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Abstract

We describe a new approach to the calculation of turbulent transport coeflicients
for radially localized modes. The theory takes into account the nonuniformity of the
distribution of rational (resonant) magnetic surfaces in minor radius. This distribution
function is proportional to the density of available states of excitation. The resulting
density of states correction qualitatively changes the radial profile of the transport
coeflicients, as compared to the usual local diffusivity formulae. The correction factor
calculated for the m;-mode transport allows a much better agreement of X; with the

experimental data than previously achieved.
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I. Introduction

Several important instabilities of the tokamak plasma can be described as fhe modes radially

localized in the vicinity of the rational surfaces of the equilibrium magnetic field. These are

the drift-wave, trapped-particle, interchange, and some of the ballooning-type perturbations.

The turbulent transport induced by such modes is usually calculated for a single localized

perturbation[1, 2, 3, 4], or for some finite, externally fixed number of neighboring modes.[5, 6]

The transport induced by a single localized perturbation is, of course, significant only in the

vicinity of the resonance and we will call it the spike transport, because it can be described-
by the spike on the profile of the transport coefficients. In the conventional approach[1-4,6,7]

the global transport is calculated as the spike transport generated by the mode localized at

a given radius. Since the rational surfaces are sufficiently dense, it is presumed that such a
local mode always exists. (However, the latter is not always true and this question will be
addressed in Sec. III.)

The local turbulent transport analysis results in the transport. coefficient X in-the form
X=Xgp(r —re,ra,0) , (1)

and then the conventional method of calculation the global profile of this transport coefficient
is.

X(r) = Xep (r,q(r)) (2)
with the average being over the first argument in Eq. (1). Here X,, is the rapidly varying.
function of the first argument, which is the distance from the mode rational surface r = r,
and X, is the average value of the local X within the perturbation width; r is the minor
radius, @ = m/n, m and n are the mode numbers. The rational points are defined by
q(ro) = a = m/n, where ¢(r) is the safety factor. This averaging of X,, over the local

region of support of the mode is described in some detail both analytically and numerically



by Hamaguchi and Horton[6]. The local nonlinear interactions over the local mode width
determine the amplitude of saturation and the phase shifts giving the final value of Xj,.

In this letter we introduce a new approach to the calculation of X. It is based on an
assumption of the relative independence of fluctuations on different rational surfaces or an
incoherent superposition of the local transport steps. However, this still allows the interaction
of modes through local modification of the driving gradients.

In this case X can be represented as the sum of the local transport coefficients:

X(r) = ZXS,, (P — Poy Ty @) (3)

It is convenient to call each helical perturbation, producing a spike on the X profile, the state
of excitation. Then the distribution of significant resonances (where such an excitation is
possible) in minor radius will be the the density of these states.

The value of X calculated according to the model (3) will reflect the inhomogeneity in
the radial distribution of the rational surfaces, and will have a qualitatively different radial
profile as compared to the local scheme (2). There are two main causes for the inhomogeneity

of X:

1. The radial dependence of the “mean” density of states, due to physical and geometrical
factors such as the nonuniformity of shear, toroidal or cylindrical geometry of the

magnetic field, or the maximum wavenumber of unstable modes.

2. The inhomogeneity in the distribution of simple fractions o = m/n on the real axis,.

which is their inherent mathematical property.

These factors are described in detail in Secs. II and III of this work. In Sec. IV we define
possible verification procedures and in Conlusion discuss some implications of the present

approach.



II. Density of states and the mean transport

To justify equation (3) for evaluation of the transport coefficients we note that for any two
functions ¢ and p that are single valued and periodic on the toroidal surface (6,(¢), the

average of their product in 6, can be represented as

o

X o (¢(5P/39)>9,¢ = Z (a%PIa)e,g .

Here ¢q,ps are the coefficients of the helical Fourier expansion ¢(0,() = X, ¢a(abd — (),

and are localized near the corresponding rational surfaces. The off-diagonal terms are zero-

because each ¢,(af—() is periodic in both mf and n¢, where m and n are the numerator and
the denominator of the irreducible simple fraction «. If the saturated amplitude of the a-
component does not depend significantly on the amplitudes of any other a; # o components,
then it can be evaluated by means of some local analysis. In the following we assume this
analysis has been carried out, so that the values of X;, are known.

We proceed by describing a method for approximate evaluation. of the sum over «. in
Eq. (3). We note that the a-sum is limited by the requirement that the rational surfaces r,
lie within the region defined by the rotational transform of the magnetic field, and that the
range of available m numbers in o = m/n is limited to the excited modes only, which means,
usually, m < my. Expression (3) can be rewritten as the more complex but nevertheless

more convenient for evaluation double sum over m and n:
my  ng(m) k<myg/ms m<my/kn<ng(km)/k
D Xple)= D D Xep(m/n)— > >0 D Xe(min). (4)
o M=Ms n=ng (m) k>1 mst/k nZns(km)/k R
The first term above takes into account all significant rational surfaces in the calculation
region (defined by ms,ns,mys,ns) but treats km/kn as different from m/n. The second
term serves to eliminate these reducible fractions. The whole expression can be evaluated

numerically, which will be discussed in the next section, but it is also possible to get some

analytic estimates.




Let us assume that mys,n; are sufficiently large, so that a small interval ér < r still
contains many significant rational surfaces. The number of such resonances with fixed m

can be estimated from

ng=m
= én = —méq/q” . (5)
néq + gén =0

Here § denotes the change of the quantity over the interval ér. Using 6¢ = ¢'(r)ér, we get

the density of rational surfaces with fixed m as

b il (6)

ér g2
This is not a derivative and the value has a meaning only in the average sense: by definition
én > 1 but ér/r < 1, which is consistent only for m > 1.

In the same limit we can take into account the second term in (4), i.e. eliminate from
consideration all fractions where numerator and denominator are multiples of the same in-
teger. Indeed, the ratio of the number of these irreducible fractions to the number of all
simple fractions with denominators less than & tends to the constant G = 6 /7w~ 0.608 as
k — co.! We can now define

Falr) = G2 e 5 1] )

r 72 q
to be the mean density of states with a fixed poloidal wavenumber m. With a good accuracy

fm is the radial density of significant resonances and we can use it to calculate the profile of

the transport coefficient:

) = 35 o) [ Xl = s 1), Q

Here the integral limits are taken to be much larger than the width of localization for X,.
The knowledge of X;,(m) is necessary to evaluate expression (8). It can be obtained only

from the explicit local turbulence analysis. However, for two groups of such theories we may

1The proof of this property is presented in Appendix.



use an approximation

+oo R
/ Xop(T = Ta, T, @)d(r — o) = Xgp A, (9)

-0
where Az, is the characteristic width of the local perturbations. It is well known that for
m below some my the widths of eigenfl,mctions behave as Az, ~ Az,/m for ballooning and
interchange modes, and Az, ~ Az = const. for drift wave turbulence. In this zero order
approximation the value of X, is independent of m. Using these models to perform the

summation in Eq. (8) we get formulas for the global X:

mf—l—l

de( ) fmf A.’C Xsp = Fdw . (10)

and

( ) fmfob Xsp =F 'Xs;o . (11)

Here Fy, and F;, are defined as the correction coefficients, which determine the relationship
between the transport coefficients obtained from the local analysis X, and the global X
calculated from expression (8).

The short-wavelength limit of the instability can be expressed as kyp; < kmax for the n;
mode or k,p; < kmax for the applicability of the fluid model to the description of ballooning
modes. Here p; is the ion Larmor radius and is used here for normalization purposes, although
ps is another choice more appropriate for 7, > T; plasmas. Since ky = m/r and k., ~ 1/Az,,
in our geometry, we have my|gy = kmax 7/pi and mylp = kmaxAzp/ pi. Assuming that my|a, >

1 we finally arrive at the definite values of the correction factors:

F _ k2 3|C],| T ZA
dw — maxw E Ldws (12)
and
! A 2
Fb = kma.x 61(1 | :I_:b (13)



Here kmayx is a quantity of the order of or less than 1 and is defined by the precise instability
boundary or by the limit of the applicability of X, formulas (typically kmax ~ few tenths);
Azgy ~ p; and Az are the characteristic radial widths of the eigenfunctions.

In this section we have shown that the use of the superposition formula (3) instead of (2)
leads to the appearance of the new corrections, proportional to the density of available states
for the excitations. These factors qualitatively change the radial dependence of the calculated
transport coefficients and may cause the modification of scaling laws with temperature and

magnetic field.

III. Small-scale modifications of transport

In this section we consider some of the effects, which have been neglected above and try to
assess their importance for the qonﬁnement.

The approach of Sec. II treats the density of states as a continuous variable, which it is
not. While counting the rational surfaces with m < m; we have assumed that the resulting
density will be a simple sum of densities for each fixed m. This is not entirely correct. To
illustrate this statement we have plotted in Fig. 1(a) the number of rational values within
the interval z < n/m < z + 6z as a function of z. The maximum. m is taken to be 100 and
6z = 0.002. The result is far from being constant in z. This apparent discrepancy is related
to the initial requirement of Sec. II for the §z step to be large enough. Obviously, if we take
6z = 1 then the result will be constant. B

The ratio of the number of the irreducible fractions among all simple fractions of the
form n/m has been taken to be its averaged limit G, while in reality it is dependent on the
value of the denominator and its proximity to the low m rational numbers. The distribution
function of the rational numbers with the multiples kn/km taken out is plotted in Fig. 1(b).

One can see that while in the mean sense this curve lies ~ 40% below the curve (a), its

small-scale behaviour is quite different.



Finally, in the transition from a direct superposition described by equation (4) to a kind
of partial integration in Eq. (8) we have implicitly assumed that the spikes of the transport
are mutually overlapping and that the local radial averaging of the transport coeflicient is
hence a legitimate procedure. Again, in most interesting cases this assumption is valid,
but the reverse case is also possible and we should write criteria for the applicability of the

formulae (8)-(13).
A. Non-overlapping distributions

We can estimate the limiting density of the significant resonances necessary to ensure the
overlapping of the transport spikes by means of the relation

my

Z fmAz, > 1, (14)

m=1 ,
which states that the integral radial width of all transport spikes is sufficient to cover the
whole interval of the minor radius. However, if we take into account the nonuniformity
of the real distribution of resonances, it becomes clear that the above condition slightly
underestimates the necessary m; at least at some points in radius (far from the low-mode
resONAances).

Relation (14) can be evaluated in the particular cases of the drift and ballooning modes

to yield:

pi<r '3:221/2 Frax (15)
for the drift, and

pi < At s (16)

for the ballooning case.
It is now clear that the continuous approximation may not be valid for the drift insta-
bilities close to the magnetic axis (where r¢’ — 0) and for certain types of the resistive

ballooning modes with sufficiently small area of localization.



B. Numerical evaluation

Instead of the approximate analytic approach discussed in the previous section we can always
evaluate expression (4) by direct numerical methods. Direct evaluation will take into account
all effects of discretization and give us a measure of their relative importance.

Figure 2 presents some results for such a calculation. We have used the model toroidal
current distribution such that ¢(r) = go/(1 + 2r?) + 3.2r* with the central and the edge

values of the safety factor go = 0.91 and g. = 3.51 respectively. We also assume the constant

temperature case p; = const. , so that it is easy to separate physically different effects from.

each other. The spike form is chosen to be X, (r — ro) = Xoexp(—((r — 7a)/pi)?), kmax = 1.
Here p; = 0.00257,, typical for the TFTR supershot.
Figure 3 shows solution for the same model but with the four times higher value of p;.
For comparison, the smooth curve described by the analytic estimate (12) is also plotted.
We can see that although the analytic curve accurately describes the mean behavior of
the numerical result, there are significant fluctuations of the numerical curve around this

mean value especially close to the axis (r = 0) and around the low mode-number resonances.

C. Averaging of transport

At this point it is logical to consider the importance of the sharp peaks and drops on the
overall profile of the transport coefficient. Unfortunately, it is impossible to get an exact

answer on this question without considering a particular model of the turbulence. However,

most instabilities are driven by the gradients of the same parameter that is being transported

as a result of the instability. As a consequence, each peak in X(r) will cause a local drop in
the absolute value of the gradient and thus in the instability drive, which, in turn, is likely to
decrease the level of fluctuations and the local value of X,,. In the case of a local drop in the
transport coefficient the same quasilinear mechanism should work in the opposite direction.

In short, the gradient driven systems possess a negative feedback channel, which serves to



eliminate the local inhomogenities of Xeg.

The above argument is not applicable to the case of the non-overlapping resonances,
because in this limit there are no modes to be excited in the gaps between resonant surfaces,
and the quasilinear saturation will work to bring the local gradient to its threshold value
rather than to its mean value as in the overlapping case.

Assuming that the local turbulence simply brings the local gradient down to its threshold
value over the width of each spike, we can derive the effective transport coefficient for this
model. If the mean value of the gradient is fixed by an external source and. is- a given:

parameter, then this mean gradient |VF| can be expressed as

6Py 6P+ 6z, fm|VPe| Az

Sz Sz ! (17)

|VPO[ =

here VP,, is the threshold gradient and 6P is the change in P over the region of §z unaffected
by the turbulence where the transport coefficient is equal to the background coefficient X,.
The resulting increase in the radial flux of P can be described by the introduction of the

new effective coefficient

Since for the non-overlapping case condition (14) is not satisfied, both numerator and de-

Xegg = Xo

nominator of this ratio are positive. If the critical gradient is relatively independent of m

the expression above can be rewritten as

1 — F(P;,/F)

ety (19)

Xer = Xo

and for our model cases the values of F' can be calculated using equations (12) and (13).

IV. Verification by simulations

We have established several important consequences of the incoherent superposition ap-

proach to the calculation of the transport profiles. However the justification of the initial
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assumptions of this method is uncertain and at this point we consider possible verification
procedures. To define such procedures we first consider the proper formulation of the local
problem, which would be compatible with our derivation of the transport profiles. As the
next step we discuss the possibility to use existing models with different formulations for our
purpose.

We have agreed to define as a spike the transport effects produced by the single-helicity
radially localized perturbation. We want to consider it in a fixed-gradient environment
produced by other mutually overlapping perturbations. The latter requirement. is often in-
compatible with traditional formulations of the local problem. Indeed, our approach requires
the knowledge of X, dependence on the value of the driving gradient in the mode localiza-
tion region, while in the traditional numerical simulations only the mean gradient in the
calculation region is fixed and the driving gradient is allowed to relax during quasilinear
saturation. In this respect the single-helicity results from Ref. [6], for example, are similar
to the non-overlapping limit.

We can calculate the necessary combination of parameters from results with locally re-

laxed gradients using the following approximate formula:

(¥ e = XoLo g ATt (20

where X is the background radial diffusion coefficient, L, is the width of the calculation
region, A, is the mode width, and A = L,;/A, > 1; P' = 6P/L, is the mean gradient and
p' < P’ is the local gradient at the mode position. If all these values are known and no
external source term is used in the simulation, then this formula is sufficient as a starting
point for our model.

Another existing approach to the numerical calculation of the transport coefficients is
the 3-D simulation, which involves several helical modes. As a rule, the density of states in
such models is externally fixed and different from that relevant to experimental situations.

However, if enough data is presented to calculate the effectively used density of states, then

11



it is possible to recover the single-spike transport and make the simulation data useful for
our model. Unfortunately, such simulations often employ artificial source terms to maintain
constant levels of the gradient. These terms make the interpretation uncertain.

An ideal numerical verification of the applicability of our approach would be a combined
series of simulations for a single-helicity model, providing spike values, and a 3-D model with
known density of states and overlapping mode distributions. No source terms are necessary
and the output of the simulations should be the time- and #-averaged gradient profiles.
This would be sufficient for determining to what extent the weak-interaction. assumption

underlying our model is justified. No such simulations are available at this time.

V. Conclusion

Introduction of correction factors related to the density of states may qualitatively change
existing theoretical scalings and radial profiles of diffusion coefficients in the tokamak plasma.

For example, the global drift wave formula (12) with Az, scaling as p; or p, now gives
a Bohm-like variation of the global Xg,(r) when the local X, is taken as the well known
local drift wave diffusion (ps/Ln)(cT/eB). The magnitude of Xg,(r) is considerably below
the Bohm value due to other factors in Eq. (12) and is still compatible with experiments.

Decrease in the theoretical X, with radius is currently the most contradictory feature
of most n;-based models of local turbulence, because it is not compatible with experimental
data, which indicates a consistent increase in the transport coefficients toward th‘e edge. In
agreement with experimental behavior, the density of states rises dramatically with radius
(see Fig. 2) and, consequently, so does the diffusion coefficient, calculated from the incoherent
superposition (3) transport model.

The above example may indicate that the approach to the calculation of global transport

coefficients may explain important features of tokamak operation. However, further work is

needed to verify initial assumptions and confirm the results of this new theoretical model for

12



transport.
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Appendix

The number of the irreducible simple fractions (those without common divisors of numerator
and denominator)-can be expressed in terms of the Euler phi function ¢(n), which is defined
as the number of integers not exceeding and relatively prime to n. Thus, the number of

proper irreducible fractions with denominators less than n is
n
k=1
At the same time the number of all simple fractions with such limitations is

N(n) =Y k=n(n+1)/2.

Using asymptotic formula for ¢(n) from the Handbook of Mathematical Functions [8]

1 & 3 Inn
s z =510 (T) ) (21)
we get the relative number of irreducible fractions as

G = lim (8(n)/N(n)) = 6/7* . (22)
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Figures

FIG. 1. The number of proper simple fructions (a) and irreducible simple fructions (b)

with denominators less than m; = 100 in intervals of 6z = 0.002.

FIG. 2. The transport profile calculated as the superposition of local spikes for the model

distribution of current; p; = 0.00257,.

FIG. 3. The transport profile calculated as in FIG. 2 with p; = 0.01r,; the smooth curve

represents the same profile calculated with continuous density of states (Eq. (12)).
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