INSTITUTE FOR
FUSION STUDIES

DOE/ET-53088-495 IFSR #495

Exact Solutions for a System of Nonlinear
Plasma Fluid Equations

M.G. Pranovié, R.D. HAZELTINE, and P.J. MORRISON
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

April 1991

 THE UNIVERSITY OF TEXAS

AUSTIN







Exact Solutions for a System of Nonlinear
Plasma Fluid Equations

M.G. Prahovié, R.D. Hazeltine, and P.J. Morrison
Department of Physics and Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

Abstract

A method is presented for constructing exact solutions to a system of nonlinear

plasma fluid equations that combiries the physics of reduced magnetohydrodynamics’™

and the electrostatic drift-wave description of the Charney-Hasegawa-Mima equation.
The system has nonlinearities that take the form of Poisson brackets involving the fluid
field variables. The fnethod relies on modifying a class of simple equilibrium solutions,
but no approximations are made. A distinguishing feature is that the original nonlin-
ear problem is reduced to the solution of two linear partial differential equations, one
fourth-order and the other first-order. The first-order equation has Hamiltonian char-
acteristics and is easily integrated, supplying infofmation about the general structure

of solutions.



I. Introduction and Overview.

In this paper the construction of exact analytic solutions for a system of nonlinear plasma
fluid equations is discussed. The equations occur in a fluid model’ which combines the
physics of reduced magnetohydrodynamics®® (RMHD) and the Charney-Hasegawa-Mima
(CHM) equation.? The combined model is of interest because RMHD is an important tool
for the interpretation of experimental results and for the prediction and theoretical analysis
of nonlinear plasma fluid behavior in tokamaks. (To date, most of this work has been done
numerically.) In the context of plasma physics, the CHM equation has been used in the
study of electrostatic fluctuations in hot, turbulent plasmas; it incorporates the physics of
electrostatic drift waves, which is not described by RMHD.

The solutions admitted by this nonlinear system are physically interesting because they
~ are fully electromagnetic, like many disturbances seen in tokamak experiments; and they can
take the form of solitary waves, which can be long-lived and very stable to perturbations.
Hence they could describe plasma behavior that might be detected experimentally. The
method by which a class of solutions is obtained here is also of intrinsic mathematical inter-
est: the nonlinear system of governing partial differential equations (pde’s) is reduced to a
linear system that is in principle exactly soluble by standard techniques. (If one wishes to
be single-mindedly practical, the analytic solutions could also serve as a means of verifying
the computer codes used for RMHD calculations.)

Here is an overview of what follows. In Section II the fluid equations are presented and
their physical content is briefly discussed. Their nonlinear character is manifested by Poisson
brackets involving the fluid field variables.

Section III is concerned with finding solutions to the fluid equations for the case of a
perfectly conducting plasma. First the construction of exact solutior’m for the equilibrium

form of the equations is considered. A simple change of dependent variables is used to
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eliminate the Poisson brackets and reduce the problem to solving a single linear pde. This
provides a foundation and motivation for the more general problem of constructing exact
solutions to the nonequilibrium equations. Next, by a slight modification of the change of
dependent variables for the equilibrium case,. the nonlinear, nonequilibrium equations are
reduced to a pair of linear pde’s, one first-order and the other fourth-order. An algorithm
for constructing solutions based on this reduction is presented. Finally, the ﬁrStibrder pde is
integrated by the method of characteristics; this will be seen to provide information about
the general structure of the solutiéns.

In Section IV a summary is presented. The limitations of our method, possible modifi-

cations to it, and areas for further work are discussed.

II. Fluid Equations
A. Geometry and Coordinates

What follows is a; description of the geometry and the coordinates used. First of ;.H, the
presumed geometry is toroidal, that of a tokamak with a circular cross section. However,
the parameter beta for the plasma is assumed to be small — this excludes pressure-driven
dynamics and magnetic curvature from the physics described by the fluid equations, thus
making Jc‘hem applicable to cylindrical and slab geometries, also. Let us introduce a set of

normalized coordinates:

T = , y=§, and z=—§.. (1)

Here (R,({,Z) represent cylindrical coordinates centered on the symmetry axis of the toka-
mak: R measures radial displacements away from the symmetry axis, { is the toroidal angle,
and Z measures vertical displacements above or below the horizontal symmetry plane of the
tokamak. Rg is the major radius of the tokamak. In the conte;<t of RMHD, a is the tokamak’s

minor radius and is thus a scale characterizing fluid motions transverse to the magnetic field.
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If a is taken to be of the order of the ion Larmor radius, it serves as a useful length scale
for the description of electrostatic drift-wave physics in the context of the CHM equation.
Hence (z,y, 2) is a right-handed set of local poloidal coordinates useful for describing plasma

behavior on different length scales within the torus.

B. Important Physical Quantities and Their Orderings

We next introduce the three normalized field variables that appear in the equations: ¢,%, and
X. The quantity ¢ represents the electrostatic potential; 1 represents the parallel component
of the magnetic vector potential, or the poloidal magnetic flux; and X represents a small
perturbation of the plasma density. The unperturbed plasma density, denoted by n., is
assumed to be constant in both space and time. The vacuum magnetic field is assumed to
be purely toroidal and to dominate any magnetic fields due to the plasma. Thus ¢ represents
the addition, due to the plasma, to the vacuum field.

The dimensionless ordering parameter is £, the inverse aspect ratio of the tokamak:

es-;—o<<1. (2)

The electric and magnetic fields are ordered using € to express the presumed dominance of
the vacuum magnetic field: the scalar and vector potentials for the electromagnetic fields
generated by the plasma are assumed O(e) compared to that for the vacuum magnetic field.
The plasma beta is O(e?), a “low beta” ordering. The plasma density is assumed to deviate

from n. by a quantity O(e). A normalized time coordinate 7 is defined by
T=E—, (3)

which is appropriate for the slow, shear-Alfvén fluid motions of interest. Here ¢ is the usual
time coordinate; v4, a constant, is a measure of the Alfvén speed for the plasma. Thus all

the important physical quantities are ordered in terms of €.



In terms of the € orderings described above, the component of the fluid velocity perpen-

dicular to the magnetic field is?
v, =evaZ x Vy o+ OE?) . (4)

Here V. is the poloidal component of the normalized gradient c;perator aV:
o _ 0

V.L x%‘*‘)"a'_y; (O)

‘where X, ¥, and Z are just the appropriate unit vectors. The first term on the right-hand
side of (4) represents the usual E x B fluid drift, and the factor cvs emphasizes that the

fluid motions considered are very slow compared to the Alfvén speed.

C. The Reduced Fluid Equations

To obtain the reduced fluid equations for the combined system, the ¢ ordering scheme sum-
marized above is.incorpora.ted into the appropriate exact, resistive MHD equatio#é. To
arrive at the approximate equations given below, the terms of lowest order in ¢ are képt. A
complete derivation of the equations is available elsewhere.! The following short description
. is provided to make the physical content and the mathematical symbolism more transparent.
Before proceeding with the presentation of the fluid equations, we introduce two quanti-

ties that will appear quite often below. The first is

U=Vig, (6)

the parallel component of the fluid vorticity. The second is

J=Viy, (7

the parallel component of the plasma current. To make the fluid equations more compact,

it 1s also useful to introduce the Poisson bracket defined by

[f,9]=—————xr=5'v.!.f><v_l.g-» - (8)




The first of the equations is the “shear-Alfvén law,”

o= (5 -wa) )

The left-hand side represents the convective time derivative of U: the second term, [¢, U],
represents convection of U due to the E x B fluid drift. Acting on J in the right-hand side
of (9) is the operator (.—3‘9; — [, ], which is essentially B - V. The physical content of the
right-hand side of (9) is thus current-driven dynamics, such as kink modes.

The second of the equations comes from the parallel component of a modified Ohm’s law:

0 %,
%?+£—[¢,¢]=5J+a(a+§—[¢,x]) . (10)

Here the left-hand side represents the parallel component of the electric field. The quantity
7 is a normalized collisional resistivity. The last quantity in parentheses on the right-hand
side represents pressure effects on parallel electron flow. In the combined model it is assumed

that electrons almost exclusively carry the parallel current. The constant « is defined by

2
Ps
o’ =3 (11)
where
T.
2 _~¢ 2
iy (12)

Here m; is the ion mass, T is the constant electron temperature in energy units, and ; is

the ion Larmor frequency:
€ BT

b
m; C

Q; = (13)

where Br is a constant that measures the strength of the vacuum magnetic field. In the
combined model, o represents the marriage of RMHD and electrostatic drift-wave physics.

The last equation we consider,

ox oJ '
5t X+ om =] =0, (19
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is derived from the equation for electron conservation and quasineutrality. The second term
on the left side is just E x B convection of the plasma density. Electron parallel mobility.is
explicit in the last two terms: these come from the divergence of the parallel electron fluid

velocity, which is essentially proportional to the parallel plasma current J.

III. Construction of Exact Solutions
.A. Framework

Having introduced the fluid equations, we next discuss a method for arriving at exact solu-
tions of them. _
We denote the partial derivative of a quantity by a subscript, e.g., % =U.,. Thén, after

réarranging the terms of (9) and (10) and subtracting (14) from (9), we can write

Ur+ (6, Ul+ T+ [J,%] =0, | (15)

¢T-+(¢_ax»)2+[¢—axa¢] =0 9 | (16)
and

(U-X);+[6,U~X]=0. (17)

This is the nonlinear system we will study. Note that we are taking 7 = 0 in (16); the
resistivity of the plasma is neglected for all that follows.
To satisfy (17) we take -
X=g(z)+U, | (18)

where ¢ is an arbitrary function of z. This is by no means the general solution to (17); it is

simply a special case which satisfies (17) with little effort. Defining

§=¢—ag(z) (19)




and recasting (15) and (16) in terms of £ gives

Uy +[€,U] + Jo + [J, 9] = 0 | (20)

and

¢T+(€_aU)z+[€—aUa¢]=Oa (21)

where (18) has been used. We note in passing that from (19) and (6), the definition of U,

we have

U=vi¢, (22)

a relation that will be used often in what follows.
Now we have to find solutions to (20) and (21). Let us first consider the simpler case of

axisymmetric equilibrium.
B. Axisymmetric Equilibrium

Under the assumption of axisymmetric equilibrium, -8%— =0 and 53; =0, (20) and (21) reduce

to

and
;9] —elU,%] =0 . (24)
(Here J = V2 ¢ and U = V2 ¢ were used.) We take
b =7, (25)
where v is an arbitrary constant. Then (23) and (24) reduce to

(1=K Vvig=0 (26)

and



ay[§,U] =0 (27)

In the same spirit as (25), we take

U =6, (28)

where § is an arbitrary constant. This choice has the virtue of satisfying both (26) and (27)

with little effort. In addition it imposes the constraint that
- V2E=6¢. (29)

Thus finding some solutions of the nonlinear pde’s (23) and (24) has been reduced to solving
the linear pde (29): the troublesome nonlinear Poisson brackets have been eliminated with
the ansdtze ) = v¢€ and U = §¢. Knowing ¢ as determined by (29), one can then easily find
the field variables ¢, %, and X.

This class of solutions for axisitmmetric'equilibrium has an intere'sting physical in’gerpre-
tation. For the low beta case being considered, the magnetic field in the tokamak takes the

form?
T l4ex

Z—eBrz x Vip + O(?) . (30)

The second term on the right-hand side represents the poloidal magnetic field, B,. Operating

on the relation ¥ = v¢ with evy Z x V, gives®

EUAEXVL¢=7{€UA2XVL¢]. (31)

Comparing this with (30) and the relation (4) for V_L, one can see that the left side is
proportional to B, and the right side is essentially proportional to v.. Thus (31) can be
rewritten more suggestively as

o

v, = —=
vBr

B, + O(€) . (32)
This result is similar to the fluid velocity for a nonlinear Alfvén wave found by Walén.®
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C. Allowing for 7 and z Dependence

Next we complicate the previous discussion somewhat with the addition of 7 and z depen-
dence to £. As for the case of axisymmetric equilibrium, we continue to take ¢ = ¢ and

U = §¢ and use these relations in (20) and (21) to arrive at the linear equations

ér + 762 =0 (33)

and
vé + (1 —ab)é, =0. -(34)
These two first-order I.Jde’s in ¢ will be consistent with each other if we take
1 —ab=17%. (35)

From (33) one can see that the solution for { must be of the form ¢ = {(z,y,z —v7), which
corresponds to a structure propagating toroidally.

In addition to the first-order equation (33), ¢ must once again satisfy V2 ¢ = §¢ because
of the ansdtz U = 6¢. Even though there are now two equations to solve for £, they are

linear and therefore much more tractable than the nonlinear equations (20) and (21).

D. Addition of Perturbation Terms

A more general class of solutions can be obtained with the ansadtze

¢=7£(xayv2’7)+f(xay3za7) (36)

and

U= 6(z,y,2,7) + h(z,y,2,7) . (37)

As before, v and § are arbitrary constants; f and h are arbitrary functions. One can view
f and h as perturbations on the forms ¥ = v¢ and U = 6¢ used previously. However, no

assumption is made about their sizes: f and A need not be small.
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Let us proceed with the construction of solutions. First; note that
J =~86+vh+ V2 f (38)

from the definition J = V3% ¢,’(36), and (37). Using (36)—(38) in the nonlinear equations -

(20) and (21), one obtains the following two equations linear in {:’

ks Vi fl—h+ =R} (@3

N =

and
1—aé 1—ab

v

e+ et e o e < e el - £ 0

. Next we require that these two equations be redundant. This is by no means a necessary
constraint, and in fact we have found a class of solutions where (39) and (40) are not
redundant. However, requiring redundancy does lead to interesting solutions.

Aftet some manipulation the conditions for redundancy are found to be

| )
= | (41)
V2 5= =L, | (42)
v
and
1.] 1 | 5 _ -
[f, ;h] -3 (b -sp(am 4 <;f—h>f 0. (43)

Here p is an arbitrary function of # and 7. The application of these conditions reduces (39)

and (40) to the single equation

_a6

br + & + [€,7f + o] P (vf +ah),, (44)
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a linear, first-order pde in . From U = V3% ¢ and U = & + h, we obtain the additional

relation

ViE=686+h. (45)

Thus the two nonlinear equations in ¢, (20) and (21), have been transformed into the two

linear equations (44) and (45); these linear equations in £ are supplemented by the three

redundancy conditions, (41)—(43).
Next we must ensure that (44) and (45) are compatible with one another. For convenience

Operating on (44) with V2 and making use of (45) and (46), one obtains the compatibility

condition

66, + hy — V3 L€ = —Vi(7f + ah), . (47)
Introducing the commutator (VZ, £) defined by
(V2,L)=ViL-LVe, (48)
and using (45), one can rewrite (47) in the more interesting form
86 + hy — L(6€ + k) = (VL, L), = =Vi(7f + ah), . (49)
In the interest of simplicity, we impose the constraint that
(V2,L) =0 (50)
for every “well-behaved” function £. This condition can be shown to require that
vf+ah=H, (51)
where H is defined by

H = -a(z,7)(z® + y*) + b(z,7)y + c(z,7)z + d(2,7) . (52)

1
2



Here a, b, ¢, and d are arbitrary functions of z and 7. Note that f can now be eliminated in

favor of A and H through the relation

f==(H—-ah), (53)

2L+~

which follows directly from (51). ‘
With (50) and (51), the first-order equation (44), and the explicit definition of £ as given

by (46), we can reexpress (49) as
ab? : 9 »
— Ptk +(h—6H + V, H). =7[f,h] . | (54)

This relation can be further simplified with the application of (53) and the redundancy

conditions (41) and (43). The result is
2 6
VLHT=—;pz , (55)

a much more compact form for the compatibility condition.

There are two more pde’s to consider in addition to those for {. Using (53) and (55) in

the redundancy relations (42) and (43), we obtain the following pair of equations for h:

aV3 h=V3 H+ép | (56)

and

he — Lh=—(v* V2 H — §H), . | (57)

The compatibility of these equations is treated in much the same way as for the ¢ equa-
tions: taking V2 of both sides of (57) and making use of (50), (55), and (56) in the result,

one obtains the condition

V?L H, = _gpf . (58)

It is more enlightening to rewrite (55) and (58) together using
V2 H = 2a(z,7), (39)
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which follows from the definition of H. Doing this, one obtains the complementary relations

2a1- - “"""pz (60)

and

From these equations it is easily found that

a=a,(z+7)+ax(z—7) (62)
and
p=-Tla(e+7) —aals =)+, (63)

where « is an arbitrary constant and a; and a; are arbitrary functions. Thus consideration
of the compatibility of the pde’s for ~ and ¢ has yielded information.about the structure of
p and a and the relationship between them.

We next distill our four pde’s for £ and h to two essential equations for £ alone. We first
collect the four equations for ¢ and h. Recall from (45) that the second-order equation for ¢

can be expressed as

h=V2¢—6¢. (64)

Using (46), (51), and (60), we can rewrite the first-order equation for £, (44), as
b — LE=—(2aa+ H): . (65)
With (59) and (63) the second-order relation for h, (56), becomes
aVi h=2(1—-7)a; +2(1 +v)az + éx . (66)
The first-order relation (57) becomes
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he — Lh=—(27%a — 6H), (67

with the use of (59).

Now we can eliminate % from (66) using (64) to obtain
o VA (V2 € - 86) = 2(1 — 7)as +2(1 +7)az + 8, (65)

a fourth-order relation for £. With the help of (64) and (65), it is easy to show that (67) in
fact reduces to an identity.k We also note that it is not difficult to directly ascertain that (65)
and (68) are compatible with each other as they stand; no further constraints are needed to
ensure their compatibility.

At this point we have only to integrate the linear equations (65) and (68) for £ to obtain a
complete, explicit solution for our original system of nonlinear fluid equations. The following

algorithm summarizes the results of this section.

E. An Algorithm for Constructing Solutions

1. Choose values for the constants § and a and thus determine ~ from the relation
y=oVi—ab, (69)

which follows from (41). Here o = £1. The parameter « is determined by physical consid-
erations; recall (11).

2. Spécify
H= % [a1(2 + 7) + az(z = )] (2% + 4*) + b(z, )y + oz, T)z + d(2,T) (70)

by choosing the functions ay, as, b, ¢, and d. This form for H is obtained after incorporating
into (52) the information we obtained about the function a from (60) and (61).

- 3. Choose a value for the constant « and then find ¢ by integrating

& +oVI—abé, + ¢, H] = — (2ala; + ag] + H), (M

and "’
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aVi(V2E~66)=2(1-0Vvi—ad)a +2(1+0VI—ab)a; + 6k . (72)

Equations (71) and (72) follow from (65), (68), and (69).
4. Choose the function ¢g(z). The solutions for the field variables ¢,%, and X readily

follow: from (19),

p=¢+ag; . (73)
from (36), (53), and (64),
b= (- aViE+E) ; (74)
o/l —ad \
and from (18) and (22),
X=g+Vi¢. (75)

Other physical quantities of interest are the vorticity,
U=vig, (22)

and the parallel current,

)
—_— — 2 — — S ————————
J=0cV1—ad Vié+2a —ay) amn, (76)

which follows from the definition J = V2 9, (74), and (72).
Next the integration of the first-order equation (71) is considered in more detail to study

the general structure of the solutions.

F. Integration of the First-Order Equation for ¢

We integrate the first-order pde for £, (71), by the method of characteristics. The character-
istics are determined by integrating the following system of ordinary differential equations

associated with (71):

dz : -
= Hy=a(z )y +4(z7) ()
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- = —Hx = —a(—Z,T)IL'-—' C(Z’T)’ ) | (78)

dr

2, (79)
and |

% = —(2ca+ H). . | | - (80)

Relation (69) has been used to make (79) more compact for the sake of the work to follow;
a is given by (62).
We can readily integrate (79) to find

z=2zp+T, . (81)

where zg is a constant of integration.
We can use (81) to replace z wherever it occurs in (77), (78), and (80) to facilitate the

integration of these equations. For the moment let us focus upon (77) and (78). From (77)

we obtain
dz ‘ .
= Hy=a(z+97,7)y + b(z0 + 97, 7) 5 (82)
from (78),
. j_i =—H, = —a(z+7,7)z —c(z0 + 77, T) . (83)

Note that this pair of equations is Hamiltonian in structure, with H playing the role of the
Hamiltonian function that governs the dynamics of z and y.

Writing the homogeneous form of (82) and (83) in terms of matrices, we have

-‘;; [;] B {—a(zoj-’rr,r) - -;‘YT’T)] {z} | (&

It is interesting to note that if we define a position vector r = zX + y¥ then (84) can be

written in the form
d ' .
%:rxia(zo—f-'yr,r) , , (85)
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which describes a gyration in the zy-plane with a time-dependent frequency a(zo + y7, 7).

Consequently it is not surprising that a fundamental matrix for (84) is
T T
cos (/ a(zo + 7/, T’)dT’) sin (/ a(zo + 47, T’)dT’)
- \Jo 0
p(T520) = ,  (86)
—sin (/ a(zp + 7/, TI)dT’> cos (/ a(zo + 7, 'T")dTI>
0 0

which reduces to the identity matrix at 7 = 0.

With the fundamental matrix p at our disposal, we can write the solution to (82) and

(83) as
r = p(7;20)r(0) + p(7; 20) /OT w1 20) £ 20 + y7)dT . (87)
Here
r= Lﬂ ; (88)

r(0) = [“”] , (89)

Yo
where zg and yo are arbitrary constants of integration; and
b(zo + 1, T) ]

(90)
_c(zO + 97, T)

f(r;20 +97) = [

To construct the most general solution of the homogeneous form of (71), we need three

functionally independent first integrals. One of these first integrals is
Zo(l‘,y,z,t) =2 =97, (91)

which follows from (81). Two additional first integrals are

I:I:O(x, Y,z T)

vo(2,¥, z,r)} =wmE ) H = [z = an) iz =l =, (02)

Yy

18



which follow from (87) upon replacing zp with z — 7. The general solution to the homoge-

neous form of (71) is thus ¢ (2o, Yo, 20), an arbitrary function of the first integrals.

A “particular integral” which satisfies the inhomogeneous equation (71) may be obtained

by integrating (80). For brevity we simply denote this particular integral as &,(z,y, z, 7).

Thus a solution for (71) is
5 =‘€h(x01y0320) +§p(x)yaz”t) . ’ (93)
G. Examples

Here we consider some special cases of (93) obtained by specializing a,b,¢, and d in H of
(70). Our choices for these four functions will determine the structure of the first integrals
zo and 1o through (92). For the cases we consider, their structure will be easy to discern

and will give some insight into the behavior of £.
Case (i)

The first case we consider is a rather drastic simplification of the general result (92): we

take a, b,c, and d all to be zero, getting rid of H entirely. Then we are simply left with

To=1< and - Yo=Yy . (94)

Thus in this case the general solution for { is of the form
E=¢(@y,2=97) | (95)
which corfesponds to a structure propagating‘ toroidally with speed ~.
Case (ii)
Nezt let us take a to be a nonzero cbnstant, still keeping b,c, and d zero. Then

To = T COS aT — ysin aT (96)

and
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Yo = Zsin aT + ycos at . (97)
If we introduce the poloidal polar coordinates r and 6 such that

z =rcosb and y=rsinf , (98)

then (96) and (97) may be written as
zo = rcos(f + art) and Yo =rsin(f + at) . (99)
Consequently the general solution for ¢ can take the form
E=¢&(r,0+ar, z—91). (100)

Thus ¢ represents a structure that rotates poloidally with speed a, in addition to propagating

toroidally.
Case (iii)

We take a, b, ¢, and d all to be nonzero constants. Then we find that

b
To = (:z: + _c_) cos at — (y + —-) sin ar — - (101)
a a a
and
yo=<a:+f) sinar+<y+é) cosa‘r-—é. (102)
a a a

We can drop the constants at the end of each of these relations to obtain another perfectly

good pair of first integrals,

To = (a: + 2) cos at — (y + g) sin ar (103)
and

~ c\ . b

Jo = (x + 2) sin at + (y + Zz_) cos ar . (104)
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Thus we see that as for Case (ii) above, the general solution for ¢ represents a structure
exhibiting poloidal rotation with speed a, except that now the rotation occurs about the
origin with (z,y) coordinates (—5 , —%) To make this more explicit, we introduce the polar

coordinates r; and #; such that

T+ £ 71 cOs 0 and Y+ —Z— =r;sinf; . (105)
a : ,

Then the general solution for ¢ will take the form

é. = E(_Tlael + art, z — 77-) . ’ ) B (106)
Case (iv)

If we take.a =0 and b, ¢, and d nonzero constants, then we obtain the first integrals

To=1x — br and yo=y+ecr. (107)

Therefore the general solution for ¢ takes the form

E=Ele—br, y+or, z—77), a0y

fepresenting a structure that propagates vrectilinearly through si)ace with the velocity
bR — cf + 42, |

The simple cases we have considered above are sufficient to show one how the parameters
a,b, c, and d determine the structure of the general solution for ¢, even when one generalizes
to the case where a, b, é, and d depeﬁd on z and 7. The.parameter a determines the speed of
rotation about some origin in the poloidal, zy-plane; b and ¢ determine the center or origin
for that poloidal rotation. In Case (iv) with only @ = 0,. the finite shift Becomes a rectilinear
propagation with speed a,nd direction determined by b,c, and ~.

Note tha.t for the cases we have considered, with a, b, é, and d ali constants, the first-order

equaiion for ¢ given by (71) is homogeneous: the source term —(2ca + H), = 0. Thus the
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remarks of the preceding paragraph — appropria.tely. generalized for a, b, ¢, and d depending
on z and 7 — only apply to the homogeneous part €,(zo, yo, 20) of the general solution for ¢
given in (93). Note also that d plays no role in determining the structure of the homogeneous
solution — d only appears in the source term —(2aa + H), of (71). Thus d only plays a r§le
in determining the particular integral for (71).

The next stép is to integrate the fourth-order equation (72) to completely determine £.

We prefer to defer this to a future publication.

IV. Summary and Discussion

We have constructed exact analytic solutions to a system of nonlinear plasma fluid equa-
tions which combine RMHD and CHM drift dynamics. (The resistivity of the plasma was
neglected: # = 0.) Our method reduces the 6riginal system to a pair of linear pde’s, one first-
order, the other fourth-order. In Section III, Part G, from the integration of the first-order
equation, it is seen that solutions for some special cases take the form of fully electromag-
netic structures propagating through the plasma, i.e. solitary waves. These special cases
were obtained by making choices for four arbitrary functions (of z and 7) that determine
the motion of the wave. For the simple choices considered, this motion can take the form
of purely toroidal propagation with a constant speed; it can also include a poloidal rotation
at constant speed coupled with the tdroidal propagation; or it can consist of a rectilinear
propagation at constant speed in an arbitrary direction. For more general choices the motion
can be much more complicated. (Even though our efforts have largely been directed at con-
structing propagating solutions, the method can be used to construct nonlinear equilibrium
solutions that may be of physical interest as well.)

We conclude with a discussion of the limitations of our method for constructing solutions
and where it might be modified to obtain classes of solutions distinct from the ones thus far

presented.



First of all, one should note that the nolinearities in the fluid equations — (15)—(17)
in Section III, Part A — exhibit a special structure: they exclusively take the form of the
Poisson brackets defined by (8) involving the field variables ¢,%,X, and U and J. The
key feature of our method is the elimination of these nonlinear Poisson brackets, leaving
only linear equations to integrate. Thus this approach is by no means a general method of
constructing solutions for any given nonlinear system of equations.

Now recall that the starting point for our method is the ansdtze (18), (36), and (37),
which reduce the nonlinear system (15)-(17) to two equations linear in ¢, (39) and (40).
However, the way we have chosen to proceed after this starting point is not unique; there
are at least two principal points in the development that can be modified. First, recall that
having (39) and (40) be redundant is a matter of choice: it is possible to construct a class
of solutions distinct from the one hitherto discussed without this condition. Next note that
after impbsing the redundancy of (39) and (40), having the commutator vanish in (50) is also
a matter of choice. Relaxing this constraint will result in another distinct class of solutions. .

Recall also that our ansdtze (36) and (37) can be viewed as perturbations on the forms
Y = v¢ and U = 8. These latter forms were used to solve the system (15)-(17) under
the assumption of akisymmetric equilibrium in Section III, Part B. This particular class of
equilibrium solutions, which serves as the origin of our construction, is an especially simple
case of the equilibria possible for the nonlinear system.® Perhaps even more interesting eqﬁi-
librium solutions could be “perturbed” as the starting point for constructing other solutions
having 7 and z dependence.

Finally, we note that ‘it might also be interesting to investigate how our means of con-
structing solutions fits into the framework of symmetry (Lie group) methods for the integra-
tion of systems of pde’s. Perhaps the explicit application of these methods to the nonlinear

system we have considered would also yield physically interesting solutions.
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