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We find through theory and MHD particle simuldation that fast
magnetic field-line reconnection may consist of more than one stage.
After the Sweet-Parker phase establishes for an Alfven time, a faster
"second phase" of reconnection takes over if the ©plasma is
compressible: the reconnected flux varies as Y = dbtpi/pe, where p, and

p; refer to the plasma densities outside and inside of the current

channel.
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Fast magnetic field-line reconnection 1is a prerequisite to
formation of a compact plasma toroid.l_4 This process was observed in
the simulation of a reversed theta-pinch at the island stage, but also
at the island destruction stage once the tilting instability sets in.5
A fast reconnection process is again responsible for destruction of the
reversed z—pinch§ as well as for Kadomtsev’s model7’8 for tokamak
disruption. Rapid reconnection is also believed to play an important
role in the magnetosphere, the sun’s dynamo etc. From our studies by

magnetohydrodynamic (MHD) particle simulation and subsequent

‘theoretical development, we found some general characteristics of

nonlinear evolution of fast reconnection and we report, in particular,

discovery of multiple phases for this process.

Computer simulation has been carried out on a 2 1/2 dimensional
MHD particle code9 with the Lax—Wendroff algorithm to advance the
magnetic field. Initially, homogenéous magnetic fields. in the
x-direction are embedded in a plasma with opposite senses in the lower
and upper halves. In érder to make the physics simpler, we let the
layer between the two regions with reversed fields (i.e. [yl £ a)
contain a high density uniform plasma and no magnetic field with sharp
boundaries (Similaf .results have been  obtained with  smooth
boundaries.). The system is bounded in the y-direction with‘perfect

conductors and satisfies the perpendicular pressure equilibrium, until

normal to the x~y plane (in the z-direction). Figure 1(a) shows an

early stage of magnetic fields pinched by one rod.

we pinch the plasma locally by ome (or two) external current rod(s)
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As the external current pinches the plasma, the magnetic field
lines as well as the high density plasma slab are pinched downward
[Figure 1(a)]. The perpendicular pressure balance is increased in the
region close to the current rod and becomes nonuniform along the
colﬁmn; the plasma in the layer is drawn away from the region of the
rod along the field lines. As the plasma flows out, the thickness of

the layer decreases exponentially in time,10

while the local density in
the layer remains high. In ideal MHD, the plasma layer develops into a
singular current sheet, in a quasi-stationary state, always out of
eQuilibrium.ll

For resistive (or non—ideal MHD) plasmas, however, the layer width
becomes stabilized as field lines begin reconnecting at such a rate
that the perpendicular inflow of particles into the current sheet due

to the field-line annihilation matches the plasma endloss along the

magnetic field lines (see Fig. 1(c)) due to the parallel pressure drop.

The inflow is governed by magnetic diffusion due to resistivity in the

layer. This is a slow process (although certainly faster than the
Rutherford process in the equilibrium) described earlier by Sweet and

Parker.12 We quantify this process by the succeeding analysis.

The in-the-plane magnetic flux 1 and out-of-the-plane (along the

z—axis) magnetic field B, are described by

;3_1D+ v e VY= T]VZII) n
& o~

9B, . gy , :

2+ Y- B, =V, (2)
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where B = EL + B,e, and §J_= VU x e,; v, is neglected. ’For the initial
configuration we assume the flux function linearly increasing in y, ¢ =
Bolyl, on each side of thé exteriors of the current sheet located at
y=0; this is equivalent to assume a uniform magnetic field of magnitude
Be but as shown in fig. 1(c). In these exterior regions the

diffusion terms are negligible and the flux velocity is determined by

the fluid in the y-direction:

v = @/Be . | (3)

Inside of the current sheet with half width a, the perpendicular

velocity v is zero and the diffusion process becomes important:

=¥y = "B,/a . : (4)

The perpendicular inflow of plasma into the current layer over length
2L,f8Nin8t = 4péVL, is equal to the outflow along the field line in the

x-direction with velocity wu, 9N__. /3t = 4pjua.  This yields the

out’ -

relation

bl ppua (5)

where subscripts e and i refer to the external and internal quantities

with respect to the current sheet. Equations (3) and (5) give

b= Bupsa/ ol (6)

while (4) and (5) yield




a= n;/z(peL/piu)l/z . (7

The peak density P4 with respect to Pe is determined by .the
perpendicular pressure balance p; + B%Z/Sm = py * Béz/8ﬂ+ BiL/8m; The
plasma slab develops a diffuse profile.as it becomes thinner as shown
by (4). Thus p; in (5) and thereafater is the average density over the
slab cross-section. The flow wvelocity u at the current sheet
extremities (or cusps) is determined by the parallel pressure balance
picu2/2 =P~ Pi. ® (Bléoz - Biecz)/8ﬂ5 where the subscripts o and ¢
denote the central and cusp regions, and P; is the total internal
pressure P; = P; + B%Z/SW. In writing the second equality, we have
assumed that the external plasma pressure Pe and "z-direction" magnetic
pressure Bezz/Bﬂ are nearly uniform, since they equilibrate quickly
over the magnetosonic wave transit time. When the cusp field B . can

be neglected in the comparison with Blagy We obtain the reconnecting

flux velocity as

- p-1/2 1/2
v =R " e (05/0,) , (8)
where the magnetic Reynolds number R, = cAeL/ﬂ\and the Alfven velocity
Cpe = (Ble02/4ﬂmg)l/2. Sweet and Parkeril gave an incoﬁpressible

version (pi = pe) of (8).
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If the plasma is compressible, however, the poloidal flux
reconnected in the Sweet-Parker phase may pile up in the current sheet
as time_ goes on. The current sheet then becomes. tapered, shorteping
the effective exhaust distance L. It is at this stage when a drastic
enhancement in the reconnection rate is observed in our simulation [see
Figure 1(b)]. A simplified model of this stage may be depicted as in
Figure 2(a). The trapped reconnected flux has a tapered structure with
pitch angle o << 1. The new exhaust length L is established beyond

which a large plasma pressure drop takes place; it corresponds to the

point where a critical amount of reconnected flux g[)c = aB, is trapped .
[see Figure 2(a)]. Since the trapped flux varies linearly for 0 < |x|

' * , %
. < ut, we obtain L" = L ¢ /Pwith L, = L" +ut, or

LY = uey/(-v) - - (9)

In the evaluation of Ly we assume that the flux in the current sheet is

carried instantly over a distance L* where diffusion is predominant,

and then remained trapped with the fluid which move with a velocity u

along x. The width a* of the reconnected region at x=L"< is 2a, because

a* = atoL” where o = Byi/Be = 'l,b/LtBe: a large pressure drop is thus

expected since the plasma flow along the field line. The outflow
9 o

*
velocity is the area wave velocity” u = cpe Once L= becomes shorter

than L, substitution of (9) into (6) yields tii) - (pi/ pe)ll) = —'l[)c or

p,/P . .
b= e/eg) T S (oo, e (10)

where ¥ > w/C after ty = L/u. If the plasma is compressible, the

reconnection rate becomes much faster than that in the Sweet-Parker
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*
phase after t; with a shrinking current sheet L . There will be a

S

sharp increase in the reconnection velocity given by v = wJBe *t,

with § = Qi/gé - 1. We shall call this stage of faster reconnection the

second phase. If the plasma dis dincompressible (pi = Pe), the

Sweet-Parker phase lasts beyond tge Correspondence to relations (9)

and (10) can be found in our simulation in Figures 1(a) and (b) for

.shrinking ¥ and in Figures 2(b) and (c) for two (or more) phases of

y(t). The exponent obtained from Figure 2(b) for the second phase is
4,0 with pi/{é # 4,0 in the simulation and the exponent from Figure
2(c) is 2.9 with p;/Pg ¥ 3.4; both cases are in good agreement with

(10).

The magnetic force that pulls the plasma out of the current sheet
in the x-direction contains two terms: one is ~ ang/Sna due to the
curvature of By and the other is the x—component‘of the perpendicular
magnetic pressure F = @Bg/&ﬁ;.considered by l?etschek,12 where a(x) is
the local column width. The latter is much larger than the former and
is of the same order of magnitude as the parallel plasma pressure drop
EP considered here. Because o = a/L" and B§/8W = p; ~ Po- the term F_
is about (a/;)FP, and it dis large for |x] < L* where a * a. It is
noted, however, in our simulation that the plasma flows along the field
lines as assumed by us, but not along the x-direction as in Ref. 12,

It is also noted that the Petschek term F, is largely canceled by the

i
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The geometry of the system is important both for the second phase
and for the eventual saturation of reconnection. When the current
layer is pinched from both sides so that it remains straight during the
reconnection process, a different exponent for the time dependence for
the reconneg_ted flux is observed in the second phase. Figure 1(d)
shows the flux lines in this case. The rate of reconnection in this

case is given in Figure 2(d): { = (t—to)g where & = 2,

In this latter case we propose the following mechanism which
impedes the process (10). In slab geometry field lines due to the
combination of a dipole (By on axis) and uniform B, are approximately

described by

y(x) =yo(l +ex?/rd) , | (11)

where |y| << Ty (close to the plane of symmetry). Here O = Bd/(Bd +
Be) and Zrd is the d:{pole distance. 1In this geometry the flux is
packed in such a way that the reconnected flux y ‘-_<_Bey(x) with x = L, ~

ut, where the field line y(0) = a is considered. Using these

conditions in (11), we obtain

P o= aBe@(ut)z/ré . (12)

If ¥ > Bey(x), the field line would be pushed away, increasing the
current sheet = thickness ..and._ therefore _stopping..the . diffusion .and

reconnection process. The reason this process (12) is slower than (10)

is that when we pinch from both sides, the reconnected field Ilines

close to the current sheet (which is the plane of symmetry for this

|
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case) stay stréighter and open up less angle. Equation (12) agrees

well with simulation results [Fig. 2(d)].

Finally, previous simulation investigations are consistent with
our theory and simulation. Sato and Hayashi’s simulation14 (their
Figure 1) shows fast reconnection sets in when L* becomes the length of
their system, consistent with the present theory of the second phase.
W. Park’s work8 notes that the incompressible case stays in the

Sweet-Parker phase all the way. In the island coalescence process,

this second phase of fast coalescence should also exist in the small n.

15

case described by Biskamp et al. if the plasma is compressible. Our

5,6,7,8,14,15 which gives rise to a

particular model is one of many
current singularity (It corresponds to the set—up in Ref. 5 to initiate
island formation in a reversed pinch.). However, the model and its
subsequent physics are general enough to pertain fo many other cases,
since nonlinear developments are common over many situations, e.g. the

external driven. pinch reconnection, the development -of the internal

coalescence instability, etc.

This work was supported by the Department of Energy Grant
DE-5G05-80ET-53088 and by the National Science TFoundation Grants

PHY80~-26048 and ATM81-10539.
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Figure Captions

Figﬁfé.l - Flux lines ?. (a) One-pinch case in the Sweet-Parker
phase (t=30) and (b) the second phase (t=75), where 1¥ is indicated
(L* = X* - XO). (c) Sweet and Parker model for reconnection. (d)
Two—-pinch case in the second phase (t=75), where L* and Lt(Lt = X =
Xp) are shown. ¢t is in unit of A/cs, where A is the grid spacing in

y and c_, the sound speed.

s

_Figure 2 - (a) Model for "second phase". (b)=(d) Log-log plots of :

vs. te. (b) One-pinch case with resistivity n = 0.0l. Line 1 has a
slope 0.86 and line 2 has 4.0. (c) One-pinch case with n = 0.l.
Line 1 has slope 1.0 and line 2 has 2.9. (d) Two-pinch case 1 = 0.1
with slope 1.8 in unit of cg&. We have defined X* =xg + 1* and X =

XO + Lto

l"T“In_ B e ] P
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