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Absfract

There is at present no covmpl_etely satisfactory theory of saw-
teeth in tokalﬁa.ks. Although the simulations of Denton et al -
(Phys. Rey‘. Letts. 56, 2477, 1986) and Aydemir et al (Phys.
Fluids B1, 744, 1989) capture some of the periodicity properties,
they do not show the partial reconnection currently observed in
experiments; It would seem useful to construct the simplest possi-
ble nonlinear dynamical model to illustrate some of the temporal
features of sawteeth. To this end, we introduce the variables y(t)
and z(t), which represent the internal energy and the magnetic
turbulence amplitude respectively. These are assumed to be gov-

erned by the pair of nonlinear differential equations

T = (1=A2%) + fy(t) | (1)
N o= de-DsEN A @

where 7, is a typical "ramp” time scale and ) is a large param-

eter. f,(t) and f,(t) are Langevin-type "noise” functions. Two
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simple heuristic choices have been tried for the function ¢, namely
¢ =1and ¢ = li’\—;’:,— The Eq.(1) represents energy balance with
confinement degradation in response to turbulence, while Eq.(2)
represents the dynamic relationship between the plasma internal
energy and magnetic turbulence. Both analytic and numerical so-
lutions show y(t) to have the characteristic sawtooth waveform for
large A with the sawtooth period Tperia = 27,(1 + log A/A) and
Terash = Tperiod 10g A/A. The variable z(t) is small during the ramp
but behaves in a é-function-like manner during the crash. The
effects of noise are investigated. The second model is found to
be more robust to noise and has a physically more reasonable be-
haviour for z(t) than the ¢ = 1 model. Both models suggest the |
possibility that the interplay of transport and dynamics is capable
of yielding the gross temporal properties of sawteeth. Compari-
son with more elaborate numerical simulations suggests that the
tentative interpretation of the dynamical variables may be a rea-

sonable one.

* Currently visiting the Institute of Fusion Studies, University of

Texas at Austin, Austin, Texas 78712.



I. Introduction & Motivation

e Sawtooth oscillations in tokamaks exhibit quite complex spa-
tial and temporal behaviour. At the present time there is
. no fully satisfactory th‘eory which accounts for the wealth of

experimental observations relating to this phenomenon.

e The purpose of this contribution is to construct very simple
dynamical models which may throw some light on the na,turé_
of sawteeth. There is at present no direct derivation of the
equations of the model from more complete physics. There
are indications from some numerical simulations of sawteeth
that realistic models may indeed behva,ve in some respects in

the manner suggested by the simpler models.

¢ Since we are concerned with temporal dynamical features, the
periodicity in time suggests that models could effectively be
restricted to two degrees of freedom. Indeed, more degrees of
freedom generically lead to chaotic motions which are actually

not seen in experiment in the gross scales typical of sawteeth.




e In view of the above, we consider a variable y(t), which is to
be regarded as a normalized measure of central temperature.
We also introduce another variable z(¢) which it is convenient
to think of as a measure of magnetic turbulence amplitude

within the ¢ < 1 zone.

e In the first instance, we shall consider an autonomous pair of
nonlinear differential equations Eq.(1) and Eq.(2) with f,(¢)
and f,(t) set identically to zero. The first equation is the ana-
logue of the energy equation with the second term Az? repre-
senting a turbulence-driven loss process. The second equation
represents the dynamical coupling between internal energy
/temperature and the magnetic turbulence. The time-scale
7, measures the scale of variation of y(t) when the turbulent
losses are small. The second equation exhibits growth or de-
cay of turbulence when a temperature threshold (the critical
value of y is normalized to unity without loss of generality) is

crossed.



II. Analysis of the simple model

e We now consider the analytic treatment of Egs.(1),(2) in the

simpler case when the function ¢ is taken to be unity.

~® It is convenient to introduce the variables, Z = /\%(y - 1),
- v = 2log(Az), and u = /\%:—'. It is useful to remember that

x(t) > 0 for all ¢ provided it is so at t =0. - -

e Since the unbounded elementary solution, ¢ = 0,y = y(O)-{-T—t',
is in fact unstable for any value of y(0) as t — oo, the variable

v is clearly always well-defined.

e The equations now take the form:

dZ

o0 = 1 —expuv (3)
dv |

o = 2Z (4)

This system is equivalent to the second-order non-linear equa-

tion,
1d%v
dw =~ 1T P (5



e This must be solved subject to the initial conditions, 3—1’: =0,

v = —k at u = 0, where k is positive.

e This equation admits the first integral,

1, dv

Z(@)2 =v —expv + k + exp(—k) (6)

o The RHS of Eq.(6) increases with v in the interval —k < v < 0
and decreases with v for v > 0. At v = 0, it attains its
positive maximum value of (k — 1) + exp(—k). Evidently, it

has a unique positive zero which we denote by v, (k).

¢ From Eq.(6) we see that v(u; k) is a periodic function of u for

every k > 0, which can be obtained by inverting the integral,

v dw
= /:"' (k 4+ exp(—k) + w — expw)3’ (7)

o=



e This equation defines a new class of transcendental periodic
functions of the real variable u and the positive parameter k,
which are not apparently reducible to elementary functions,

elliptic functions or hyperelliptic functions.

® The period in physical units used in Eqgs.(1) and(2) is given

by the relation,

Ty 4(k) . dw
eriod = 1 L 8)
Tpertod A3 /-k (k + exp(—k) + w — expw)3 ®)

where, v;(k) > 0 is defined as the positive root of the equa-
tion,

expvy — vy = k + exp(—k). (9)

§ The results become much simpler when we assume A > 1.
In this case, we normalize the solution so that the maximum
value of y(t). is normalized to 2 (ie Z,,, = A7). Thus k = A
and we find that as u varies between —)A7 to A%, v remaﬁins

sufficiently negative to imply that Z is linear in w.



e The maximum of Z corresponds to v = 0. It is easily seen
that when v > 0, Z ’crashes’ relatively rapidly to zero. At
this point, z? attains its maximum value. In fact, we find
that z2,, ~ {1 + 1355\_5}’ confirming that the crash is indeed

associated with large amplitude turbulence.

e The period is readily obtained by an elementary asymptotic

analysis (see Haas & Thyagaraja,1990):

log A
Tperiod = 27—3{1 + Oi } (10)

e The parameter A relates the crash time-scale to the period as

follows:

Terash _ 10g)\

Tperiod
From the preceding equations it is clear that the physical
parameters Tpepiog and T.pqep, may be used to fix the values of
7, and A which completely characterise the model assuming

the normalisation conventions.



III. Numerical Results: simple model

e The model has been solved numerically. Fig. 1 shows the
plots of y(t) and X (t) = z%(¢t) for 7, = 8 msec and )\ = 300.
The sawtooth period estimated is 16.3 msec whilst the ’crash’

time is of order 300 microsecs.
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Fig.1 Simple Model: Unperturbed Solutions

The numerical values are in good agreement with the analytic
thebry. The very sharp spikes in X (t) clearly show that the
‘turbulence’ is only significant during the crash. The time-
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step At was chosen to be 0.1 microsec; the solutions are in

fact grid independent.

It is easily shown from the equations of motion that external
perturbations f,(¢) have little or no influence on the basic
dynamics discussed. While it is in principle possible to discuss
the issue of linear stability of the periodic solution analytically

, 1t is simpler to directly verify this numerically.

Thus we have solved the equations of motion Egs.(1),(2), tak-
ing fz, fy to be simple harmonic forms f coswt, gsinwt. The
non- dimensional amplitudes were varied over a wide range
as were the frequencies w. Unless f,/wT, ~ 1, the behaviour
relative to such perturbations is uninteresting. Fig.2 shows
the effect of a relatively small f, = 10~% and wr, = 20 on the
system. Clearly the period is substantially reduced as is the

amplitude.
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Fig.2 Simple Model: Perturbed Solutions
e This behaviour continues until the parameter ;f;— ~ 1071,
when the solution drastically changes character; the ’saw-

toothing’ is completely stabilized. For certain ranges of f, and

wT, the solution of the system makes a transition to ’chaos’.

Fig.3 gives an example of this type of 'aperiodic’ behaviour.
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IV. Improvements to the simple model

o The simple model shows that the sawtooth wave form in y(t)
can be associated with a two-degree of freedom, autonomous
dynamical system with only quadratic nonlinearities. It ap-

pears to be the simplest system of its kind. The crash and

periodic times are related to the large non-dimensional param-

eter and the turbulence level behaves in a ’spikey’ manner.

o Although the numerical simulations show that the dynamic
behaviour is not qualitatively different for the non-autonomous
cases when external perturbations are introduced, the ampli-

tude and period are quantitatively alfered, especially by forces

applied to Eq.(2) for the turbulence amplitude.

e Closely related to this sensitivity is the fact that the syste»m'
has a symmetry about y = 1. Thus the effective grbwth rate
of ¢, A(y — 1)/7, for positive y — 1, is equal and opposite to

- the decay rate A(1 — y)/7, (when y — 1 is negative but has
the same absolute value). This symmetry in the model is of

13



course a spurious result of its simplicity. Indeed, this implies
that when y = 1, the value of z must be chosen to be exp(—A),

which can be an unphysically tiny number when \ is large.

These defects are readily removed without sacrificing the basic

simplicity. Thus, we set ¢ = 12;\;:2 in Eq.(2). This choice
ensures that at the maximum of y when Az? = 1, the crash
behaviour is virtually unaffected. However, during the decay
phase, as = decreases, it does not decay at the rate of the
simple model, but in an effectively nonlinear way. Thus, the
decay is actually algebraic like an inverse power of ¢ for y <1

This implies that in this more complicated model, the values

of 2% do not decrease to unphysically small values.

While it is not obvious, this modified model is also remarkably
stable to external perturbations as will be demonstrated by

the numerical simulations presented below.
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V. Analytics of the improved model

e In contrast to the simple model, it is remarkable that this
apparently more complicated model can be exactly integrated
(in the autonomous case) in terms of elliptic integrals. It is
convenient to introduce the Varia,bles; w=y—1and § = L,

Ts

Equations of motion in the autonomous case are transformed

into,
dw . | '
— = 1-\z? 12
¥ 1-Az (12)
dz 2 2
@~ g (13)

2X2z2 2 (14)

where the constant of integration C evaluates to C = 1 + i if

b

we choose the normalisation, Wy, = 1 when z2 =

¢ It immediately follows that z? oscillates periodically in 4 be-
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tween the two positive roots of the bi-quadratic,

1 1
4_ — 2 e
zt —2(1 + /\):c + 3 0 (15)

Thus, % < 2% < a? where,

b2 = (1+§)-[<1+§)2—%r (16)
a’ = (1+§)+{(1+§)2—%r (17)

It is obvious that for large A, Tmin ﬁ and Tmge ™~ m
This proves that in this model, the variable ¢ cannot take
unphysically small values during the 'ramp’ phase. Clearly
at the crash, the turbulence level must be large (in relative

terms).

e Substituting for w from Eq.(14) into Eq.(13) gives a first order
nonlinear equation for z as a function of §. This is readily

integrated in terms of elliptic integrals.
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~o It is convenient to parametrise the results as follows:

b2
wo - Ly ¥ |
sin“® = m(l :1:2) (19)

D
I
=
i
3
+

(20)

where F(® | m) and E(® | m) denote the incomplege elliptic

integrals of the first and second kind respectively.

o Equivalently, defining the new variable (‘elliptic angle’) @ by

sn(w | m) = sin ® we obtain,

z
b

e In Eq.(22) O(w)

Watson, p. 479),

1

- V1 — msn?w (21)
E(m) 1 O'(w)
- (%6 2) =+ ot )

is Jacobi’s theta function (cf. Whittaker &
and K(m), E(m) are the complete elliptic

17



integrals of the first and second kind respectively.

e Bearing in mind that © is an even periodic function and sn(w |
m) = 1 when w = K(m), the above solution implies that

Tperiod 1S given by the relation,

K(m)

Tperiod — 27—3(E('m) + 2)\ )

e It is readily deduced that for large A\, we must have asymp-

totically,
log A
Tperiod = 27-3(1"' Zg/\) (24)
log A
Terash = 27, (;g/\ (25)

This completes the analytic theory related to the improved

model. While it is possible in principle to discuss the linear stabil-

ity of the solutions to small perturbations analytically, it is a very

difficult task. Calculations of the solutions when external pertur-

bations are present are best carried out numerically (as with the

simpler model).
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VI. Extended model: numerics

o Fig. 4 shows the numerical solution of Equations (1) and
(2) with ¢ = 1—%’% for the same values of 7,(= 8msecs) and

A(= 300) as for Fig. 1.
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Fig.4 Extended Model: Unperturbed Solutions

At this level, the solutions are in fact indistinguishable from
those shown in Fig. 1, except for the fact that the maximum
of ©% in the two cases is different.
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e The fact that the x® plot shows 'waves' is due to a graphical
resolution effect. There are insufficient points within the crash
to resolve the wave form properly at the maximum in the plot
although the simulation itself resolves the crash accurately.
This is shown by Fig. 5 which shows the same case but with

twice as many frames.
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t—>
Fig.5 Extended Model with Increased Plot

Resolution

o We have established that f, has little or no significant effect
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on the extended model, just as in the simple model.

‘e Fig. 6 presents the solution of the extended model equations
for the same conditions as in Fig. 2 except that the value of

[z is deliberately chosen to be twenty times larger.

vCU) va + Ly '
) : — T — e 2
L 2 ) ki
9. /Fz 22 X . Tg= §ms ’
d == _
s ’+)\2L 8
7: 7 A o
L A = 300
ro = I
- 5—1 = axice ¥
sL n T e
gk °f : & |
Cefb wig = 20 7 vk
\: - L}
.:: - ab
0/\/\/- '-
L L o 13 g 0 ) 1 3, 33 ot ) PSS T BT EET N B ST SET S NS S NS S S N ST SN N 1 1oz 2 3 ot 4 g
“'e s 10 15 20 24 30 35 a0 =
X

Fig.8 Effect of Harmonic Perturbation on Extended

Model

We note that in contrast to Fig. 2, the solution is virtually un-

affected by the perturbation. This relatively robust behaviour
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is typical of the extended model. So long as the external per-
turbations are such that ﬁ; < Tmin, the system appears to be
stable both qualitatively and in terms of the numerical values

of the period and amplitude.

The following table shows a comparison of the two mod-
els. We consider the solutions for the following parameters:
A =100, wr, = 200 (this corresponds to a frequency of 4khz
for the external perturbation f,), and 7, = 8msecs. The val-
ues of the reduced period , T.oy = Tperiod/ 2T are given for the

simple model(I) and for the extended model(II).

Q—JL:;B-S Tred(I) Tred(II)
10~10 1 1

10-® 0.9 1

102 0.7 1

101 1.1 1

10~° | No sawteeth | No sawteeth
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e Fig. 7 illustrates the phenomena that occur when the driving
force is large amplitude, fo—_ = 0.1 and llow frequency, wr, =2
in the extended model. Thus, this case is strictly analogous
to the ’chaotic’ case of Fig. 3. The evidence for partially

stabilized sawteeth and period-doubling is apparent.

X{(t) ve 1
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o 1+A2% I
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Fig.7 Extended Model with Large Perturbation
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We next show a sequence of cases which illustrate the very
sharp transition in the nature of the dynamics as ;ﬁ;— is varied
in a relatively small range from 2_16 through -(l; keeping A = 100,
w7, = 200 7, = 8msecs (w is equivalent to 4khz). Fig. 8 shows
that for ;f;— = 0.05 the solution is nearly identical with the

L]

force-free solution (Fig.4).

y{t) ve ¢ X(t) ve ¢

1 . L n i 1 L 1 ] A ).

20 30 40 L1 0 70 40 °

Fig.8 Extended Model: transition to stability I
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m—’

e However, as the amplitude parameter increases through to
0.125, the first crash is postponed to nearly 40 msecs (Fig. 9)

and the period increases subsequently by 50%.

y{t) ve 1t

LR A R S ea— > 18r~—p—p——t—p———1——r -

e ~ 268~ ~
A = Ico < : % ms5 L ]
. 5 24 4
1y .

j’ . 1 Te = 20C L
22 = 0125, “Wis o ]
Wiy L ]
T 184~ -
N s ]
- j_g 14 .
N 12 4
| 1o 4
L 1
-1 -
08~ -
D4 . .

T Y

[l i i 4 1 i 1 i 1 n L i 1 1 ]
3 10 29 3o 40 80 0 70 0 ] 1o 20 30 40 80 e°” 70 s
t - [ SN

Fig.9 Extended Model: transition to stability II

* Fig. 10 illustrates that at a slightly larger amplitude (0.133),

the sawtooth is nearly completely stabilized.
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Fig.11 Extended Model: fully stabilized

e Fig.11 shows the fully stabilized condition at ;f;: = 0.167.

and

P [

It is easily seen from the equations that < z2 >=
< y(t) >= 1. If the external force is stronger, the saturation

value of < y > decreases to compensate for the extra driving.
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VII. Discussion and Conclusions

e Very simple dynamic models have been constructed and shown
to be capable of reproducing important aspects of sawteeth in
tokamaks as regards temporal behaviour. These models bear
the same relation to more sophisticated physical treatments
of sawtooth phenomena using partial differential equations or
kinetic equations which the Lorenz model has to the fluid

equations of convective heat transfer.

e The purpose of the models is to understand in a very simpli-
fied manner the possible relationship between transport pro-
cesses and sawtooth dynamics. While there is no derivation
as yet in detail of the models from more complete physical
equations such as the resistive MHD reduced equations, the
periodic character of sawteeth suggests that a two-degree of
freedom dynamic system such as those obtained here is proba-
bly involved in the gross temporal phenomena associated with

them.

o Fig. 12 is taken from a typical simulation by Aydemir (pri- -
vate communication, 1991). It shows the behaviour of the

28



magnetic field energy in the higher m ~ n components. The
resemblance of the wave form to that of the z? variable is

indicative that the identification of z(¢) as a measure of tur-

bulence amplitude may be physically reasonable.

|||||||||||||||

Fig.12 RMHD Calculation of Magnetic Turbulence

Energy
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e The extended model shows that the sawtooth oscillation need
not necessarily involve simple linear instabilities but essen-
tially nonlinear damping and growth of turbulence as the
temperature (or internal energy) of the plasma varies on the
ramp time-scale. Furthermore, the turbulence amplitudes will
not (unlike the simple model) reach unphysically small am-
plitudes during the ramp phase. The growth rate of the tur-
bulence at the maximum is determined by the parameter \
which is simply related to the ratio of the period and crash
time-scales. The inverse of this parameter is related to the
level of turbulence during the ramp during which the latter
grows on the time-scale 7, rather than the much shorter crash
timescale. The ¢ term essentially acts as a nonlinear 'brake’
on the steadily growing linear growth rate, T—’\‘(y(t) —1) during

most of the ramp.

e The realistic model is indeed robust to both coherent and

incoherent perturbations for reasonably small amplitudes.

e However, the simulations show that harmonic perturbations

of appropriate frequency and amplitude could lead to partial

30



and total stabilisation of sawteeth. This result could have
considerable practical significance in the control by external

means of sawtooth and other gross instabilities if it is ex-

tended to physically-based dynamic models.

e Indeed, it is possible that certain observations in TEXT (8.McCool,
private communication, 1991) Where sawteeth are known to
Be absent vin the presence of a large MHD mode (typically
m - 2) even when a finite g = 1 radiﬁs is indicated (in pellet

data) could be explained qualitatively with our model.

® Thus Fig.13 shows the brightness dip at the ¢ = 1 surface in
shot # 161575 in TEXT (Btor = 20 kgauss, I, =171 kAmps,
M = 1.8 x 101 /cc; strong m = 2 and a carbon. pellet), when
there is no sawtooth activity, which is presumed to have been

suppressed by the MHD.

) Fig.14~ shows a different diagnostic (SXR and Mirnov coils)
prodﬁcing an equivalent result (also in TEXT) . In shot #
139071, it is evident that while the strong MHD oscillation
(lower trace) is on, the sawteeth are suppressed (upper trace).
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The latter comes on a 10 msec time-scale with an estimated
inversion radius of 6.2 cm (r,=; ~ 7 cm). Since the resistive
time-scale is of order 70 msec, this is suggestive evidence for

m=2 stablilisation of sawteeth.

Research is being directed at present to derive the model from
physics-based equations of motion. Such a derivation would
throw light on the physical processes that are responsible for
A and 7, and also fix the correct normalisations of y(¢) and

z(t) in terms of experimentally determinable quantities.

Finally, it is of interest to show that these models are actu-
ally & particular cases of a more general class of equations
having a structure similar to those which might be expected
from a complete spectral representation of the full non-linear

equations governing sawteeth in tokamaks.

Thus consider a set of M “amplitude” functions (M need not
necessarily be finite), z;(¢), i = 1,2,.., M. Let these func-

tions satisfy the following system of M non-linear, coupled
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equations:

2 Y MT
— = (Y - Dz; + LT, 26
g7 n~( )T +J§1 iT; " (26)

where, the interaction matrix T;; is merely required to be anti-
symmetric in its suflixes, but may otherwise be an entirely
arbitrary function of t, Y, and the variables z; themselves.
The dynamical evolution of these amplitudes can be extremely
complicated and indeed chaotic in general. Yet, it is easy to
see that X (¢) = ijv_? z}(t) actually satisfies the simple model
i= » |
equations. A similar result also applies to the extended model.
This example s‘uggests (but of course does not prove) how
the complete set of evolution equations for a tokamak plasma

could contain simple sawtooth behaviour within them in the

sense of reducing to the model constructed.
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Fig.13 Evidence from TEXT of q=1 Surface with Strong

MHD but no Sawtooth Activity: shot No. 161575
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