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Abstract

A variational method is developed for three~dimensional magneto~

static equilibria in toroids. We represent equilibria in cylindrical
inverse variables R(v,8,z) , ¢(v,0,f) , and Z(v,0,;) , where Q is a
radial flux surface label, 6 , a poloidal angle, and 7 , a toroidal
angle. We TFourier-expand in 6 and ¢ and derive, from the
variational principle, a set of ordinary differential equations for the
amplitudes in v + Truncation of the infinite Fourier series leads to a
reduced set of equations which we solve numerically by collocation to

obtain two- and three-dimensional toroidal equilibria.
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NOTE

This paper is a revised and augmented version of an earlier paper
(Institute for Fusion Studies Report #48, December, 1981) by the same
authors. 1Imn its earlier form, the paper was conditionally accepted by
the Physics of Fluids in July, 1982. The present paper is being

re-submitted.
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I. INTRODUCTION

The computation of magnetostatic equilibria in toroids is crucial
to the study of plasma stability and transport in toroidal devices. In
axisymmetric devices like the tokamak, these equilibria are described by

the Grad-Shafranov equation

> . , -
%- (_V_\g_>+ p’(¥) + w = 0, (1)
R2

which is commonly solved in cylindrical coordinates (R,$,Z) , with ¢

as the ignorable coordinate. It is suggested by the work of Greene,
Johnson, and Weimer! on tokamak equilibria, however, that a very useful
set of coordinates  is the magnetic flux surface coordinates (v,8,z) ,
where v 1is a radial flux surface label, and 8 and ¢ are,
respectively, the poloidal and toroidal angles parameterizing a flux
surface. 1Indeed, since the magnetic surface coordinates are a natural
basis for parameterizing a torus, they define the most natural
coordinate system in which an equation, such as Eq. (1), may be studied.

With this point of view, we will attempt to determine the mapping

R = R(v,0,;) , (2a)
¢ = ¢(v,6,5) , (2b)
Z = Z(V,e aC) ’ (2c)

for toroidal equilibria, a problem we have called the three-dimensional
inverse equilibrium problem in toroids. Figure 1 depicts the two

coordinate systems, (R,$,Z) and (v,0,;) ; both are right-handed.
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In a recent paper, Lao, Hirshman, and Wieland? have constructed a
variational principle for the Grad-Shafranov equation [Eq. (1)]. For
the axisymmetric case, which is their concern, they have considered the

mapping

R = R(V,e) ’ ’ (33-)
¢ =z ’ (3b)
Z = Z(v,8) , (3c)

which is a particular case of Eqs. (2). They expand R and Z in
Fourier series in - 0 , and derive from their variational principle an
infinite set of coupled differential equations for the amplitudes of R
and Z in v . By truncating the infinite set, they claim to have
obtained approximate but accurate solutions of the Grad-Shafranov
equation for a variety of axisymmetric configurations at a fraction of
the computer time needed by typical equilibrium solvers.2s3

In this paper, we develop a variational method for three-
dimensional equlibria in toroids. The method generalizes the approach
of Lao, Hirshman, and Wieland to embrace all mappings of the form given
by Egs. (2). Needless to say, the variational principle of Lao,
Hirshman, and Wieland is too restrictive to be of use in the general
case. The crucial point is to begin with a variational principle for

the magnetostatic equations

x B

(ang

7 ($.x %) x B = %p (4a)

<
L]
oy
il

0o , (4b)
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b
where p 1is the scalar pressure of a plasma confined by a magnetic
field B , and J is the current density. The variational principle we
use is described in Sec. II and is originally due to Grad . In
Sec. III we 'conﬁert to inverse vériables R(v,0,C) $(v,0,L) , and
Z(v,0 ,) and derive the relevant Euler-Lagrange equations. In Sec. IV,
we derive the Euler-Lagrange equations for the Fourier amplitudes of the
inverse mapping by substituting the Fourier series for R , ¢ , and Z
directly dinto the variational principle. These equations are ordinary
differential equations in v and are at the heart of the method
proposed here. In Sec. V, we specialize to a particular choice for the
toroidal angle. In Sec. VI, we consider the special case of axi-
symmetric equilibria in order to establish connection with existing
literature. In Sec, VII, we discuss possible choices for the radial
flux surface label, and the boundary conditions. Section VIII is
devoted to a discussion of our numerical scheme. In Sec. IX, we report
detailed comparisons with analytic Solox’rev5 equilibria and perform
convergence studies in order to benchmark the present method. Finally,
in Sec. X, we present numerical results on three-dimensional stellarator

equilibria.

IT. VARTATIONAL PRINCIPLE FOR MAGNETOSTATIC EQUILIBRIA

It has been demonstrated by Kruskal and Kulsrud6 that solutions of
the magnetostatic equations [Egs. (4)] for plasmas bounded spatially
have the property that the magnetic field lines lie on mnested surfaces

which are topologically toroids. Greene and Johnson7 have shown that
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under these conditions the magnetic field B may be represented in the

"straight field-line" form

¥
I

Ve x V¥(v) +Vo(v) x V8

1

Vv x (a0 - v ¥z) (5)

where Y¥(v) and &(v) are, respectively, the poloidal and the toroidal
flux functions. (Here, fx denotes the partial derivative of f with

respect to X +) We will now show that the first variation of the

functional

- . 2 i
L = / dr <B_- ) , (6)
. E

defined over the total volume Vo of a toroidal plasma bounded by a

perfectly conducting wall, subject to the constraint,

p = p(v) , (7

vanishes 1f, and only if, the magnetostatic equations are satisfied.
Since Eq. (4b) is satisfied identically by the representation of B
given by Eq. (5), it will suffice to show that a mnecessary and
sufficient condition for extrema of L is given by Eq. (4a).

The first variation of L 1is given by

SL = / dr[av(@vﬁo% - ¥ 3Vg - p,) - 808 JoVv + angﬁﬁv] , (8
v
Vo

using the boundary conditions

e —— e e e =



AXVY = nxVe = 0 , (9a)

§v. = 0 , (9b)

on the conducting wall. Requiring that 6L = 0V 8v,80,5z , we obtain

the Euler-Lagrange equations

Je(e 0 - v i) -p, = 0 , (10a)
JVv = 0 , (10b)

JeVv

H
o
.

(10c)

Equations (10b) and (10c) are identical, and represent the equilibrium
constraint that the current J lies on flux surfaces. That the same
equation 1s obtained by varying 6 and ¢ independently reflects the
degree of freedom allowed in the variational construction of © and z .
In order to define these angles uniquely on a given magnetic surface, it
is necessary to choose one of them (directly, or indirectly, through
some auxiliary geometric constraint such as a specified Jacobian),
whereupon the variational principle determines the other angle.
Clearly, the optimum choice for the angles should be guided by the
requirements of computational accuracy and spatial resolution of the
equilibrium at hand, and, of course, the numerical convergence of the

method used to compute the equilibrium.
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It is seen by combining Eqs. (5), (10a), and (10b) [or (10c)] that

IxB = Vp ,

which proves that if L -1is  stationary under arbitrary variations
subject to the constraints in Egs. (7) and (9), the Euler-Lagrange
equations satisfy the equations of magnetostatics. The argument may be
reversed to show that Eq. (4a), along with the constraint given by
Eq. (7), implies that 8L = 0 for arbitrary variations.

For computing equilibria by the present method, the wvariational
principle stated above, originally due to Grad, is essentially
equilivalent to that of Kruskal and Kulsrud,6 in whichi the potential

energy functional

‘ 2
= L
W ]( dt (2 s 1) , (11)
Yo

is extremized under the class .# of ideal Eulerian variations

v = —g-§v s

Sp Ve () = (v - Dpgsv

where g(r,t) is the wvirtual displacement, which obeys the boundary

condition

on the conducting wall confining the plasma. Since Yy , the specific

e & e e
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heat of the plasma, does not appear explicitly in &Egs. (4), for
computations of equilibria it seems sensible to work with a quadratic
form which is independent of <y . The variational principle of Grad
does precisely that, and has the same endpoint, namely, the magneto—

static equations, as the variational principle of Kruskal and Kulsrud.

IIT. VARIABLE INVERSION
Since L is a scalar, it is independent of the coordinate system

in which it 1is expressed. We now transform from the cylindrical
™~

coordinate system (R,$,Z) , to the magnetic coordinate system (v,0,z)
whereupon, R(v,8,z) , ¢(v,0,£) and Z(v,6,;) are the new dependent

variables in the functional L . The elements of the metric tensor

gij = Eioﬁj , Where Ei = 8?/3Xi , for the transformation from (x,y,z)

coordinates to (R,$,Z) coordinates are

Byy = R% + R2¢§ + Z% s (12a)

Bvp = RyRg + R%ubg + ZZy = oy » (12b)

Bgg = BE + RS +2Z8 (12d)

gor = RoR + R%gor + %% = gg (12e)

gr = RF+R%Z 42 . (12£)
The infinitesimal volume element dt 1is given by

dt = dxdydz = RdRd$dz = Vgl dvdedz , (13)
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where

/Tgl = (Det g;) /2 = R[RV(%Z; = Zovg) + RlegZy - Zhy)

+ Rc(‘f’vze - Zv¢6)] . (14)

By straightforward manipulations, we get

fa (2m r2m

L = dv de dz Q(R,RV,RG,RC,q)V,cpe ,¢C,zv,ze,z;)
: Jo JO JO

2 2
ra on (2m | vis 3% g g

I ( de dg/igl | oL 20 VR Ly g O

v 2 gl 2 gl gl
Jo J 0 JO

-p (15)

where v = a 1is the radial label for the conducting wall, assumed to be
fixed. The first variations SR , 646 , 8Z in the dependent variables
R(v,8,z) , o¢(v,0,z) , and Z(v,0,;) are subject to the fixed boundary

constraint given by Eq. (9b), which implies that

sv = Vesr+2 %6y +2782 = 0 (16a)

R ) 3Z

at v =a . From

§v §R
(69) - [g(vse ,C):I (64) ) ,

, -1 /8
_ [a(R,¢,z>] s
B(V:e ,C) ] 87 ’

we get
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v _ R(%ZC B 29¢C)

9R /gl

v _ M%&—%%)

3¢ /gl

and

ov _ K PFoé - dgk)

G VA Vgl

which may be substituted into Eq. (l6a) to obtain the condition
(692 - Zgo, )8R + (ZR - ByZ )60 + (Rgd, = 6gR)8Z = O (16b)

at v = a . We note that it is, in general, unduly restrictive and
incorrect to require that the wvariations &éR , 8¢ , §Z themselves
vanish at the wall, as has been assumed in Ref., 2.

We consider now the first variation of 1L .

a 2m 2m 3 . .
5L =/dv o d E <6f1£+6f$3—3;+8f91£+6fé—3£> ,
/0 o Jo 4o 8 fy df;

i i
f dfy r
(17)
where fl =R s £2 = ¢ , and £33 =1z . Integrating by parts, using the

single-valuedness of the integrand and the boundary constraint

Eq. (16b), we get
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a 2 2 3 .
L = —fdvj an J dr E §fl (53__3;91

o Jo - Vofl
A A Y (18)
0 agf Ot agl aft

and the natural boundary constraint at v = 0 also given by Eq. (16b).
It will be seen that the natural boundary constraint at v = 0 1is only
a weak constraint, and is satisfied identically by a special choice of
the radial flux surface label. A necessary and sufficient condition for

extrema of L is then given by the Euler-Lagrange equation

b AP B Z Y 3% 3%
3V 5gl 80 51 9L gl 1
afl 3 £3 3EF  Of

Qi =

i =1,2,3 . (19)

Using now the definition of & given by Eq. (15), we obtain the
following equations for variations with respect to R, ¢ , and Z ,

respectively:

N, s e | It s ot

§



-12—-
Q15

R[(Z9¢E - 96 %) '587"' (Z6y = 07%) 35 F (Zobg = 64%) %]

2 2 2\
¥YS g 0 8 8 R
(V 0 L VT Ly ec+p)+\y§<_3_____Re ____e)

2 gl 2 gl V' Vigl

2 2
+a2 (l_Rﬁ___:-RL_C) ¥ (ii_ﬂ_ o Rd’e"’C) -0,

3T Vgl  Yigl VVae Yigl 3z Yigl /gl
(20)
Q =
3 3 3 ]
R’Ii(ReZ; ~ ZyR,) 'a—;‘*'(Rng - %Ry ﬁ*’(sze - ZyRg) g]
2 2 2
7 8o | %v & 8¢ 5 9 R
" (7?@*‘2‘@ Yt TP T e i
2 2 2
R% R%$ R% 4 \
28 My (2 Kl b Bl 2
+<I>Vac /"_g_"_+ V‘I)V(ae /1TgT+3C O o , (21)

and

Q3 =

& [(%Rc - Fobg) 5+ (0gRy = Reby) oo + (448 = Rydg) 5}

2 2
‘ngee+‘1’v8;; v 90 L) i y2 @ %
2 0gl 2 Tl vvygr TP v




-13-

yA yA Z
2 3 z d z d 9
+04 % > _+v o [ = + = = 0 . 22

Vot Yigl vy (89 Jligl 3z Vgl (22)

It is easy to identify Egs. (20), (21) and (22) as the covariant
components of Eq. (4a) in the coordinate system (R,$,Z) . This may be

done by writing Eq. (4a) in the form
B2\ =
v P+ — ~-B¥B = 0 , (23)

and taking its dot product with VR s R§¢ , and vz , respectively. We

get
3 2 BZ
TRy (pﬂT)_mBR__g -0, (2)
RVge¥ <p+372)-‘ﬁ-'v’ (RB¢) = 0 , (25)
V20 (p+_Bzi)_%.hz o, o)
where
Bp = B VR | (27a)
By = RbVo (27b)
and -
B, = BVz . (27¢)
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If we now use the (operator) equation

3y = 1 kN 9
i A IR T:

and the identity

3(v,0,0) 3(R,$,2) = 1

3(R,¢ »Z) 3(v,0,z) ’

it is straightforward to show that

Egs. (20),

(28)

(21), and (22) are,

respectively, identical to Eqs. (24), (25), and (26), written in inverse

variables. Furthermore, by

obtain

Wv 5 [¥v8o0 + @vge; _ jL_ Tvgve + QngV
/gl |dv \ /Tgl YTgi 36 \ /gl Vgl

+ QV EL‘ Wvgec + Qvgcc _ jL_ Wvgve
Jliglh | av \ Yigl /gl az \ YIigl

]

combining Egs. (24),

N ®y8 v
Yl gl

. . ' o .
which is JxB = pvﬁv in inverse variables.

(25),

v

and (26) we

It

0 , (29
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IV. EULER-LAGRANGE EQUATIONS FOR FOURIER AMPLITUDES
OF THE INVERSE MAPPING
Exploiting the periodicity of R(v,8,) and Z(v,0,z) in 6 and

z , we expand them in Fourier series.

R(V,e ,§> = z [le ,mz(v) cos(mle - mzC)
+ Rnl’nz(v) sin(nle - nzc)] (30)

Z(v,0,0) = Z[zpl’pZ(V) cos (ple - pzc)
qu,qz(v) sin(qle - qzc)] > : (31)

where, unless stated otherwise, the sums extend from - to o over
all integers. The generalized toroidal angle ¢ has a secular
component which increases by 2r for each toroidal circuit. Apart from
this secular component, the angle ¢ may be described by a single-

valued function, periodic in 6 and 7 . Therefore, we may write
=L+ z ¢rl,r2 cos( r - rZC) +Z ¢sl,52 sin(sle - szc] (32)

The first variation of L , formally given by Eq. (18), becomes

ail 2m
SL = - J’dvf de f dg 6%1 mz(v) cos(mze —mZC)

+ Rnl n, (v) sin nle - nog ] |:6¢rl t, (v) cos( r® - rzC)
6¢Sl 9 (v) sin(s;0 - Szc] Q + [521)1 P (v) cos(p® - pyr)

+ Gqu’qz(v) s:.n qi0 - qze] Q3}

D O i | [ SR I



We may now treat SR

6qu,q2

for each Fourier

amplitude.

-16-

These

1omy > OFnp,ny > %r ry $s),s, SZppy

ordinary differential

and
» a8 independent variations to obtain an Euler-Lagrange equation

equations,

which constitute an infinite set and determine stationary values of L

are
<< cos(mpB = myz)Qy D> = 0, my,my € (= ,4) (33)
<K sin(nle - nzc)Ql >> = 0, nj,ny e(=,+) (34)
<cos(ryd - 12)Qy >> = 0, 15,1y (= 4°) (35)
<K sin(sle - SZC)QZ >> = 0, 81,8y e(=,4») (36)
<<rcos(p16 - pzc)Q3 >> = 0, Py,py ECA”,+;) > o @n
< sin(qf = qu8)Q3 >> = 0, qp,qp e(=,4=) , (38)
where << >> 1is a double-averaging operator defined by
2 2w
KWy = (2ar)"? fo ds fo dCA(v,8,2) . (39)

Equations (33) through (39) are generalization in three dimensions of
the variational moment equations derived by Lao, Hirshman, and Wieland
For numerical

for the Grad~-Shafranov equation [Eq. (1)]. computations,

we truncate this infinite set by retaining a finite number of terms in

the expansions in Egs. (30), (31), and (32).

e e e e e e e o e e o o
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V. CHOICE FOR THE TOROIDAL ANGLE
For many cases of dinterest, such as axisymmetric equilibria or
three~dimensional equilibria obtainable by iterating away from

axisymmetric equilibria, a convenient choice for the toroidal angle is

¢ =T . (40)

We may not then vary ¢ in computing 6L , given by Eq. (17). For the
two independent variations SR and &Z , the FEuler-Lagrange equations

are now, respectively,

2 2 : :
ve g s g g
0 9 v 60 v °rg 0z
z — = RZ, —| [ —— + — =2 + ¥ & — + p)
Q (Rze v v ae)(z gl 2 0gl vV gl p)
R
cy2d f o afe X% Rm
V38 Vgl Vioz vigl Vigl
R Rg
I 4 9
+ve (2 = +° 2} = o 41
VV<89 Jligl 9T /i n) ’ (41)
and
2 2
¥ )
) ) v 898 v 8¢ 14
= [ -RRy = + L Y P A ST A3 ==
Q3 ( % 5y RRVae)(znu 2 Tgl vV P
z z z z
2 9 9 2 9 z ) T ) 9
V36 gl vV 3z /gl VV(Be gl 93T /gl ’

(42)

which may be obtained formally by substituting

L o L g
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¢V = 0, bg = 0, ¢C = 1, (43)

in Egqs. (20) and (22). This substitution reduces the degree of

nonlinearity of the Euler-Lagrange equations. The elements of the

metric tensor gij are now given by
g,y = RE+2Z2 (44a)
8vo = ByRg + 2529 = gy (44b)
By = ReBy+ %7 = g, (44c)
go = R+, (44d)
gec = RQRC + ZGZC = gz;e > (44e)
gCC = Rg + R2 + Zg s (44£)
and
Jigh = R(ZRy - R,%) . (45)

Equations (41) and (42) are, as shown before, Egqs. (24) and (26) in
inverse wvariables. We will now prove that.the remaining equation,
Eq. (25), can be obtained by linear combination of Eqs. (41) and (42).
By straightforward algebraic manipulation, we first cast Eqs. (41) and

(42) in the form




Yo s [&oe¥v  Borlv 5 8woly
Yl gl /gl Ylgl

Qv P (gccév + 8;ewv) _ ®v ]

e Jigl /i@l | o/Tg 8v %%
+Y¥ o (%/E" +5%/%) +¢3(v’8—i:—ﬂ%=n—%) = 0 , (46)
cand. .

b4 gan¥ gq P g.a¥
~RRy | — |2 (TR V)3 WOV,
Yliiglh [3av\ Yigl Yigh . 30 Vgl

[ Brglv  Eefv) o v o Yvoa
/gl /ugn 2/Tgl av %% Jigl dv GE]
_Va__c_ g 3 B0z
7 36 Tgl v 36 gl
z z 7
y & s % 28 %
+¥ e (S o+ _Z V+02° 5 = o . 47
VV<39 JIgh 3¢ /I u) VaT Yigl (47)

Multiplying Eq. (46) by Ry , Eq. (47) by Zy , and adding the two

equations, we get

g g
(a_ o 2 ee)=o. (48)

8 Sz s B
Viae Jigl 8t /el 38 Vgl 3z Yugl

[

R Bl e | NS Sy
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Equation (48) may be identified to be the condition

JoVv = §=(B X ﬁv) =
@ﬁ-[ﬁwzﬁ?e - Vv@vVo )] AT [ﬁwzﬂ?; - Vv(@v )] =0, (49)

derived earlier as an Euler-Lagrange equation [Eq. (10b) or (10c)] from

the variational principle. To complete the proof, we multiply Eq. (41)

by —RC ,» Eq. (42) by ~Zr and add the two equations to get

R [z - 20%) 2+ (%2 - 2R) ]

~

2 2 : :
vi g oo 8 g Z Ro
v ©66 v org 0t 2 3 0 d
—— L 22 Y 2 4 -y 2 4+ RS
( 2 gl 2 fgl V'V gl pV) v (ZC 998 /Hg" Rt 30 Vgl
R T

z

9 z
9 & 5 -voe |z z ——
(ZC 3z Vi gl "R Tia /ugn) V"<C 36 Y gl T %o /gl

z Vgl

%)

<D
=~
©Q

y % 5 Po ~
+RC_-——+R§3———) = 0 . (50)
We now add and subtract

2 2

¥y 80 2y 8 Ez6
R(R,Z VL Ly B9
(RV@ R9ZV) ( el T 2 gl vV P

from Eq. (50), and use Eq. (48) to obtain




R [(Rezc - %R) o+ (RZy - BR) g+ (R% - 28) %]

2 2
Yy 8 %y 8¢ 8or N
2 0gl 2 gl YV Vgl
2 2
28 R 3 R
V3T /gl V'V 38 /gl ’

which is precisely Eq. (25) in inverse variables. Though demonstrated
here for the special case ¢ =¢ , Eq. (48) is the general form in

\ . >
inverse variables for J-$v =0 .

VI. AXISYMMETRIC TOROIDAL EQUILIBRIUM
For axisymmetric equilibria, 9/3z =0 . The non-vanishing

elements of the metric tensor are

Byy = R% + Z% s (51a)
8vg = RyRg + %% = gy (51b)
8gp = Rg + a% > (51c)
gr = R . (514)

Equations (46) and (47) [or equivalently, Egs. (41) and (42)] then

reduce to

b —— R bt R i § (e e REE PR SE
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Yv . 5 8Belv 3 gve‘i’v) L 0o &ty

Yigl 8v Jigl
2 2 2
PO A B L PRI J ol (52)
V.o 2lgl 3v &% 2 V30 ngh  Yigl
g

and
[« -
g, =
RR, [' Yy ji!geewv _ ji_gvewv + oy jL_gCCQV
Yiglh \3v Vgl 30 Vgl Yligl 3v Vgl
2 2
& ] g
v 93 v 9 °rg
+ - -— _— 2 = . 53
Py = oier 3v gCC] 2 "% 58 Tl 0 (33)

Equation (48), which is obtained by linear combination of Eqs. (46) and

(47), yvields the condition

2 B

90 Yigl

Y

) (54)

which is not an independent equation once Egqs. (52) and (53) are given,
but may be incorporated in the (axisymmetric) variational form at the

outset by defining the toroidal field function

F(v) = %8 g . (55)
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If we do so, the two Euler-Lagrange equations, Egs. (52) and (53),

become each identical to

gon? g.a¥ FFR
/nlgn (Ef_v /eneguv - 88_9 /‘T—grv> * ;1' T =0, (36)
which is the Grad-Shafranov equation in inverse variables, derived first
by Greene, Johnson, and Weimer and used extensively by Lao, Hirshman,
and Wieland. We propose, however, to work with Eqs. (52) and (53)
because Egq. (48) 1is not generally reducible to a form as simple as
Eq. (54) for three-dimensional equilibria.

For axisymmetric equilibria with up~down symmetry, we must have

R(v,6) R(v,-8) , (57)

Z(v,8)

-Z(v,-8) , (58)

The appropriate Fourier expansions for R(v,0) and Z(v,0) are
obtained from Egs. (30) and (31) by simply substituting

Mg =19 = Py = Q9 = N1 = Py = 0 . We have then

R(v,0) = 25 Ry(v) cos m9 , (59)
m=0

Z(v,0) = ZS‘ Zp(v) sin p8 , (60)
p=1

and the Euler-Lagrange equations for the Fourier amplitudes are

< cos mf g& > = 0 , me(0ye00,2) (6la)

e e e e
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< sin pod g% > 0 , pe(lyeee,) (61b)

where < > 1is now defined to be

2

<A> = (am)~1 o A(v,8) . (62)
0

It should be emphasized again that once the choice of ¢ =¢ has been

made, and a radial flux surface label is chosen, Eqs. (61) determine

(for up~down symmetric, axisymmetric, equilibria) the angle 6 which

makes field lines straight. 1If, however, one uses the representation

§ = §; X §W + F§§ R

as has been essentially done by Lao, Hirshman, and Wieland, the first
variations of R and Z each give Eq. (55), which does not by itself
determine 6 . If one carries through the procedure of Fourier

expansion, one obtains the moment equations

< RZy cos md ¥ > 0 me(0,») (63)

< RRy sin p0 %> 0 pe(l,») (64)
which constitute an under-determined set unless 6 1is specified. This
caveat needs to be borne in mind while studying Ref. 2.

The problem of specifying 6 may be taken care of by using the

2
convenlent representation

R = z R (v) cos m8 (65)

T Y T e e e
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Z = Ev) ) Z(v) sinuwo (66)

which contracts the number of independent Fourier amplitudes By
implicitly choosing 6 . The corresponding moment equations for R.m

and E have been derived in Ref., 2, and constitute a well-determined

set.

B U VU T N
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VII. CHOICE OF THE RADIAL FLUX SURFACE LABEL AND
BOUNDARY CONDITIONS
The radial flux surface label v is, as yet, unspecified. Any one
of the Fourier amplitudes may be used for labelling flux surfaces.
Formally, we may not then vary the chosen amplitude while calculating
the first variation of L. Instead, the variation of L with respect

to ¥, with &(¥) fixed, provides an independent Euler-Lagrange equation

9 Z\\ _
<<av Y, W>>‘ 0 (67)

which gives

s [8e¥v  8lv —
+ + Y1l gl
<< (/ gl Y gll> & Py

2,3 g b4
+¢V-a_< L v, X8y >> = </Tgl Q> =0 (68)
oV

/gl J I gl

We identify at once Eq. (68) as the surface-averaged form of Eq. (29).
In what follows, we will examine equilibria which have the group

property that if 6 - -8 and 7 + -, them R + R and Z+» -Z. For

axisymmetric systems, the above group property gives us up~down

symmetric equilibria. In the three-dimensional -case, this implies that

in the Fourier series for R and Z given by Eq. (30) and (31), we drop,

respectively, all terms proportional to sine and cosine.

|
e e e e e e
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We have found it convenient to choose RlO = —|o|v, where |ja|] 1is a
positive scaling factor fixed by the geometry of the outermost surface.
Having chosen a radial label, we are required to specify boundary
conditions for the system of ordinary differential equations comprising
(33) (dropping the equation corresponding to my =1, my =0, which is
now implied), (38) and (68).

For the Fourier amplitudes, one set of boundary conditions are
obtained by Fourier analyzing the outermost flux surface which is held
fixed in shape during the iteration. In order that the magnitude of the
Fourier coefficients decrease rapidly as the harmonic numbers dincrease,
it 1is important to choose a poloidal angle t(6 .z) for Fourier expansion
properly. A good choice rﬁay be the Vangle which éubtends equal
arc~lengths along the projection of the surface on a poloidal plane.

The outermost surface is then parameterized as

R(V=a,t,;)

and

Z(v=ast,C)

The coefficients ﬁ;l m, and 23 are held fixed during the iteration.
b

1292

The function t(6,z) is itself expanded in a Fourier series

t =6 + :S tal,az sin(aleﬂuzc) (69c)

§5§%l’m2 cos(mlt—mzc) (69a)

-a .
25 qu,qz 31n(qlt—q2c) (69b)

and the variational principle may be used to obtain algebraic moment

equations for the coefficients ¢ Details are given in the

Gps0n’

Appendix.
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The boundary conditions at v=0 are somewhat subtle, because v=0
specifies the magnetic axis, and is, in fact, part of the solution. By
performing power-—series expansions near v=(0 on the equations for the

Fourier amplitudes, it is seen that

Rﬁl’mZ(O) =0 (m1=0) (70a)
le’mz(o) =0  (m#0) (70b)
Z4,0,(0 =0 (41=0) (70¢)
qu,qz(o) =0 (ql#O) (704d)
where £’ = fye These are weak Dboundary conditions for the Fourier

amplitudes at v=0. For Eq. (68), which may be looked upon as an
equation for V¥ once the geometry is "frozen'", we transform to a new

dependent variable

y
u(v) = — (71)
v

Equation (68) then assumes the form

h
ov 2
(hl + 7?'7IJ u, +u by, = - /i gl Py -0, By — 0, ho, ~ [hzév/v)v (72)

where

806
Yigl

=p
—
1l

[N ——— e

R
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hy, = << —2 D> (73b)
2 Y ITei
g
F oz 0, <> (74)
/gl

It may be shown by a series expansion that as w0, the term proportional
to u, goes to zero faster than the term proportional to wu. In the
vicinity of v=0, Eq. (72) then gives us a simple algebraic equation for
u, which dis folded into the iteration process and provides a boundary

condition for u.

w0y = %i% hlv
Once u 1is obtained, we dintegrate the first-order equation (71),
subject to the boundary condition ¥(a) = ¥2, to obtain V.

In order to determine any equilibrium, we have to specify two free
functions. We present in this paper numerical results for equilibria
functions determined by given functions p(¥) and F(¥). Alternatively,
as is done in the study of flux-conserving equilibria, we may‘ specify

p(¥) and q(¥), where q(¥) is the g-profile, related to & and ¥ through

the relation

o, - q¥, =0 . (76)

- /ng-p? - o Ry - lI)VhZVV - [hZQV/V)V (75)

e e et e
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A more physical approach, which shows promise and has been implemented

for axisymmetric systems, is to minimize the energy of the plasma

e T 1 [l G SRt
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subject to a given set of global constraints. For further details, the
reader is referred to Ref. 8, and references therein.

In order to integrate Eq. (74), we need a boundary condition for

the toroidal flux function ®. A natural choice is

8(0) =0 . (77)

To summarize, Eqs. (33) (excluding the equation corresponding to my=I,
my=0), (38), (72) and (74), subject to the boundary conditions (70),
(75) and (77) constitute a two-point boundary value system, which we

solve numerically.

VIII. NUMERICAL METHOD

To solve the two-point boundary-value system of equations referred
to in the last section, we use the method of collocation at Gaussian
points due to DeBoor and Swartz.9 We first note that the independent
variable v may be scaled by the length a throughout. We, therefore,
redefine a dimensionless v 2 v/a, which parameterizes the radial domain
e[0,1]. Let {fi(v)} be a finite set of basis functions with support on

[0,1]. We define a vector of dependent variables

?(V) = (Roo, \P, Z].O’ Rzo, Zzo,-a-o) (78)

—_——

We expand each dependent variable in a set of Ng basis functions

R

¥, (v) = a5 £3(v) (79)

1
j=1
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and compute the derivatives of ¥ with respect to v. The boundary
conditions allow us to determine a subset of the set of coefficients
{aij} trivially. The rest are obtained by solving the system of
nonlinear ordinary differential equations for % comprising Egs. (33),

(38), (72) and (74), which we represent.here abstractly as

¥R, Y, ) =0 (80)

In order to solve Eq. (80) for the coefficients {aij}, we employ a

modified Newton’s method, which when applied to Eq. (80), gives

Re L)+ @R k) + T G- =1 (8la)

vV
where
, k Tk 3k
% = S-I?(?‘W%YV, ) (81b)
3y
>k 2k Tk
= 8F(?vv’_§ vr Y1) : (81lc)
3Yy
> > >
T s ﬁ”xljv’;‘l:’ i) (81d)
3
and
k= FEK,, T I (81e)

e e
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The essence of a collocation scheme lies 1in demanding that the
differential equations hold at a set of nodes v=v}, known otherwise as
collocation points. TFor the present code, the collocation points are
chosen to be the Gaussian quadrature points. The special choice of the
collocation points is stated to lead to convergence rates higher than
seéona order.l0 For our purposes, the set of basis functions {fi(v)} is
chosen to be the N ~dimensional space of Hermite cubic B-splines. The
number of collocation points N, = Ng~2. A useful summary of the present
and other related schemes may be found in the excellent treatise by
Strang and Fix.10
At every collocation point vV=vj, the matrices 2, %, € and R are
computed after double averaging over the poloidal and the toroidal
angles 6 and ¢, as indicated by Eq. (39). The angle averages are

performed by using Gaussian quadrature. The code is implemented in

single precision arithmetic on a VAX-11/780 computer.

IX. COMPARISON WITH ANALYTIC SOLOVEV EQUILIBRIA
In this section we compare the numerical results with analytic

5 which are exact solutions of the Grad-Shafranov

Solovev equilibria
Equation (1). It may be shown by direct substitution that Eq. (1) has

the solution

po

if

2
R242)" L (82)
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F2 = 4F  2(v3-¥) (83a)
and

p = p,(¥2-¥) | (83b)
where F_, p, and &, are constants. We note that ¥=0 at the magnetic

axis R=%,, Z=0. This family of analytic equilibria for axisymmetric
systems has also been used by Bauer, Betancourt and Garabedianll in
validating their three-dimensional toroidal code.

We consider a test Solovev equilibrium for which py = 0.125,
F, = 0.025 and £, = 4, a case also studied in Ref. ll. In order to
represent with acceptable accuracy the outermost flux surface, it is
found necessary to include no more than three Fourier coefficients each
for R (not counting Ryp) and Z. The Fourier coefficients for higher
harmonics decay approximately exponentially as the harmonic numbers

increase. For the present test equilibrium, we use

R(v=a,t)

R%O - Ja| cost + R%O cos2t + R%O cos3t (84)

and

Z(v=a,t) = 23y sint + 25, sin2t + Z3, sin3t (85)

where  R3, = 3.881, [a| = 1.036, Ry = -.0172, R3y = 1.8x 1074,
Z?O = 1.569, ZZO = -,0807 and ZSO = -3.89 x 1073.12 This corresponds to

the choice ¥2 = 1, which gives

‘4*.__,‘4[1'4,"#‘_[ M e s
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P 2
2 5,2 4 FOrn2 o2y4 _
Fo L5 2 +?(R &) =1 (86)

as the equation describing the outermost flux surface.

In Fig. 2, we .compare the analytical and numerically determined
flux surface contours. In Fig. 3 we display the radial prdfiles of the
dominant Fourier amplitudes.

The magnetic axis occurs at R = 3.991, Z=0, which should be
compared with the analytical coordinates R = 4, Z=0. We note that the
property of approximate exponential convergence, characteristic of the
outermost surface, is preserved throughout the radial domain. This is
not surprising because there exists a ¥, analytic in R and Z, for the
test problem. In Fig. 4, we plot ¥ as a function of wv. The number
(or dimension) N, of radial splines for this run is 16, and the number
of collocation points, 14. The. number of points in each of the poloidal
and toroidal directions for the angle integration is 30.

We report here principally on two types of convergence studies on
the test problem. The first study is done by increasing the number of
Fourier harmonics holding all other parameters fixed, and, including in
the set of harmonics, those for which the contribution to the outermost

surface 1s neglected. In Table 1, we compare the error in ¥ (defined
max IWN—TI

ya
exact values of V¥) as we change the number of Fourier amplitudes. As

to be , Where yN and v are respectively the numerical and

should be expected, the error decreases as we increase the number of

amplitudes.

)
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In Fig. 5, we plot the normalized energy (Zn)_zw, where W is
defined according to Eq. (l1), as a function of the number of
iterations, which is 45 for the runs reported here. The two sets of
points correspond to runs made with 7 and 9 Fourier amplitudes.

The second convergence study is performed by changing the number of
splines (or collocation points), holding all other parameters fixed.
Again, as may be expected, the error in ¥ decreases as the number of

splines is increased.

X. THREE-DIMENSTIONAL EQUILIBRIAV

We present two examples of three-dimensional, toroidal, stellarator
equilibria; one, with a planar , and the other, with spatial magnetic
axis. Both of these equilibria are obtaiged by perturbing nontrivially
the test SoloVvev equilibrium by introducing large helical amplitudes on

the outermost flux surface. For the case with a planar axis, the outer

surface is parameterized as

R = RSO - Jo| cost + R%O cos2t + R?l cos(t-7) (87)

N
1

where R%,, R5,, 7%, and 25, have the same numerical values as in
00 20 10 20

Eqs. (84) and (85), and R%l = 2§ = 0.333. 1In Fig. 7 we show the flux

surface contours on different poloidal planes along the axis. Fig. 8
shows the radial profiles of the dominant Fourier amplitudes. In
Fig. 9, we plot the normalized energy as a function of the number of

iterations. It is seen that in all the plots of energy vs. iteration

= 23y sint + Z§, sin2t + ZJ; sin(t-¢) (88)

R A e e e
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number, the approach to the final state 1is evidently not monotonic.
Since the wvariational principle 1is a truly minimal principle in the
sense that the actual solution will always minimize the energy for
stable equilibria, it may appear puzzling that a trial function may give
a numerical value for the energy less than the solution. The caveat 1is
that the trial functions violate the boundary condition on u(0), which
is folded into the iteration scheme, and is not known ahead of time.
We finally present a stellarator equilibrium with a spatial

magnetic axis. The outermost surface is specified by the parametric

equations
R = RSO - la| cost + R%O cos2t + RSI costg (89)
z = 7§, sint + Z§, sin2t + 2§, sing (90)

where RSO’ R%O, Z?O and Z?l have the same numerical values as before,
and RSl = 281 = 0.333. In Fig. 10, we display the flux surface
contours, and in Fig. 11, the radial profiles for the dominant Fourier
amplitudes.

There are two defects of the numerical results presented here. The
first defect is that some of the Fourler amplitudes seem to exhibit a
"boundary-layer" effect, most noticeable, for example, in ROO’ R3g and
230 of Fig. 3, or in ROO of Fig. 10. The second defect, not wunrelated
to the first, is that the residuals of the algebraic equations for
tal,az consistently remain an order of magnitude higher than the
reéidﬁals fof the other equations (which are in the range 1074 - 10™7)

at the termination of the computer runs. These residuals do mnot seem

reducible by simply increasing the number of iterations, which shows

e ——
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that we are not able to improve on the accuracy with which the mapping

represented by Eq. (69c) is determined. 1In an accompanying paper13, we

show how both of these defects may be remedied.

e e gl e
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X. CONCLUSIONS

In this paper, we have presented a variational method for computing

three~dimensional magnetostatic equilibria. We solve for the inverse

variables R(v,8,z), ¢(v,0,z) and z(v,8,z) by Fourier expanding in 0
and ¢, and deriving from the variational principle a set of ordinary
differential equations for the amplitudes in v. The reduction of a
three-dimensional problem to essentially a one-dimensional problem
accounts to a large extent for the speed and efficiency of the method.
We have presented numerical results for two~ and three-dimensional
equilibria, and reported on convergence studies in order to establish
the validity of the present method.

The wuse of a variational principle to compute three—dimensional
toroidal equilibria, employing magnetic flux coordinates, is not new.
The idea was pioneered by Bauer, Betancourt and Garabedian!! at New York
University (N.Y.U.), and has been efficiently used by them in the past
few years. The present method is different from the N.Y.U. group’s in
the choice of the variational principle, but more dimportantly, din the
choice of the dependent variables, and the method by which these
variables are solved for. The N.Y.U. group discretizes the energy
integral by finite differencing in v, 6 and ¢ and use an accelerated
path of steepest descent in order to arrive at a local minimum-energy
state. We Fourier-expand the dependent variables in © and ¢, and solve
the resultant one-dimensional Euler-Lagrange equations. The wuse of
additional damping mephanisms in solving our equations may help in
approaching the final state faster, and should be worthwhile to explore.

0f course, we must bear in mind that the extra degree of computational

R Bt It T A
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complexity involved in doing so would be worth the return only if it
improves markedly the computational efficiency of the method.

The present method converges to a local minimum of the energy
functional if the equilibrium is stable. In order to test whether an
equilibrium dis stable, it 1is important to test 1its ruggedness by
increasing the number of Fourier amplitudes.

The rigorous validity of the method is predicated on the existence
of a flux surface quantity v such that %+ Vv =0. The existence of a
well-defined direction of symmetry is a sufficient condition for the
existence oﬁ such flux surfaces. 1In that case, as we have seen for the
axisymmetric equilibrium considered here, the Fourier series for the
inverse variables converge rapidly, and there is mathematical proof
fortifying such convergence. However, even 1in the absence of a
well-defined direction of symmetry, as 1is the case with toroidal
stellarators, the present method obtains numerically  Fourier
representations of nested flux surfaces with good convergence properties
The question whether such three-dimensional solutions describe rigorous
equilibria or "asymptotic" equilibria is difficult to answer within the

scope of the present work.
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APPENDIX
In this Appendix, we derive from the variational principle

algebraic equations for the Fourier amplitudes of t
t =0 + zgtal,az sin(ale-azc) . (A1)
Near v=a, we constrain 6R and 8§Z to variations in t, according to

SR

Rt , (A2)

and

§72 = 2,6t ' (A3)

Near v=a, we consider the contribution to the first variation of L,

which is proportional to

Y

w o
§12 = - fO de [O dz[ QuRy + Q32¢] 6t . (A4)

Substituting the expansion (Al) directly into (A4), and varying each

coefficient a;,a, independently, we obtain the Euler-Lagrange equations

<K (Q].Rt + Q3Zt) Sin(ocle - GZE) >> =0 Y al’az € (-m,—lm) (AS)
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We note that the Euler-Lagrange equation for t, which is

QRe + Q3% =0 , (A6)

or equivalently

t51(Q Ry + Q3%) =0 (A7)

may be identified to be precisely

if we recall the manipulations leading up to Eq. (48). The procedure
outlined above is analogous to that used by Schlater and Schwennl#. The
moment Eqs. (A5) have been incorporated in the numerical scheme. In
order to assure that the mapping (Al) be monotonic, in the code we
constrain the step-size for Egs. (A5) to satisfy the inequality

1-) a7 €0 .
*1
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Two coordinate systems; the cylindrical coordinate

system (R,$,Z) and the magnetic coordinate system (v,0,).
Comparison of exact (indicated by dots) and numerically
determined (indicated by solid lines) flux surfaces for the
test SoloVev equilibrium.

Radial profiles of the dominant Fourier amplitudes for the
equilibrium shown in Fig. 2.

Radial profile of ¥ (v) for the test Solovev equilibrium..
Energy (normalized) versus number of iterations. The black
circles, connected by a line, are obtained by solving for the 6
Fourier amplitudes given in Fig. 4. The unconnected open circles
are obtained by solving for 8 Fourier amplitudes.

Flux contours for a three-dimensional stellarator equilibrium
with a planar magnetic axis.

Radial profiles of the dominant Fourier amplitudes for the
equilibrium shown in Fig. 6.

Energy (normalized) vergus number of iterations for the
equilibrium shown in Fig. 6.

Flux surface contours for a three-dimensional stellarator

equilibrium with a spatial magnetic axis.
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Fig. 10

45—

Radial profiles of the dominant Fourier amplitudes for

the equilibrium shown in Fig. 9.
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