other terms may again

become important. ~We note in addition tHat in the absence
of unstable modes Eq.(38)in conjunction with the adiabatic
solution of Eq;(ZS)Lsee Eqg. (26)] yields the toroidal general-
ization of the usual cbllision operator. We shall discuss

this further in the next section;
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V. Properties of the Particle Kinetic Egquation

In this section we shall focus on the form of the particle
kinetic equation when there are no unstable modes. Kaufmanﬁ3/’

. : . o
has discussed the terms proportional to Ia'

t

In this case the drag term may be combined with the

diffusive term to yield

1
8F~ _ _ 9 _ 9 _,+ 9\l 1
) - &I:S./rdgl fcz,zl §(4-0-2, Ql)@l _EE' 2 a£>F (Z,)F7 ()
z,gl v
- cEhE | (39)
with
N (ay LD 8y, £, )N (g, 30 ) Klay 8
o _ R (2w)3(éﬂ>2 (ay &, d)A(ay, 2, T A (Al 4 04) a2’~l’£l)ﬁ
/Q/,Q, e 2 * .
~TRL ;E:; c A (aq,%y07) (aZ’&l'Ql)
172
(40)
We note that C =C Equation CB)is qguite reminiscent

2,5 L.,8°

~TL. L R1IIR J

of the usual Balescuquernsey—Lenard operator or the Landau

)

form of the collision operator. It is easy to see that
particle conservation

fazas cEl,Fh) = o | (41)

ST
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energy conservation

fdf:{df_ev'. HOC(Fl,Fl) = 0 , ’ (42)‘
H theorem
dgdg.anlc(Fl,Fl) = .a% s > o0 , (43)
whére
S =';.-fdgF'l(gJ)_ R,ln.Fl'('i)v .

Further, if E =Jéxp[-H0/T] } then C(F,F) = 0 and ds/dt =0
and this is the bnly F with ds/dt =0 ; rThese'argumenfs
are exactly the-same as the usual ones in the infinite
homogeneous medium. We note that thef depend on C being
biliﬁear with certain (%,%;) symmetry. However, they do not
depend on the details of ‘A, or A , although the actual

transport, of course, does.
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VI. Conclusion

We have developed a complete kinetic theory for a plasma
in an axisymmetrié toroidal system. This theory smoothly
joins the stable and unstable regimes and is valid when non-:
linear effects are unimportant. Thus the unification discussed

at the outset has been accomplished.

_The consequences of this theory, however, remain to_ be
explored. One important point is that the translation of the
J space fluxes to radial fluxes is quite subtle. We have

discussed this point elsewhere?ﬁ/,Ih addition, the relationship
or tfle stable version of this theory. to neoclasgical.;hnﬁ*g
,diécussedtin‘Sec. Y4 néeds.to sé explo?édQ 'Wé notelthat
because of the H theorem the kinetic equation admits a varia-

tional principle. Thus, it should be possible to recover all

-of neoclassical theory from our theory: This will be explored

in future work.
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FIGURE CAPTIONS

Fig. 1. Contours of integratioﬁ in the %°+Q plane for stable

and unstable modes.
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