INSTITUTE FOR
FUSION STUDIES

DOE/ET-53088-487 IFSR #487

Inertia Effects on the Rigid-Displacement Approximation
of Tokamak Plasma Vertical Motion

R.R. KHAYRUTDINOV, E.A. Azizov,! R. CARRERA,? J.Q. DONG 8
and E. MONTALvo2
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

April 1991

1LV. Kurchatov Institute of Atomic Energy, Moscow, USSR
2Center for Fusion Engineering, UT-Austin, Austin, Texas
2Southwestern Institute of Physics, Leshan, China

"THE UNIVERSITY OF TEXAS

AUSTIN







Inertia Effects on the Rigid Displacement Approximation

of Tokamak Plasma Vertical Motion

R. R. Khayrutdinov!, E. A. Azizov!, R. Carrera?, J. Q. Dong?, and E. Montalvo?
Institute for Fusion Studies-

The University of Texas at Austin
Austin, Texas 78712

- A widely used method of plasma stability analysis uses the Rigid Displacement Model
(RDM) of i)lasma behaviour. In the RDM it is assumed that the plasma displacement is
small and usually plasma inertia effects are neglected. In addition, it is considered that no
changes in plasma shape, plasma current, and plasma current profile take place throughout
the plasma motion. The massless- filament approximation (instantaneous force-balance)
accurately reproduces the unstable root of the passive stabilization problem. Then, on the
basis that the instantaneous force-balance approximation is correct in the passive stabiliza-
tion analysis, thé massless approximation is utilized also in the study of the plasma vertical
stabilization by active feedback. It is shown here that the RDM (without mass effects in-
cluded) does not .provide correct stability results for a tokamak configuration (plasma
column, passive conductors, and feedback control coils). Therefore, it is concluded that
inertia effects have to be retained in the RDM system of equations. It is shown analytiéally
and numericq,lly that stability diagrams with and without plasma-mass corrections differ
significantly. When inertia effects are included, the stability region is more restricted than

obtained in the massless approximation .
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Introduction

Elongated plasmas in tokamak configurations are unstable to axisymmetric vertical
displacements. The vacuum vessel and passive conductors can stabilize the plasma motion
in the short time scale. For stabilization of the plasma motion in the long time scale an
active feedback control system is required. Different models [1 — 7] are used to study the
plasma vertical stability. A widely used model is the Rigid Displacement Model (RDM).

In the RDM it is assumed that the plasma displacement is small and the plasma cur-
rent is constant during the plasma motion. It is considered that no change in plasma shape
and current profile takes place throughout the plasma motion. In several previous works
[4 — 6] it has been demonstrated that the massles filament approximation (instantaneous
force balance) accurately reproduces the unstable root in the passive stabilization problem.
Using this simlification, the problem has been extended [4 — 6] to include an active coil,
intended to provide plasma stability on a longer time scale.

The motivation of this paper is to show that massless approximation (no inertia effects)
does not provide correct stability diaérams for a tokamak configuration (composed of
plasma, passive conductors and feedback control coils). The plasma mass has to be retained
in the RDM system of equations to obtain accurate results. It is shown analitically and
numerically that the stability diagrams obtained with mass and without inertia effects
are different. In the massless approximation the stability region obtained is wider than

obtained with inertia effects retained.

The plasma rigid displacement model

An axisymmetric vertical plasma displacement can be described by a system of equa-
tions which includes: force balance equation, circuit equations and voltage control equa-
tion. The plasma is modelled by a single rigid filament. The plasma motion equation in

the RDM is

8B, 2nR 2 27R
e T > B;I, ~£1;

=1

mz = —

where m is the plasma mass; c is the speed of light; R, is major radius of the plasma

filament; B, is the external radial magnetic field on the plasma filament; B; is radial
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magnetic field produced by induced and active unit currents on the plasma filament; I,
and I; are the currents in the plasma and the external (pssive and active) filaments,
respectively; z is the plasma displacement; and, Z is the plasma acceleration. We define

the quantities

0B, 2T R,

Sy = — I
b 8z ¢ P
2rR
S; = —B;I,~2
C
oM, ;
M _
ik

and the index 1 for the active coils and the index 2 for the passive conductor_s. Thus the

equations for plasma motion and the circuits can be written as

2
mi = Syz + Y S;I;,
j=1

Lily + ML+ RiIi + SM3: =V,  and

Lol + MIy + Ry, + SMz =0,

where L; is the self-inductance of the j** filament; M is the mutual inductance between
the active coils an.d passive conductors; R; is the resistance of the j** filament; M,; is the
mutual inductanpe between the 7t filament and the plasma ﬁla.menf; and V is the voltage
acting on the active coil.

The stability of the system is determined by the character of the voltage applied to
the feedback control coil. A control law proportional to the plasma displacement and its
velocity is given by: |

V = —gl(z + t12),

where ¢; is the lead time.

The system of equations can be expressed in matrix form
Bz = Az, | (1)

where £ = {z,2,I1,15}.



The Laplace transform of Eq.1 is
ABE = Az . (2)

Denoting the jt* eigenvalue and the jt* eigenveétor by A; and #;, respectively, the general

solution of the system can be written as

B(t) =) cxilpe™?, (3)

k

where cj are independent coeflicients. The quantities A; and #; are usually complex values.
For plasma stability it is nesessary that the real parts of all the eigenvalues be negative.

Equation (2) is a polinomial of the fourth order in A:
CL4A4+CL3A3+G2A2+G,1/\1 +ao =0 (4)
where the coeflicients a; are:

ay = m(L1Ly — M?),

a3 = m{LyRy + L1R3},

az = mRyRy + (SM + g181)(S1Ly — Sa M) + SM(LyS; — S1 M) — Sy(Ly Ly — M?),
ay = SMS Ry + SM SRy — Sp(L1Ry + Lo Ry) + g1(S1t1 Ry + S1Lz — Sa M),  and

Qp = QISIRZ - SleRz .

For stability of the solution the coefficients must satisfy the Routh-Gurvit’s criterium [8],

i.e, the following values should have the same sign:

- i . a4a1 . alaao .
ag, as, as — o ’ ay — o H ag .
3 1

Since azag/a; ~ m <K a;, the fourth term in the sries is a3 — aza¢/a1 =~ a;.
The first term in the series, a4 is positive for all values of L, Ly, and M, since mutual
inductances are smaller than self-inductances. This imposes the requirement that all terms

in the series must be positive. We use the notation b; = a3 — 1;‘—:-1 S; is proportional to S ;"[
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so that we can write S, = 85y and SM = FSM. After simple mathematical manipulafions

we can write:

a4 = m(Lng - ]V.[z),

a3 = m{Ly Ry + L1 Ry}, o

LiL; — M*)R,
RyLy + Ry Ly
a1 = S1SM (G2 Ry + Ry) — Sy(L1Ly — M?) + S191(t1R; + Ly — BM), and

)}

by = S1SY{Ry(Ls — BM)? + Ry(BLy — M*)} + g1 S1{t:(L2 — BM — (

aQg = ngIRZ - SbR1R2 .

In the massless approximation a4 = a3 = 0. Thus for stability az, a;, and ag must
be positive. For simplicity, we assume that the passive conductor is closer to the plasma
than the active circuit. In this case, S; > 52 (8 < 1).

If the passive stabilization of the plasma in the m’aésless approximation is considered,

then the coefficients a}"® are given by
ab® = §1SM(Ly + 2Ly — 268M) — Sy(Ly1Ly — M?), =
a?® = S, SM(8°Ry + Ry) — Sp(Ly Ly — M?), and
a%ma = —SleRz .

When the derivative of the external radial magnetic field is not too large (such that
ab*? and al”’ are positive ) then system has only one unstable positive root. As the value of
the external magnetic field (S) increases, the relevant time scale of the system approaches
Alfven‘s time scale. When the values of a5’ and a}®’ are negative, the system has more
than one unstable root with large positive real part.

We consider typical tokamak systems which are stabilized in the Alfven‘s time scale
and have only one unstable root with small positive part. The coeficients a; and a; can
be written as

apy = agz)aa + Slgltl(Lz - ,B.ZV[) and

ay = a¥* + S191(t1 Ry + L2 — BM).

For simplicity only positive values of gain and lead time are considered here (i-e.,

g1 > 0 and ¢ty > 0). (L — BM) > 0 (since the mutual inductance is smaller than the
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self-inductance and § < 1). In this case the coefficients a; and a; are positive for all values
of g1 and ¢;. Therefore in the massless approximation the coefficient aq determines the
values of gain required for stabilization. ag > 0 implies that g; > SpR;/S51.

When inertia effects are retained the coeficients a4, a3z, and a; are posiﬁve. For
stability of the system, the coeficients b; and ay must also be positive. These two coeficients
determine the values of gain and lead time. ag > 0 implies that , the value of the gain is
limited By g1 > SpR1/ 5.

We define the coefficients:

Ry(L;1Ly — M?)

Ci=(Ly -~0BM)—~
1= (L2 —AM) RyLy + Ry Ly
(Lz — BM)(L1 Ly — M?)
Co =
? Ralot Bln 0 o
O — SMR1(L2 — BM)? + Ry(BLy — M)?
T RyL; + Ry Ly ’

where C2 and C; are positive. Using these notation we can write
b1 = 51{03 -I- gl(thl - Cz)} .
Depending on the sign of Cq, two cases can be considered. When C, is negative, the

inequality b; > 0 restricts the gains to

< —28
t1|C1]| + C2

for any t; > 0. The stability diagram in this case is shown in Fig.1. It is seen that if

t1 > t* then system is unstable for any gain g; > 0. The value of t* is determined by the

relation:
Cs SRy

t*C| +C; Sy
When C; is positive and £,C; — C; > 0, then b; > 0 for any value of gain g; > 0

and the stability of the system is determined by the same condition ag > 0 of the massless

approximation. If {;Cy — Cy < 0 then

<G
S, Tec,

The stability diagram for this case is shown in Fig.2. It is seen that if g* < SyR;/S;

(where g* = C3/C3) then system is unstable when the voltage control law does not include
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a derivative term. If derivative term is included, the system is stable for ¢; > t*, where

the limiting value t* is given by the relation:
Cs SRy
Cy—t*C;y S

We consider two simple examples.

1. The resistances and the self-inductances of the passive filament and the active
circuit are assumed to be equal (Ry = R, Ly = Lj), although their z coordinates are
different. In this case, C7.= (L — M)2 + ZML(l —-B)>0 .'The limiting lead time is given
by t* = %’Iﬂ. For t; > t*, the same stability region (Fig.2) is obtained with and W_ifé_hout
inertia effects included. | - |

| 2. The resistance of the active coil is much smaller than the resistance of the passive
conductor (R > R;). In this case C1 = l\/f(% — (). Depending on the value of g, C;

can be either positive or negative. If the z coordinates of the active circuit and the passive

conductor have opposite signs, then C; > 0.

" Results

Numerical simulatibns has been carried out for two cases. In fhe first, it is aséumed
that the system consists of one plasma ﬁlament, one active circﬁit, and two passive sta-
bilization coils (with up-down symmetry). In the second, the piésma is represented as a
set of ﬁlaﬁienﬁs, the vacuﬁm vessel is also divided into a set of ﬁlarrients, and two pairs of
active control coils (with up-.down syﬁlme'try) are used to control the vertical position of
the plasma. -

When inertia ‘eﬁ'ect_s are retained, two additional conjugate roots are'obtained (with
respect to the analysis neglecting mass effects). All the roots, exepf the extra pair, are
approximately equal to the roots obtain'ed in the massless approxima.tion (this is because
the plasma mass is small). As a result of our simulation it is shown that the difference
between the two analysis is determined by the behaviour of the two conjugate roots.

" In the diagrams that follow the real parts of the extra roots are given as a function
of the gain.. The root with maximum real part when inertia effects are retained is close
to one of the roots in the massless analysis. The real part of the two complex conjugate

"roots, inroduced by plasma mass effects, is also considered here.
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First we consider the symplified system. The passive coils are located closer to the
plasma than the active control coil. In Fig.3, the resistivities of the passive conductor and
the active coil are 100 times the copper resistivity. The passive growth rate in this case is
ARes = 10.35. If the voltage in the control law is proportional to the plasma displacement
(i.e., t1 = 0), then for vélues of gain g; > 500 V/cm the system becomes unstable (the real
part of conjugate roots is positive) when mass effects are retained. However, the system
remains stable (Fig.3-a) when inertia effects are neglected. If the voltage control includes
a derivative term (¢; = 0.1lsec), then the real part of the conjugate roots remains negative
and stability is determined by the maximum real part of the roots when inertia effects are
considered (Fig.3-b). These results are in good agreeement with the analitical treatment
of Example 1 before.

When the resistivity of the active coil is the copper resistivity and the resistivity of
the passive conductor is 100 times larger (Ry > R;) the roots are shown in Fig.4. The
passive growth rate in this case is AP** = 0.25. If the voltage applied to active coil is
proportional to the plasma displacement ({; = 0), then the real part of the conjugate
roots becomes positive for the gy > 320 V/em. However, the system remains stable in
the massless approximation (Fig.4-a). If a derivative term is included with ¢; = 0.1 s,
then the system becomes unstable for g3 > 6V/cm when inertia effects are retained. The
system remains stable in the massless approximation (Fig.4-b). These results are in good
agreement with the analitical treatment of Example 2 before.

Next, we consider a second, more realistic model. Here, the plasma and the vacuum
vessel filaments are obtained from the solution of the plasma equilibrium problem. The
resistive MHD equilibrium and transport code DINA [2] is used to calculate the plasma
equilibrium and to find the plasma filament coordinates and currents.

An RDM code has been used to study plasma vertical stability. The code has option
of retaining or neglecting inertia effects in the calculation. This code is described in Ref.[7].
The IGNITEX [9-11] tokamak configuration is considered here (Fig.5). The currents in
the plasma and the poloidal-field coils are defineéd in the flat-top regime. The vacuum
vessel resistiviy is 100 times larger than the copper resistivity. The passive growth time

determined by the vessel is ¢ = 20 ms. Two different values for the resistivity of the active
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coils are considered.

Fig.6 shows the behaviour of the roots when the resistivity of the active coil is equal to
the resistivity of copper. If ¢; = 0, then the real part of the conjugate pair of roots remains
negative and the stability of the plasma is determined by the maximﬁm root when inertia

‘effects are neglected (Fig.6-a). If a derivative term is added to the voltage (t1 = 5 ms),
then the real part of the conjugate roots becomes positive for gains g; > 1100 V/cm; in
the massless approximation the system is stable (Fig.6-b).

The roots when the resistivity of the active coil is 100 times larger than the resistivity
of copper are shown in Fig.7. With a proportional control law (¢; = 0), the real part of the
two conjugate roots is negative (Fig.7-a) and the stability of the plasma is determined by
the maximum real part of the roots when inertia effects are neglected. If a derivative term
with 23 = 2 ms is added to the voltage control law, then fdr gain values g; > 1500V /cm,
system becomes unstable. These results are qualitatively described by our previous silﬁ'ple

analitical model with C; < 0.

Conclusions

It has been shown analitically and numerically that the plasma inertia effects should be
retained in RDM analysis of tokamak plasmas. A massless approximation when used in the
simulation of the active feedback éystem [4-6] may result in the incorrect determination of
the plasma stability region. The RDM system of equations when inertia effects are retained
has two extra complex conjugate roots when compared with the massless approximation
case. The other roots are similar in both systems (with and without inertia eﬁ'ects),'i
since the plasma mass is small. The behaviour of the real parts of these two extra roots
determine the differences between both methods. When the real part is negative, then the
stability region is the same in both systems. However, when the real part of these two
extra roots is positive, then the system in which inertia effects have been retained becomes
unstable while the system in the massless approximation remains stable. In. the massless
approximation the stability region obtained is wider than the one obtained with inertia

effects retained.
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Figure captions

Fig.1. Stability diagram, gain vs lead time. Control law V = —g1(z +¢12); g° = SpR:1/S:1.
The stable region is S.

Fig.2. Stability diagram, gain vs lead time. Control law V = —g;(z +t12). ¢° = SpR1/51.

If g* > ¢°, then region 1 is stable. If g* < g°, then region 2 is stable. The limiting value

* is of ion: Cs — SRy
t* is given by the relation: z—ftzr = 4.

Fig.3. Real part of the eigenvalues as a function of the gain values for a simple tokamak
model. The resistivity of the active coil and the passive conductor is 100 times larger than
the resistivity of copper. .
a) Control input signal with control law V = —g; 2.
b) Control input signal with control law V' = —g;(z + #12), (t; = 0.1 s).

Line 1: real part of the two complex-conjugate eigenvalues with mass effects retained.

Line 2: maximum eigenvalue in the massless approximation.

Fig.4. Real i)art of the eigenvalues as a function of the gain values for a simple tokamak
model. The resistivity of the active coil is the resistivity of copper and the resistivity of
the passive conductor is 100 times larger than the resistivity of copper.
a) Control input signal with law V = —g; 2.
b) Control input signal with law V = —g;(z + 12), (t1 = 0.1 s).

Line 1: real part of the two complex-conjugate eigenvalues with mass effects retained.

Line 2: maximum eigenvalue in the massless approximation.
Fig.5. Tokamak configuration considered for calculations (Figs.6 and 7).

Fig.6. Real part of the eigenvalues as a function of the gain values. The resistivity of the
active coil is the resistivity of copper and the resistivity of the vacuum vessel is 100 times
larger than the resistivity of copper.
a) Control input signal with law V = —g; 2.
b) Control input signal with law V = —g;(2 + ¢12), ({1 = 5 ms).

Line 1: real part of the two complex-conjugate eigenvalues with mass effects retained.

Line 2: maximum eigenvalue in the massless approximation.
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Fig.7. Real part of the eigenvalues as a function of the gain values. The resistivities of the
active coil and the vaccum vessel are 100 times larger than the resistivity of copper.
a) Control input signal with law V = —g; 2.
b) Contr‘ol input signal with law V = —g1(2 + t12), (t1 = 2 ms).
Line 1: real part of the two complex-conjugate eigenvalues with mass effects retained.

Line 2: maximum eigenvalue in the massless approximation.
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