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Abstract

Heating and acceleration of charged particles by RF fields have been extensi\fely

investigated by the standard map.‘ The question arises as to how the relativistic effects.

change the nonlinear dynamical behavior described by the classical standard map.
The relativistic standard Kmap is a two parameter (K, ,3: w/kc) family of dynamical
systems reduéing to the standard map when § — 0. For B # 0 the relativistic mass
increase sup;;resses the onset of stochasticity. It is shown that the speed of light limits
the rate of advance of the phase in the relativistic standard map and introduces KAM
surfaces persisting in the high momgntum region. An intricate structure of mixing
in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry
propgrties of the relativistic standard map. The interchange of the stability of the
periodic orbif’;s in the relativistic standard map is aléo observed and is explained by the‘

local linear sﬁability of the orbits.



I. Introduction

Understanding of the stability of the nonlinear motion of charged particles in confining and
accelerating electromagnetic fields has been advanced by studies of the standard map. The
standard map,’ with its single parameter K, applies to a wide class of problems including
the confinement of particles in magnetic fusion devices,?~3 the radio frequency heating of
particles* and the Newtonian acceleration of particle by an infinite sequence of longitudinal
plasma waves with equal amplitudes and evenly spaced phase velocities. Thus, it is natural
to pose the question how relativistic effects change the nonlinear motion described by the
classical standard map.

Several years ago, Tajima and Dawson® proposed the plasma-laser electron accelerator
based on the injection of an electromagnetic wave packet of high power radiation into an
underdense plasma which produces an electrostatic accelerating wake field excited behind
the photon beam. This plasma beat-wave acceleration concept has been pursued intensively
from a theoretical viewpoint, as well as with simulation and experimental studies.® Due to
the interest of exploring such new acceleration mechanisms, we have undertaken a systematic
study of the nonlinear dynamics of the relativistic standard map. Recently, Chernikov et al.”
have independently introduced the relativistic map and studied how the properties of particle
acceleration and the deterministic diffusion are modified by the relativistic generalization of
the standard map.

Extending our studies of the classical standard map,® we report a systematic study of the
nonlinear d‘;ynamics of the relativistic standard map. According to the terminology of two-
dimensional mappings, the classical (Newtonian) standard map is identified as a radial twist
map with a linear phase advancement. The relativistic effect from the Lorentz acceleration
equation takes into account the finite speed of light by introducing the additional parameter

B(= w/kc). The parameter 3 controls the strength of the nonlinearity in the phase advance



equation for the map. The nonlinearity of the phase advance in the relativistic regime makes
the long-time dynamics fundamentally different from that in the Newtonian map.

We describe the fundamental properties of the two parameter (K, 3) relativistic standard
map in Sec. II, and we illustrate characteristic motions of particles in the phase space in
Sec. III. We show that there is the persistence of multi-periodic fegular motions as high as
the period-54 orbits in the ultra-relativistic case of 8 = 107 for K = 1.30. The intricate
structure of the periodic orbits is best analyzed by the symmetry properties of the relativistic
standard map in Sec. IV. We observe also the interchange in the positions of the stable
islands and unstable islands with the change of the parameter ﬂ . The details of the ana,lys.is
of this phenomena are discussed in Sec. V. In Sec. VI we analyze the Poincéré-Birkhoff

multifurcation around the fundamental period-4 orbit. In Sec. VII, we give the concluding

remarks.

II. Fundamental Properties of the Relativistic
Standard Map |

Let us consider an electrostatic wave packet, having the constant amplitude Eo, a given
wavenumber k£ and an infinite spectrum of harmonic frequencies with separation w, given as

E(z,t) = Eq i sin(kz — nwt) . (1)

n=—oco
Relativistic motion of an electron, having the rest mass mq, charge —e, in the above electric

field is determined by the Hamiltonian

H = /p%c? + mict — ed(z,t) , , (2)

o0

¢ = % >~ cos(kz — nwt) , (3)

n=—0o0



where c is the light speed and p is the relativistic momentum mgyv. The equation of motion

of the electron is

do _OH _ __p¢ @
dt ~ Op  (mict+ p2c?)l/?
dp  O0H _ = .
P —eEy n=2_:oo sin(kz — nwt)
27 . s 2nm
=—— eEqgsin(kz) n=z_°° 0 (t - T) ) ()

where §(z) is the Dirac delta function. It is appropriate to normalize the variables z,p and

t as the non-dimensional quantities X, P,T defined by

k

moWw

X p, T=uwt. (6)

il
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k
— P
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The 1-3 D Hamiltonian motion from Eqgs. (4) and (5) reduces to the analytic description
of the surface of section mapping in the (X, P) plane obtained by integrating through the
impulses given in Eq. (5). The corresponding Poincaré mapping at times T, = 2n7 is written

down immediately as

P1=P,+ F(X,) (7
Xnt1 =X, + G(Pn+1) (8)
with the definitions of
F(X)———Ii in(27X) 9
= —5_ sin(27 (9)
G(P) = ——2 (10)

VI+ 5P

Here the parameters K and f are given by

K = 4n* eEok/mow® and B =w/ke, (11)



respectively. The two-dimensional map defined by Egs. (7)-(10) is the relativistic standard
map which reduces to the classical (Newtonian) standard map in the limit of 8 — 0.

It is straightforward to confirm that the relativistic maﬁ is area preserving, and that
it is invariant under the translation X — X + 1, but is not periodic with respect to the
momentum P. Therefore, the relativistic standard map i)ossgsses ;)'nly fixed ‘points as its
equilibrium points, and thus the well-known accelerator modes of the classical standard map
do not exist in the relativistic standard map. The positions of the fixed points are determined

for m =0,+£1,+2,... by

(X, Br)s = (0, m(1 = Fm?)~21%) Gt

(Xom, Pr)u = (1/2, m(1 = pPm?)77) . - (13)

Hence, we find that the fixed points exist with unequal intervals within the range det.§£§}:ined‘
by the limit |m| < 1. If 8 > 1, the only fixed pcliﬁts (X, P) are (0,0) and (1/2,0). When
B =m™!, at the m-th fixed point P, becomes infinity, which is the resonance acceleration
investigated by Chernikov et al.” They observed that a chaotic channel is opened at X =
+1/2 for § = m~!, and along the chaotic channel particles can be acceleratéd to arbitrary
high energies.

Now, the stability of the fixed points is determined from the residue R of the tangent map

AP\ AP, o
) | = AT ‘ (14)
AXn.|.-1 AXn
where AT is the tangent map ‘ | :
1 F'(X5)
AT = | : (15)
G(P) 1+ F(X)G(P,)

associated with the relativistic standard map (7)—(10). The residue R is given as

11 1o oy '
R=3 - 1Tr(AT) = — F(X,)G'(Py) . (16)
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The fixed point is stable if 0 < R < 1, which gives rise to
0 < K cos(2m X)) < 4(1 — Bm?)~3/% (17)

Therefore, we find that as far as K > 0, the fixed point (X, Prn)u given by Eq. (13) remains

unstable, while the fixed point (X, P)s is stable for K in the range

0 < K < 4(1 — F2m?)~3/2 (18)

For the stable orbits the average rotation number p is given by

p= % cos™!(1 —2R) . (19)

If the rotation number p becomes equal to p/q (p and g are primes), the Poincaré-Birkhoff
period-q islands bifurcate out of the fixed point (Xy,, Pn)s. The onset of the period-g bifur-

cation takes place as I passes through the value
K(p/q) =2(1 — B2m?)~%? [1 — cos (27r %)J . (20)

It is worthwhile to remark that at the m = 0 fixed point, i.e. the origin (0,0), the onset
condition of (20) becomes identical with that of the classical standard map. Hence, the
structure of the orbits around the origin is expected to be similar to that of the classical

standard map.

ITIT. Regular Motion of Particles

In order to investigate the characteristic features of the dynamics determined by the rela-
tivistic standard map, let us begin our analysis with the results of the numerical observations
of the particle motions in the phase space. Since it is known that the classical standard map
(B = 0) exhibits the global stochasticity above the threshold value of K. = 0.97, we choose
the nonlinear parameter K = 1.30, where the regular motion prevails over the chaotic mo-

tion in the classical standard map. Equation (20) with 8 = 0 tells us that for K = 1.30
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the period-6 and higher periodic Poincaré-Birkhoff islands bifurcé,te at the origin, but the
period-5 P-B islands are not yet borne out there.

In Fig. 1(a)—(d), we show traces for 5000 iterations of the orbits of 50 particles, which are
initially distributed uniformly over the range of =0.5 < ¢ £ 4+0.5 with P = 0. Increasing
. the value of §, we observe that the relativistic effect suppresses the deterministic diffusion
drastically. In particular, we notice that at 8 = 0.17, the KAM surface is formed between
the m = 2 fixed point island and the m = 1 island, even though Eq. (12) allows the stable
m = 3 and m = 2 fixed points. At the value of 8 = 0.27, the KAM surface is squeezed down
to the place between the m = 2 island and the m = 1 island.

 Now, increasing the value of 8 above unity as shown in Fig. 2(a)-(d), we observe that
when the relativistic effect dominates, the map exhibits a qualitatively different particle
dynamics. At the larger value of 3, the outermost KAM surface expands into the higher
momentum region and coherent island structures prevail inside the region. In particﬁiar, we
are astonished to count the period-20 islands in Fig. 2(c) for 8 = 4w, and as high as the
period-54 in Fig. 2(d) for § = 10x.

'~ Now we develop an analytic approximation for the observed phase space structure.
Firstly, we give the shape of the outermost KAM surface by assuming [ X, — an <L X,
and [Py — Pn| < P, for large n. Equations (7) and (8) can be reduced to

dP _ F(X) | | :
== | (21)

which yields.

1+ p2P? — %ﬁz cos(2rX) = const. | (22)

- Thus, for the initial condition of Fig. 2 given as (Xo, Po) = (1/2,0), we get

K232 1/2
4.75 cos*(7X) . (23)

P(X)= ! [K cos?(rX) +

s




The maximum attainable momentum Py is estimated by the condition dP/dX = 0 as

1{2 )1/2

1 2
P 24
Pmax T (K A2 :6 ( )

We ‘confirmed that Eqs. (23) and (24) are in good agreement with the observed results given
in Fig. 2.

Next, we turn to the periodic islands. According to Eq. (20), we expect to have the
period-6 islands around the origin for K = 1.3. In the high momentum region far out from
the origin, however, we notice that the phase advancement for one step of the iteration of

map is approximately

AX:% (1——;-([3P)‘3+---> . (25)

Hence, the maximum periodicity N will be determined by the condition
NAX ~2, (26)

which gives N ~ 23, namely N = 24 for f = 47 and N = 62 for f = 107r. These maximum
periodicity numbers are consistent with the observation.

Lastly, we show in Fig. 3 the details of the islands structure for the values of 8 = 0,
B = 0.27 and B = 4w. Here, unlike Fig. 1 and Fig. 2, we put the particles at the places
where the periodic islands exist. As for Fig. 3(a) and (b), we set the particles along the
X-axis and also along the curves of X = G(P) over the range of 0 < P < 1.0. While for
Fig. 3(c), the particles are distributed only along the curve of 2X = G(P) over the range of
0 < P < 1.0, resulting in the empty period-8 islands around the origin. Fig. 3(b) shows that
the m = 1 fixed point is indeed stable, though it cannot be reached from the initial positions
of P = 0. Furthermore, we call attention to the fact that the period-8 islands are stable
on the X-axis (P = 0) at the value of 8 = 0.27, while for the larger value of § = 4, the
period-8 orbits on the X-axis (P = 0) turn out to be unstable. This interchange of stable

and unstable orbits in the phase space is analyzed in Sec. V.
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IV. Symmetries of the Relativistic Standard Map

Although we have given a reliable estimate in Eqs. (25)—(26) for the multiplicity of the
periodic orbits in terms of the constant phase advancement in the ultra-relativistic case, we
wish to develop a theory for the overall structure of the regular motion of particles in the
relativistic standard map. For this purpose, the analysis of the symmetfies of the mappings
provides the key instrument. Greene et al.® have discussed the globél behavior of the area- |
preserving map on the basis of the symmetries. Pina and Lara!® carried out an explicit
analysis of the symmetries of the classical standard map. Introducing the symmetries with
respect to the space inversion and to the momentum inversion, Ichikawa et al.}* developed
extegsive analysis of the regular motion of the classical standard map.

A map is called reversible if there exists an involution fq which satisfies the relation
T-Iy T=I, ad IL-L=1I | S (27

where I; stands for the unity matrix. This relation indicates that the reversible map can be

expressed as the product of two involutions
T=.[1-Io, _.[1'11=Id (28)

with the definition of
L=T-I - (29)
and the inverse transformation 7! is given by
T =15 . (30)

If we define I; as the j-th iteration of the map T on the involution Iy, I; = TV - Iy, and
confirm that I; is also an involution. The ensemble of I : and T* for arbitrary integers j and

k forms a discrete infinite group with the relationships
L-Ly=T"*, T .L=ILy, L T"=T1"*, o (31)
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It can be shown that the fixed points of the involution I; form a curve I'; which is known

as its symmetry line:

Ij-]Rle} . (32)

T;: {]R
Therefore, the first equation of (31) states that the intersection of I'; and I'y determine the
periodic points of T', of which period N divides |j — k|. From the second and the third
relations of Eq. (31), we can deduce that the symmetry lines I'; are transformed by T™ into

other symmetry lines according to the relation
Tones =TV Ty, (33)

which enables us to construct the family of symmetry lines of arbitrary order.
For a generic form of the two-dimensional map as given in Egs. (7)-(10), if the transfor-
mation function of F'(X) is antisymmetric with respect to space inversion, F(—X) = —F(X),

the map is expressible as the composition of the following two involutions:

I, PP=P+FX), X =-X
(34)
L: P=P, X'=-X+G(P)
The symmetry lines of these two fundamental involutions are given by
To: X=0 Iy: 2X —-G(P)=0. (35)

Writing an expression for the symmetry line for I; symbolically as I';(R) = 0, we have

[i(R) = Ty—o(T™'R) = 0

(36)

[j(R) =Tj42(TR) = 0

which provides us with the following recurrence formulas
Li[X, Pl =T [X -G(P), P - F{X - G(P)}] (37

L;IX,Pl =T [ X+ G{P+ F(X)},P+ F(X)] .
Explicitly, we have
Fg: X — G(P) =0
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Fy'2X—%M%—MP;HX—GWM=O » (38)
Ty X—2G(P)=G[P - F{X - G(P)}] =0

and

T 2X+G[P+F(X)=0
Tyt X+G[P+F(X)]=0 (39)

Tt 2X+2G[P+F(X)]+G[P+F(X)+F{X+GP+FX)}]=0.

In the previous section, we have made use of the I'; symmetry line to construct Figs. 3(a)
and (b),v and the I'; symmetry line to construct Fig. 3(c), so that we have been able to
feproduce all asiaects of the periodic islanci structure. | | -

A factorization of the map into two’ involutions is not unique. Antisymmetry of the
function G(P) with respect to momentum inversion, G(—P) = ~G(P), gives rise to another

involution decofnposition T =J;+Jy, with

Jo P =-P,X=X-G@P)
Ji:  P'=—P+F[X —G(P) | ' (40)

X'=X—G(P)-G[P - F{X - G(P)}] .

This factorization defines the momentum inversion symmetry as

Y: - P=0
’ (41)
S oM 2P —F X -G(P)]=0.

Since the same recurrence formula as Egs. (37) are also valid for this momentum inversion

symmetry, it is straightforward to write down the higher order symmetry lines as
¥ P—F[X-GP)]=0
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¥s: 2P -2F[X -G(P)]=0 (42)

v P—F[X-GP)]-FX-GP)-G{P~FX-GP)}=0

and

Y-1: 2P+ F(X)=0
Y-zt P+F(X)=0

yes: 2P +2F(X)+ FIX+G{P+FX)}]=0. (43)

Now, for the relativistic standard map, we show in Fig. 4 a family of the spatial inversion
symmetry lines up to the 12-th order for the values of K = 1.3 and § = 47. It is important
to notice that in the region of |P| & A7, the symmetry lines I'; become parallel with the
constant phase separation of (28)~!. Thus we confirm from the symmetry analysis that the
phase increment at each step of the mapping is indeed given by 87! in accord with Eq. (25).
Figure 5 illustrates a family of the momentum inversion symmetry lines up to the 12-th
order. We observe that the higher order momentum inversion symmetry lines «; a,pproéch
asymptotically to the separatrix KAM surface. Thus, from the symmetry properties of the
map, we are able to give a theoretical demonstration of the heuristic results given for the
spacing of the islands and the limiting KAM surface given in Sec. III.

To conclude the present section we illustrate, with Figs. 6(a) and (b), the results of a su-
perposition of Fig. 3(c) with Fig. 4 and Fig. 5, respectively. We can classify the even-number
periodic islands into two groups, (i) N = 2-(2¢) and (ii) N = 2-(2{+ 1) with integers £. For
the first group, intersections of the odd-number symmetry lines I'y;+1 determine the hyper-
bolic points and intersections of the even-number symmetry lines I';; determine the elliptic
points. For the second group, intersections of the odd-number symmétry lines I'yj4+1 deter-

mines the elliptic points and intersections of the even-number symmetry lines I'y; determine
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the hyperbolic points. As for the odd-number periodic islands, we remark that intersec-
tions of the symmetry lines I'; determine only the unstable odd-periodic islands. Contrary
to the spatial inversion syﬁmetry, Fig. 5(b) shows that intersections of the odd-number
symmetry lines «3;;1 determine all the elliptic eyen—periodic orbits, while intersections of
the even-number symmetry lines v,; determine all the hyperbolic even-periodié orbits. As
for the odd-periodic islands, intersections of the symmetry lines v; determine all the stabie

odd-periodic islands.

V. Stability of the Periodic Orbits

At the end of Sec. III, we showed that the positions of the stable and unstable period-8
orbits are interchanged upon increasing the value of 8. We have carried out an extensive
survey of this interchange of the stability of periodic orbits with respecf to variation-of
for several choices of the stochasticity parameter K. Figure 7 illustrates the features of this
phenomena. Keeping our attention on the periodic orbits on the X-axis (P = 0), we see
that the period-8 orbit with X > 0 is stable up to a 3 value around 8 ~ 2.5, then it turns
into unstable. At the same time the unstable period-6 orbit on the X-axis become stable.
We also observe the océurrence of stable period-10 orbit. Increasing £ abéve 3.5, we see
that these stable period-6 and 10 orbits aré turning unstable while the period-8 hyperbolic
point changes itself into the elliptic point. Figure 8(a) and (b) show such interchange of
the stability of the period-3 and period-4 orbits at K = 3.3 for the values of 8 = 2.20 and
p = 2.83. In particular, we notice that Fig. 8(b) indicates the appearance of two sets of
period-3 orbits very close to the origin. Inérea,sing the stochasticity parameter K to 6.4717,
we show similar phenomena in Figs. 9(a) and (b), where the stable fixed point at the origin
has bifurcated into thevperiod-2 orbit. We observe, however, the stability interchange of the
period-3 and period-4 orbits takes place somewheré between 2.20 < B < 2.51.

In order to investigate this interchange phenomena, we examine the local stability of
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the periodic orbits in some detail. We aim to determine the critical values of B where the
stability interchange occurs. Since a period-n orbit is a fixed point of the T™ map, its local
stability is determined by the eigenvalue of a matrix L obtained by linearizing T™ about one
of its fixed points. The stability of the fixed point (or orbit) is determined by the residue R

at the fixed point, defined by

R= %[2 ~Tr(L)] . (44)

The orbit is stable for 0 < B < 1 and called elliptic. If R < 0, the orbit is directly unstable
and called hyperbolic without reflection. For R > 1, the orbit is inversely unstable, called
hyperbolic with reflection.

We find it is tractable to develop the stability analysis for the period-3 and period-4
orbits that multifurcate from the origin. For period-3 orbits, there are two groups of orbits.
Location of these orbits is determined by the symmetry analysis discussed in the preceding
section. Firstly, a periodic orbit with one point on the X-axis can be determined by the

intersection of the momentum inversion symmetry lines, 4o and v3 (Egs. (41) and (42):
Po=0, 2F(Xo)+ F[Xo+G(F(Xo))]=0. (45)
After a lengthy but straightforward calculation we find that the residue of this orbit is
RO(Xo, Py = 0) = —1 [2F'(Xo) + F' {Xo + G(F(Xa)} {1 + G'(F(Xo)) F'(Xo)
x [2G'(F(Xo)) + G'(0) {1 + G'(F(X0)) F'(Xo)}] - (46)

The other set of the period-3 orbits, with one point on the P-axis (X, = 0), is determined by

the intersection of the space inversion symmetry lines, I'g and I's, from Egs. (35) and (38),
Xo=0, 2G(Py) + G[P + F(G(R))] =0. (47)
For this orbit, the residue is calculated as
RO(Xo=0,P) = —% [2G'(Po) + G' {Po + F(G(Po))} {1 + F'(G(R))G' (o) }]
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X [2F(G(P)) + F'(0) {1 + F'(G(Fo))G'(Fo)}] - (48)

Similarly, the location of the period-4 orbit, whose one point lies on the X-axis (P = 0),

is specified by the intersection of the symmetry lines 7o and 74, from Egs. (41) and (42))
Po=0, FlXo+F(Xo+G(Xo)]=0. | (49)

For the transformation function of Eq. (9), Eq. (49) gives rise to the following two solutions:

(@  2XP+GFXM) =0, (0
and ‘ ‘
(b) G(F(Xéb))) =m+ % | (m: integer) . (51)

When the nonlinear parameter K satisfies the condition

PR W
S kacT

K>2, ' (52)
the a-branch period-4 orbits exist at [Xéa),Po = 0] , [— c(,‘f), F (Xoa))] ,-[—Xéa), P =-70] and
[Xéa) ,‘ —F(X((,a))] , which are mirror symmetric with respect to the origin. The residue of this

period-4 orbit is calculated as
CROX{, Py =0) = —i F(X$) 2+ @'(FXE)] [2+ G'(O)F'(Xé\”)]
| x 26(X{) + G 0) {2+ G(FXI)NF(XP)] . (89)
Equation (51) gives rise to the b-branch period-4 orbits th the positions of [ éb),Po = 0},
(X +1/2, F(xX{)], [XP +1/2,Po = 0] and [X{, —F(X$)], provided that the nonlin-

ear parameter K satisfies the condition

-1/2

K >2r-[(m+1/2)7 - 6] © (54)

These orbits are mirror symmetric with respect to the pointi (Xéb) +1/4, P = 0). Since

the relativistic standard map is symmetric with respect to the origin, we have another set
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of the b-branch period-4 orbits at the positions of [— éb), Py, = 0], [X((,b) -1/2,F (+Xéb))],
[—X((,b) —-1/2,Py = 0] and [—- éb) + F(Xéb) )] , respectively. The residue of the pairs of these
period-4 orbits is calculated as |

ROXY, Py = 0) = =3 G (FXP) P (XYY

x [G"(FXM)G 02 F'(XP)? - 4{G"(0) + G(FXL)}]| . (55)

In addition to these sets of the period-4 orbit, we also have the period-4 orbit whose one
point lies on the P-axis (X = 0). The location of this orbit is specified by the intersection

of the space inversion symmetry lines, 'y and T’y (Egs. (35) and (38))
Xo=0, G(P)+C[P+F(G(P))]=0. | (56)
For the relativistic standard map with Eq. (9), Eq. (56) reduces to
2P + F(G(R)) =0 . (57)
The residue of this orbit is calculated as
RO(Xo =0, Po) = —3 G'(R) 2+ F(G(R)] 2 + F/(0)G'(Ro)
X 2F'(G(R)) + F'(0) {2 + F/(G(FR,))G'(Ro)}] - (58)

Having obtained analytic expressions for the residues of the period-3 orbits and the
~ period-4 orbits, we can investigate the B-dependence of the residues by substituting values
of the coordinates numerically determined for specified values of B. We show in Figs. 10
and 11 the B-dependence of the residue of the period-3 and the period-4 orbits at K = 3.3,
respectively. We observe in Fig. 10 that the residues R®)(X,, P, = 0) and R® (X, = 0, B,)
of the period-3 orbits become zero at the value of § = 2.40, where the stability interchange

takes place. As for the period-4 orbits, Fig. 11 indicates that all of them are unstable at
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B = 0. As B increases the b-branch turns stable and merges into the a-bra_nch at # =0.612.
At the value of 8 = 2.44, the residues R(“)(X((,a),P_o =0) and R™® (X = 0, Ry) of the period-4
orbits change their signs, leading to the interchange of their stability.

For the higher value of K = 6.4717, we show in Fig. 12 and 13 the f-dependence of the
residue of the period-3 and the period-4 orbits. In contrast to the case of K = 3.3, the
stable period-3 orbits survive only in a very narrow range of 8. Consistent with the observed
change in stability shown in Figs. 9(a) with g = 2.20 and (b) with A = 2.51, the stability .

interéhange of the period-3 orbits takes place at 8 = 2.34. The‘residues of the period-4

- orbits behave in a very complicated manner. At B = 0, every branch of the period-4 orbits

are directly unstable. As f increases, the b-branch undergoes rapid chanée from stable to
inversely unstable and back to stable, then merging into the a-branch at # = 1.749. The
residues R® (X, Py = 0) and RW(X, = 0,P,) at K = 6.4717 change their signs at the
value of f = 2.28, which confirms the stability interchange phenomena found num;riéélly
in Fig. 9(a) and (b). Here, we notice that the residue R (X, = 0, F,) is increasing from
zero to unity and then falls below unity again. This peéuliar variation of the residue of the

period-4 orbits will be discussed further in the next section.

VI. Poincaré-Birkhoff Multifurcation for the
Period-4 Orbit

In the preceding section, we showed that the residue of the period-4 orbit increa,ses‘ to unity
and then falls again as (3 increases. We should be aware that stable orbits with the same
value of residue but with different values of 4 exhibit distinct behaviors. Referring to Figs. 11
and 13, we observe that for the same value of R®) = 0 the merging of the b-branch into the
a-branch takes place at a smaller value of 8, and the stability interchange occurs at a larger
value of 8. In Fig. 14, a phase portrait- around the period-4 orbits on the X-axis is shown

for K = 3.3 and (a) # = 0.933 and (b) B = 1.57, respectively. For both cases, the residue
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R® is equal to ~ 0.75. The period-4 orbits on the X-axis (Xo, Po = 0) and (—Xo, Po = 0)
are surrounded by the Poincaré-Birkhoff multifurcated period-3 orbits. In Fig. 14(a), we can
recognize that here occurs the period-3 catastrophe, where the period-4 islands are squeezed
into points by the period-3 orbits. On the other hand, in Fig. 14(b), we see the period-3
multifurcation around the original period-4 orbits.

Now, at the value of 8 = 1.26, the residue R(*)(Xo, Py = 0) becomes unity, suggesting the
occurrence of the Poincaré-Birkhoff multifurcation. Figure 15 shows that two pairs of the
period-2 orbits are multifurcated at 8 = 1.26 for K = 3.3. Following Greene et al.®, let us
examine this feature of the pair of period-2 orbits in some detail. Since the a-branch period-4
orbits is symmetric with respect to the origin, the points (Xo, Po = 0) and (—Xo, Po = 0)
are regarded as the same point, and the Poincaré-Birkhoff period-4 sequence has a square

root map. A study of the residue R® of the 7% map gives
R®(Xo, Py = 0) = R®(=X,, P, = 0)
= _% F'(Xo) [2G'(0) + 2G'(F(Xo)) + G'(0)G'(F (X0)) F'(Xo)]  (59)
Thus, we can confirm that the residue R(4)(X((,a), Py =0), in Eq. (53) may be factored into
R® = 4R(®[1 — RD] (60)

which has a maximum of 1 at R® = 1/2. We show in Fig. 16 the S-dependence of the
residue R, in Eq. (59) and R®, in Eq. (53) for K = 3.3. At the stable elliptic point, the
characteristic multiplier A

A=1-2R=+2[R(R - 1)/ (61)

is expressed in terms of the rotation number p, previously defined in Eq. (19) as

A = exp(Li2wp) . (62)
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When the residue passes t.hrough the values
R(p/q) = sinz(wp/q) p,q: coprime integers , (63)

the Poincaré-Birkhoff islands of ¢ times the original period are born. At 8 = 0.612, R =0
and R® =1 so that this corresponds to p/q = 1/2 (period-doubling) bifurcation for the 772
map. At f = 0.933, R® = R® = 3/4 and the value of p/q is 1/3 for T? and 2/3 for T*,
which is the case of the period-3 catastrophe observed in F ig. 9(a). On the other hand, at
B = 1.57, the value R is 3/4 but R® = 1/4, which correspond to the 2/6 multifurcation
for T' and the 1/6 multifurcation for T2. Therefore, two sets of the period-3 islands turn
up in Fig. 9(b) rather than the period-3 catastrophe. Lastly, at the Va,lﬁe of = 1.26, R
approaches unity and R® passes through- 1/2, which indicates that the 2/4 multifurcation
for T* and the 1/4 for T? map. These 4-cycles are observed as two pairs of the period-2
orbits in Fig. 10. A

VII. Concluding 'Rema_rks

We have investigated the nonlinear dynamics of particle acceleration in the rélatii/isfic stan-
dard mép and shown that the relativistic effects supf)ress the sﬁochastic motion of the paiti—
cles. Under the action bf the coherent spectrum of electrostatic Waves whose phasé V;elocity
is much larger than the speed of light, 8 = w/ke > 1, the particle motion becomes reguiar
with even-numbered periodic orbits being the dominant feature over the phase spaée. The
structure of the periodic orbits is analyzed by constructing faﬁﬁlieé of space inversion and
momentum reflection symmetry lines. We show that the odd—number.éd periodic orbits are
washed out in the stochastic sea, while the even-numbered orbits survive up to quite high
periodicity. This difference in behavior is due t'o' the fact that in the high momentum regibn
the phase advancement for the particle motion is asyfnptotically constant, which is cléarly

shown by the family of space inversion symmetry lines becoming asymptotically parallel to
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the P axis in Fig. 4.

For the observed phase space structure, we were able to determine analytically the out-
ermost KAM surface with Eq. (23), which agrees well with the numerical observation for the
regime B > 1. For the sub-relativistic regime 8 < 1, we show that even though the fixed
points of high momentum P,, ~ m = ! are allowed to exist, the outermost KAM surface
for particles with the initial momentum P, = 0 is formed as a separatrix between much lower
order momentum P, fixed points, with m < #71.

In this connection, it is worth noting that Howard and Hohs'? have examined the forma-
tion of an adiabatic barrier for phase space orbits in a two-parameter Hamiltonian system
with a quadratically nonlinear phase advance. They showed that the nonlinear variation
can give rise to a reconnectioﬁ of the KAM curves and the formation of phase space vortex
structures for the period-2 aligned islands. In our problem, for small 3, the relativistic phase
advancement could be approximated by the cubic phase advance (P — £ 32 P?), which may
partially account for the barrier formation as observed in Figs. 2(c) and (d). Yet, it should be
noticed that the derivative G’ of the phase transformation function G(P) is positive definite
in its exact relativistic expression in Eq. (10). Howard and Hohs'? identify the critical con-
dition for their barrier structure to occur at the point where the phase advance is stationary
(G" = 0). For predicting the existence of KAM barriers, our observation that the momentum
inversion symmetry curves asymptotically approach to the outermost KAM surface provide
a theoretical clue for determining their structure.

Turning to the super—relé,tivistic regime 8 > 1, we have discovered the occurrence of the
interchange of the stability of the periodic orbits around the fixed point at the origin with
variations of the phase advancement parameter 3. We have shown analytically by calculating
the residue of the period-3 and period-4 orbits, that the stable-unstable interchange can be
explained by the local linear stability properties of the orbits. Our preliminary study of the

period-3 orbits for the logistic twist map examined by Howard and Hohs indicates that a
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similar stability interchange can be observed for K = 3.3 around « ~ 0.03. Thus, we expect
that the stability interchange of the periodic orbits upon variation of the phase advancement
parameter appears to be a generic features of two parameter Hamiltonian systems containing

a nonlinear phase advance.
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Figure Captions

1.

Particle orbits of the relativistic standard map for the stochastic parameter K = 1.3
and the relativistic parameter 8§ < 1, a) # = 0, b) f = 0.04w, ¢) 8 = 0.17 and

d) B = 0.2, respectively.

Particle orbits of the relativistic standard map for the stochastic parameter K = 1.3
and the relativistic parameter 8 > 1, a) f = 0.47,b) B =7,c) f = 47 and.d) B = 10,

respectively.

The B-dependence of the phase space structure of the relativistic standard map with

K =1.3fora) 8=0,b) B =0.27, and c) § = 4r, respectively.

Space inversion symmetry lines I'; of the relativistic standard map for K = 1.3 and

B = 4r.

Momentum inversion symmetry lines «; of the relativistic standard map for K. = 1.3

and B = 4~.

Identification of the multi-periodic island structure in terms of families of the space
inversion symmetry curves I'; in a), and the momentum inversion symmetry curves v;

in b).

Overall feature of interchange of the stability of multi-periodic orbits with respect to
the variation of B. The real line indicates the region where the specified periodic orbit
on the X-axis remains stable, while the broken line indicates an unstable region. This

figure is for the case of K = 2.1.

Interchange of the stability of period-4 orbits between a) § = 2.20 and b) £ = 2.83 at
K = 3.3. Careful observation can identify the two sets of period-3 orbits for the case
b).
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10.

11.

12.

13.

14.

15.

16.

Interchange of the stability of period-3 and period-4 orbits between a) 8 = 2.20 and
b) B =2.51 at K = 6.4717, where the fundamental fixed point at the origin bifurcates

into the period-2 orbits.

Residue of the period-3 orbit at K = 3.3.
Residue of the period-4 orbit at K = 3.3.
Residue of the period-3 orbit at K = 6.4717.
Residue of the period-4 orbit at K = 6.4717.

Multifurcation of period-3 orbits out of the period-4 orbits at K = 3.3. a) period-3

catastrophe at # = 0.933 and b) two pairs of period-3 islands at 8 = 1.57.
Multifurcation of period-2 orbits out of the period-4 orbits at K = 3.3 and 8 = 1.27.

Residues R and R® for the Poincaré-Birkhoff period-4 orbit on the X-axis at K =
3.3.
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