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The linear evolution of the double tearing mode with parallel equilibrium shear flow and

viscosity is investigated analytically and numerically. The dispérsion relation for the

growth rate of the instability with flow is derived within the framework of boundary layer - |

theory and found to agree with numerical results in the parameter range of validity.

Solutions of the incompressible time dependent linearized visco-resistive MHD equations

for double tearing mode with parallel flow were found for wide relevant parameter range: . .

Larg¢ and small rational surface separation ys were investigated. The magnetic Reynolds
number S was varied up to 108 and the velocity parameter V up to 0.8 of Alfven speed.
The normalized wavenumber o was spanned from 0.01 (long wavelength) to 1 (short
wavelength) and spatial variations of the perturbed magnetic field y and flow W were
shown, indicating the "nonconstant-y" effects for small rational surface separation ys.
Cen’trélly peaked shear flow was found to have a stabilizirig effect on the double tearing
mode, suppressing the growth rate linearly with V for small ys and quadratically for large
ys. Large flow decouples the rational surfaces, reduces the growth rate, and transforms
the instability to the standard tearing mbdé. Oversfable modes were found from the
solutions of the dispersion relation and in the numerical computations, their frequencies
are not affected by the value of viscosity. The temporal oscillations of the solutions
increase with V. For viscosity comparable or larger then resistivity a stabilizing effect was
found, and in the presence of large flow the growth rate scaling approaches the standard

tearing mode scaling with viscosity Yr~Sy 1/6.



1. Introduction

The resistive tearing instability is an important phenomena in laboratory and space
plasma and was first studied by Furth et. al.1 The instability grows in a narrow layer of
the plasma, where the resistivity term is dominant over the local magnetic field term in
Ohm's law, allowing the field lines to break and reconnect, thus forming magnetic
islands. The growth rate of the single tearing mode scales as S-3/5 where S is the magnetic
Reynolds number. The double tearing mode onsets when two such layers form close
together to allow the "nonconstant-y" effects to enhance the growth rate 7y of the
instability. The analytical linear theory of tearing mode in slab geometry with equilibrium
shear flow and viscosity has been considered by several authors.2-6 They conclude that
flows, which approach the Alfven velocity can greatly modify the stability criteria of
single tearing instability. This was shown to hold numerically in the linear regime.7-10

Double tearing instability was observed in fusion devices with non monotonic
current profiles in the plasma column,l1 and it is also believed to be important in solar
flares.12-13 The instability without equilibrium flow was studied by relatively few
authors14-23 and was subject to few experiments.

The effect of equilibrium flow on the double tearing mode was not considered
previously, despite the fact that it can occur in fusion devices and space plasmas, and alter
the behavior of the instability considerably. For instance it can partly stabilize the mode,
modify the growth rate dispersion relation, and excite temporal oscillations of the
perturbed quantities for relatively small shear flow (see, Secs. III-IV).

Here, the double tearing mode with equilibrium flow parallel to the magnetic field
is investigated analytically and numerically. The paper is organized as follows. In Sec. II
the linearized incompressible visco-resistive magnetohydrodynamic equations in slab
geometry are presented, together with the initial magnetic field, flow profiles and
boundary conditions that excite the double tearing mode. In Sec. III the linear growth rate
dispersion relation is obtained and in Sec. IV the numerical methods and results are
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presented. Section V is devoted to summary of the results and discussion.

II. Model Equations v
We assume that magnetohydrodynamic (MHD) theo;y 24 is applicable, that the plasma
is incompressible with constant isotropic resistivity and constant perpendicular viscosity

25, and that gravitational effects are negligible. The basic equations in cgs units are:

[a_v+ (v V)v] =-Vp +— (VxB)xB +vVl A
4T )
3B 2 | |
- Vx(vxB) - Lx(VxB) o
4r )
V- v=0,V- B=0 (3)

where c is the speed of light, p is the plasma density, B is the magnetic field and v is‘thfe o

velocity of the plasma. The pressure p is eliminated from the calculations by taking a cﬁfl
of Eq. (1). |
We use siab georrietry and choose an equilibrium magnetic field of the form

Bo(y) = Bxo(y)ex + Bzo(y)ez.

Similarly, the equilibrium plasma flow is assumed to be in the (x,z) plane aligned with the

magnetic field, with the form

vo(y) = vxo(y)ex + vz0(y)ez.

Equations (1)-(3) are linearized around the magnetic field and flow veloeity. eQui-librium-?-

solutions assuming. perturbations of the form f;(y,t)exp(ikxx-+ik,z).
The normalized linearized time-dependent y-components of the MHD equations

can be written as

(%4— iocG) (W"- 02W) - i aR2G"W = ioF(y"- a2y) - ioFy+ L 3
| T &)



(g_t + iocG)\;f - iFW = S (y" - o2y )

&)
where the time t is in units of Alfven time and y is in units of ap the magnetic length scale,
the primes denote derivatives with respect to y, and the perturbed physical quantities are
the magnetic field y=By1/B, and flow W = Vy1/Va where B is a measure of the magnetic
field in the plasma and V, is the Alfven velocity. The dimensionless parameters are the
magnetic Reynolds number S = /1y, a measure of viscosity Sy = Ty/Th, the shear
parameter R = ap/ay where ay is the shear flow length scale, and the normalized wave
number o = kay,

The relevant time scales in these definitions are the resistive time T, , the Alfven
time T and the viscous time Ty given by

T = 4mapZ/cn Ty =ab(4np)1/2/B, Ty = papZ/v

The normalized equilibrium magnetic field and flow velocity components in the
direction of the spatial perturbation vector k are given by

F=(kxBx0 + kzBz0)kB, G =(kxVx0+kzVz0)/kVa.
Specifically we choose kz=0, k=kyx=0/ay, and the following forms of F and G for the
double tearing mode:

F(y)=1-(1+Fc)sech(y), (6

G(y)=V[1-sech(Ry)] ,
where Fc=cosh(ys)-1 is determined by the locations *ys where F(y) vanishes. The
velocity parameter V is given in units of V, and R is the shear parameter. The spatial
dependence of F and G for V=-0.5, ys=0.75, and R=0.5 are shown in Fig. 1. Equations
(4) and (5) are solved numerically without any further approximations, subject to zero
boundary conditions which are equivalent to conducting walls placed atz+ | Ymax | :

W | ymax )=W( | ymax =0

(- | Ymax l )=y( | Ymax | )=0

The value of ymax is chosen such as to satisfy the condition lymax | >>ys. When this is



satisfied the results of the computations do not depend significantly on the size of the

system.

IIL Dispersion Relation
The growth rate of the instability is found from the time-Fourier-transformed Egs.
(4)-(5), using the boundary layer approach.19 Upon assuming perturbations of the form

f1(y)exp(imt+ikyx) and neglecting the viscous term, these equations become

(Y + i0G) (W' 02W) - i aR2G"W = iaF(y"- o2y) - idF"y ' )
(v +iaG) y - ioFW = §1 {y" - o2y ) | @®)
where y=Yr-+iy1=i1y is the complex normalized growth rate and the subscripts R and I
denote the real and imaginary parts, respectively.

The physical domain is divided in two types of regions, namely, an inner resistive
region near tyg in which IF | <<1 and resistivity cannot be néglected in Ohm's law, and
an ideal outer region in which the resistive term is neglected and ideal MHD equations are
used (|y|>ys, |y l<y9).

Assuming that near the rational surfaces 062<<d2/dy2 expandlng F(y) around yg, and that
the flow profile G(y) does not vary cons1derab1y near +ys (thus, substituting

Gs=G(y)=const , G'(y)=G"(y)=0.), the inner resistive equations become

(1+i0G) = (1 +i0GF(F-yow+ST v ~ | ©
(Y + 100G w" = -02F'(ys)(y-ys)y" (10)
where |
wedaW
Y+HOGs

In the ideal regions, the resistive term is neglected in Eq. (8), and it simplifies to y=Fw

which is then substituted into Eq. (7) to obtain



%‘[(wiaG)%Fz]%‘i}:ocz[('y+iocG)2+F2]w. o

The above non-resistive equations describes the double kink mode with flow in slab
geometry. It is solved asymptotically in terms of a power series expansion under the
boundary conditions

w(y)=wg=const, Iy | <Vs,

w(y)=0, ly [>>ys.
The form of Egs. (9)-(11) is similar to those obtained in Ref. 19 for the double
tearing mode without flow, therefore we generalize their solution to accommodate flow,

obtaining the growth rate v}, of the double kink mode with flow

Ys
3
Y=g f F(y)2dy"-iaGs

s, , (12

noting that the flow produces a Doppler shift - in the G=0 double kink mode growth rate.
Finally, we modify the dispersion relation of Ref. 19, which was derived in detail in Ref.

25, to include shear flow

r b(y+io G, 2+5]
4

b-(y+ioch)3/2-1]
4

'Yh=8b-2/3
r

(13)

where
S 1/2

“aF(ys)

and I' is the complex gamma function. In the limit G — 0, the results of the double
tearing mode without flow are recovered in agreement with Ref. 19. When G(y)=0
expression (13) expands to the complex plane and exhibits much more complicated
behavior than the one for G(y)=0. The solution can have more then one branch for a
given parameter set. Therefore, one needs to place additional constrains on the solutions

of Eq. (13) for the growth rate. Reasonable requirements are Yr>0, Y120 for growing
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overstable modes. Finally, the condition for small separation of singular surfaces that was
used to select yg in the numerical calculations

ye<or-7/98-1/9 , | - (14
holds for the case with flow.

In the following section the results of the analytical theory were compared to the
numerical calculations and were used as a guide for further investigations in the parameter

space of the double tearing mode.

IV. Numerical Results . - -
Since the method of solution is described in detail in Ref. 10, in this péper only a

brief summary is presented. Equations (4) and (5) are solved numerically in the complex

plane using an implicit finite difference scheme with a variable or fixed spatial grid. THe"

variable grid spacing expands from a minimum of Aymin=10-3 near the singular surfacesto
Aynin=0.5 near the computational boundaries. When the computation dOrﬁain is small
( Iymax | <2) a fixed grid with up to 500 grid points is used. The time step At is selected so
that At < min (’Yﬁl,O.Z‘Yil), and the simulation is evolved for N time steps until only the
fastest growing modes present in the solutions. Usually the number of tinie steps‘required

is 100<N<500.

From the complex solutions W(t, y) or y(t, y), the growth rates are obtained in two

steps. First, the real part of the growth rate yr is found by fitting a straight line to the
logarithm of W(t, yo) (where y( is an arbitrary point in the domain). Next, the exponential
trend is removed from the solutions and a Fast Fourier Transform (FFT) is performed on
the remaining oscillatory part of W(t, yo), which thereby determines the imaginary part of
the growth rate yy. If the modes are purely growing (no time-dependent oscillations are
present), then only the first step in the above method is performed.

The results of the numerical computations are presented in Figs. 2-6. The spatial
variations of the perturbed magnetic field v and perturbed flow W are shown in Fig. 2. In
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Fig. 2a the parameters are S=106, a=0.5, V=-0.1, R=0.5 (the value of R is not changed in
Figs. 2-6), and the separation ys=0.75 is large. Note the rapid variation of W across the
two tearing layers and the location of the sharp peaks that indicate the width of the resistive
regions. It has been found that large viscosity reduces the sharpness of the peaks and
widens the effective resistive region widths g, which is compatible with the single tearing
mode scaling of the tearing layer width with viscous parameter as € ~ Sy"1/3 . In Fig. 2b
the separation ys=0.15 is small according to condition (14) resulting in a "nonconstant-y"
tearing mode that scales as YR ~ S-1/3. For large flow V=-0.5 in Fig. 2¢ the double tearing
mode is significantly different from the previous case: the effect of flow is evident at the
external regions adjacent to the tearing layers where partial decoupling of the "nonconstant-
" tearing occur resulting in lower growth rate.

Analytical and numerical growth rates and their dependence on resistivity and
wavenumber are presented in Fig. 3. For large flow, V=-0.5, small wavenumber o=0.05
and small resistivity the computed growth rate agrees with the one obtained from Eq. (13).
When S$=106, y¢=0.15, V=-0.5 and the wavenumber is varied in the range 0.0550<1 a
very good agreement of the analytical and numerical growth rates is found.

In Fig. 4 the dependence of the growth rate yr on the resistivity and other
parameters is shown. The solid circles correspond to computations with 0=0.5, y¢=0.15,
the empty circles for a=0.5, ys=0.75, the solid lines for V=-0.5, the dashed lines for V=-
0.1, and the triangles for a=0.05, yg=0.15. When the separation is large, ys=0.75, the
growth rate decreases with increasing S. Larger flow, V=-0.5, suppresses the growth rate
further and its dependence on S approaches the standard tearing mode scaling Yr~S-3/5.
For small separation, ys=0.15, the growth rate peaks near S=104 and the stabilizing effect
of large flow is more evidenf for S<104. When the rational surface separation is of the
order of the resistive layer width the growth of the double tearing mode is suppressed,
while for small resistivity it scales as YR ~ S-1/3, thus leading to the peaked behavior in
Fig. 4. For 0=0.05, ys=0.15, and V=-0.5, the values of the growth rate are an order of
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magnitude smaller then the for ¢=0.5. The main result in Fig. 4 is that the flow has a
stabilizing effect on the growth rate for all calculated values of S, ys, and o, while small yg
leads to larger growth rate due.to "nonconstant-y" effects.

In Fig. 5 we examine the dependence of the complex growth rate on the shear flow
with S=104 and 0=0.5. When yg=0.15 the real part of the growth rate decays almost
linearly with flow while the imaginary part increases at comparable rate. When the
separation is large, ys=0.75, the effect of flow is stronger and the real part of the growth
rate decays quadratically with V, while the imaginary part grows parabolically. For V=0.8
the growth rate is an order of magnitude smaller then for V=0 and the temporal oscillations
dominate the behavior of the instability, in contrast to the single tearing mode with flow,
Ref. 10, where the imaginary part of the growth rate was always found to be considerably
smaller than the real part. . | s

The effect of viscosity on double tearing mode with ys=0.75, S=104, and 0=0.5:is
examined in Fig. 6. Small viscosity does not significantly affect the growth rate. When:the.
viscosity is comparable to or larger then the resistivity a simple scaiing law behavior
emerges. For V=0 and V=-0.1 the scaling is Yr~Sy 0-22, when V=-0.5 the double tearing
mode approaches the standard tearing mode growth rate scaling with viscosity Yr~Sy 1/6.
This further iﬁdicates that large flow reduces the "nonconstant-y" effects and has a
stabilizing effect. The imaginary part of the growth rate was found to be independent of

viscosity, and it increases with V (see, Fig. 5).

V. Summary and Discussion .

We have investigated the double tearing mode instability with shear flow, both
analytically and numerically by solving the resistive MHD equations with initial equilibrium
magnetic field and flow. The enhancement of the growth rate due to "nonconstant-y"
effects in the double tearing mode was reduced by the presence of flow. For large surface

separation the flow has a greater stabilizing effect then for small surface separation. Shear
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flow was found to induce temporal oscillations of the perturbed quantities, and the
frequency of the oscillations increases with V. The overstable modes were found from the
analytical dispersion relation and their values are in good agreement with the numerically
obtained solutions of Egs. (4)-(5).

The effect of viscosity in the double tearing was investigated numerically. When the
viscosity is small compared to resistivity it has no significant affect on the growth rate.
When viscosity is comparable or larger then resistivity, it has a stabilizing affect, and the
growth rate exhibits a power law dependence on Sy. In the presence of large flow the
growth rate scaling is close to the standard tearing mode scaling, namely, Yr~Sy1/6, and v1
is independent of viscosity.

Double tearing instability with flow exhibits a complicated behavior in the physical
and parameter space and is significantly modified by the presence of shear flow. The main
result of the present work is that flow has a stabilizing effect on the double tearing
instability, and thus its inclusion in fusion devices with non-monotonic current profiles can
improve stability of the plasma. The invocation of the double tearing mode in explaining
the much faster evolution times of the solar flares must be reviewed when shear flow is

present due to its stabilizing effect.
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Captions to Figures

Fig. 1 The initial equilibrium normalized magnetic field F(y) and shear flow G(y)
for the double tearing mode with flow. The parameters are V=-0.5,

ys=0.75, R=0.5

Fig. 2 (a) The spatial dependence of the complex perturbed magnetic field y and
flow W with V=-0.1, S=106, a=0.5, ys=0.75, and Sy=109.
(b) Same as Fig. 2a with yg=0.15.
(c) Same as Fig. 2a with V=-0.5, S=104, 0=0.5.

Fig, 3 (a) Comparison of the analytical growth rate scaling vs. S obtained from
Eq. (14) with the values obtained from the numerical solutions of
Egs. (4)-(5).

(b) Same as Fig. 3a for growth rate scaling vs. c.

Fig. 4 Growth rate dependence on S for several parameter values obtained from

the numerical solutions of Egs. (4)-(5).

Fig. 5 The dependence of the complex growth rate v on the flow parameter V,
and the singular surface separation yg. The other parameters are: S=104,

o=0.5.

Fig. 6 Growth rate scaling with viscosity parameter Sy for ys=0.75, V=0 (dotted
curve), V=-0.1 (solid curve), and V=-0.5 (dashed curve).
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