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I. Introduction

A long field-reversed configuration of energetic large orbit ions embedded in a charged neu-
tralizing background plasma has been proposed as the basis of a fusion reactor.! The energetic
jon component consists of a mixture of deuterium and tritium ions having similar velocities
and thus directed energies of ~ 400keV ard ~ 600keV, respectively. The energetic ions
move in roughly circular orbits with radial betatron oscillations within an annular layer
about the axis of symmetry. The azimuthal current of the energetic ions is large enough
to produce reversal of the axial magnetic field B(r) on the inside of the annulus. Due to
the rapid variation of B within the annulus the deuterium and tritium orbits overlap. The
“temperature” associated with the radial betatron oscillations is of the order of 50 keV . The
fusion energy cross section for d-t fusion is near its maximum value at these energies. The
energetic ion density, Ny ~ 10'%/cm?, is assumed to be several orders of magnitude larger
than the background ion density, NV; ~ 10'%/cm?, in order to reduce background plasma drag
of the energetic ions. The background electrons provide charge neutralization and are also
hot in order to reduce electron drag. For the mentioned parameters, the fusion time is of

the order of 10s. If the energetic ion “liftime” exceeds the fusion time, an energy multiplica-

(Fusion probabilty)(Pusion energy per reaction) of ypou, 30 is achicvable

tion factor F' =
For such values of F, it is possible to have a modest size fusion reactor without ignition.
The energetic ion layer can be maintained by repetitive injection pulses from a series of ion
diodes. | N

A critical issue for the proposed‘ system is the low frequency stability of the equilib-
rium configuration. Annular equilibria produced by relativistic electrons embedded in a
dense plasma, the well-known Astron system, have been generated and observed to exhibit
a low-frequency precessional instability predicted by Furth.? This instability is found to be
stabilized by conducting walls.> A number of further studies has been made of the low-

frequency stability of kink modes of high-energy, high-current particle rings embedded in
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a dense, low-temperature background plasma.?~® In the case of large aspect ratio, circular
poloidal cross-section rings; the kink mode of azimuthal mode number ¢ > 1 is found to be
stable for 2 < o, where  is the self-magnetic-field betatron frequency and € is the
circulation frequency of the ring ions.* For circular cross section rings the radial (©,) and
axial (£2,) betatron frequencies are equal (9, = Q, = Q3). The kink mode £ = 1 corresponds
to a rigid tilting of the ring. For noncircular cross section rings the condition for tilt sta_Bility
is 1, < Qo (Ref. 9). Because 2, decreases with increasing axial length of the ring, while
{lo changes relatively little, thé ring tends to be stabilized by axial elongation. However,

even for elongated rings or layers there may a kink instability with £ > 2. The condition for

o 2B i5 the self-field index!® (ro is

B(ro) or

stability to these kink modes is 5, < 3, where 7, =
the layer radius). This prediction has been verified in numerical simulation s'cudies.‘lf’l‘2 The
above kink stability criterion is necessary but not sufficient, and thus it is not clear Ayvyheth‘:ar
a violation of this criterion implies instability. It may be noted that earlier investigationsl3_'
of the stability of equilibria containing a small component of energetic particles have found
stability “bands” in parameter space despite violation of the magnetohydrodynamic (MHD)
stability criterion. Further, an essentiai aspect of the system proposed by Rostoker! is the
very low ion density of the baqurbund plasma relative to the energefic ion density, which
is necessary to decrease the drag on the energetic ions. In this limit, the background ion
inertia (which has an important role 1n the unstable “kink” vperturba,tions) is negligible, and
therefore the nature of the kink 1nstab1hty is likely to be changed

In this paper, we study analytically the low frequency stability of a long thin annular layer
of energetic ions in a background plasma with finite axial and zero azimuthal magnetic field.
We consider only ﬂute perturbations in which there is no vana.tlon along the magnetic field.
We focus prlmarlly on kink modes with aznnuthal mode numbers £ > 2. We find that the
equilibrium is susceptible to the kink instability although low mode number perturbations

can be stabilized in the limit of ]—A\,’-;- — 0 and a strong current layer where almost complete




field reversal is achieved. However, with a strong current layer the system is susceptible
to tearing instability and we therefore also present (in the Appendix) a brief discussion of
tearing mode (£ = 0) stabilization by the placement of conducting walls in close proximity
to the boundaries of the annular layer.

In Sec. II, we derive the approximate Hamiltonian of the energetic ion beam motion. In
Sec. I1I, we discuss the energetic ion beam response to low frequency flute perturbations, and
we construct a quadratic variational form of the eigenmode equations. Parallel electric field
perturbations can be neglected, while the parallel magnetic field perturbations within the
annular layer are considered to be proportional to the gradient of the equilibrium magnetic
field (the “rigid” displacement approximafion) since such perturbations tend to minimize
the compressional magnetic energy. We view the quadratic form as a dispersion functional,
and in Sec. IV we obtain approximate dispersion relations by substituting appropriate trial
functions in the quadratic form. We find unstable modes in the limit of high and low
background ion densities. In Sec. V, we discuss our results and suggest modifications of the

equilibrium which may lead to more stable configurations.

II. Equilibrium

We consider an equilibrium configuration consisting of a long cylindrical annulus of energetic
ions encircling the axis of symmetry and undergoing radial betatron oscillations in a field
reversed magnetic field (Fig. 1). The energetic ion component is assumed to be charged
neutralized by a cold background plasma. The annular region is bounded by conducting

walls at » = r,, and r = r, in order to stabilize [ = 0 tearing modes.

A. Ion orbits

The equilibrium Hamiltonian of the energetic ion beam is

P2 P2
Hi=tr 4+ P2 Ly
0 2 A + 9 ) + (pg,T‘) ’ (1)
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where ,
(Pa - §¢(T)>

2myr?

Vv (p97 7‘) =

is the effective potential. The energy (Ho) as well as the axial (p.) and azimuthal (ps)
canonical momenta are constants of the motion. The equilibrium vector potential is Ay =
%1,/)(7')5, and the magnetic field is B = B(r)2 where B(r) = %%’f.

Let uvg’%’_’-l =0 at r = rg. We consider only the “betatron” root

(Pe — Si/) (Tﬁ)) + Er;‘éB (rs) =0.
This equation defines | '
| rs=7p (po) -
Thus, those ions with energy Hy and canonical momenta Pg, P. such that
pr =2my (Ho ~V(pe;rs)) — 12,
=0

will describe circular orbits of radius r5 about the axis of symmetry.
If we expand V (py,r) about r = rg, we obtain the folloWing approximate Hamiltonian
for jons with small radial excursions about the betatron radius

(v = S8a))

2 2 P — =9 (rg); —1r5)? ‘

_ b P c (r—rp)"

Ho = 2my, * 2my, + 2myry * 2 mlls () : 2)

where
() = |0) 32|

Qr) = eB(r)

mye

. . Q '
and we have used the identity 278 = — L) T
v 9pe AL
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The radial motion is simple harmonic with frequency equal to the betatron frequency

Qg (r3). The equilibrium orbits may therefore be approximated by

r—rg=0rgsin¢ (3a)
p, = érgmSg cos ¢ (3b)
dé
@ _ o
dt Opg

(6rs) 000 b5

= —Q (rﬂ) - 27‘ng Brp Tﬁ

Qsing+--- , (3d)
where the radial oscillation amplitude érg is given by

(Pe - -Z-‘/) (Tﬁ)>2

2
L]

mgﬂf, (57‘3)2 = 2myHy — p2 —
and we assume (6r/rg)” < L.
B. Distribution function

We consider the energetic ion beam to be described by the distribution function

roVy

Fb (HO,pP) = 27rmb

§ (Ho — €0)  (ps — po — ép) (4)
where the beam energy & is related to po by

g0 =V (po,70)
and

To=Tg (po) -

For this distribution function, the equilibrium ion beam density is

Nyr o dH
N:/d3pr=-7b7;92/dpgdpz/ﬁo ;—Ip—cjl—a(Ho—éIo)5(pg—po—5p)
Pr T
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N bT0

/ 16 (s — po - 696 (i) (5)
where
' 1/2
Ipr = [2msHo — p? — 2,V (pg, )]
=P iy
HO 2mb + (p97 7‘)
Do, = 2mpeg — 2myV (pe,T)
2 — 1 pgz 2 0
o) ={o 25
Expanding about py = py, r = g, we obtain for PE,

Poz = 2m4Q (ro) (ps — po) — (r — r0)® m3Q% (ro) 4 - -

Thus, the ion beam density is finite within an annulus of thickness A

Nb?"o
— < (A/2)?
v [T = < (a2 o
0, otherwise ,
where

{2 (o)

The ion beam current Jyy is

e(pe--l/)) - a2
Joo=[dpF——e ) [ & Rergn (m){1+ ) o (,‘iﬁ)}

myr 2rﬁ

& =NeryQ (rg) . | | ’ M

The ion beam is assumed to carry the total current and thus the magnetlc field inside the

annulus may be approximated by a linear variation

B(r)=B (r“') + B(ry) ng«:;; (r - r") , r+ >r>rT, | (8)
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2 B _ . ' .
where w? = 51-1711!:"—, Q(ro) = 5—"5:%1, vos = 1o§¥rg), and rt, r~ are the inner and outer radius

of the annulus (A =r+ —r~).
We define the field reversal parameter 6 to be

B(rt) = B(r7) _ wiroA

50 I R (9)

where B (ro) = (B (r*) + B(r™)) /2. The field reversal factor is
_B(rt)—-B(r") _ 260

¢ B(rt) T 2460
With field reversal, B(r~) < 0 (we adopt the convention that B(r*) > 0) and 60 > 2,
¢>1

The equilibrium density of the charge neutralizing background electrons and ions (as-

sumed to be cold) are N, N; where

N; + N, = N..

III. Linear Dispersion Relation

A. Perturbed fields

We are interested in the stability of the equilibrium to low frequency (w) perturbations with
w < ¢/ro. We consiler flute perturbations with time and azimuthal angular dependence
given by ~ =it ,d we neglect parallel electric field perturbations.

We find it convenient to choose a gauge in which the scalar potential ¢ = 0 and the

vector potential A is given by
A = VE(r)et—t + X(r)e- ity
= [(% + x) 7+ il§§] eit—ivt |
or r

where we express A in terms of field variables £(r) and X(r). 7 and § are unit vectors in the

radial and azimuthal directions respectively.



The perturbed electromagnetic fields are

E =% ( 9¢ ) eilo—iwt

or
By = _wig ilo—iwt
. cr
Bz = L pilf—iw .
" r

The magnetic field perturbation is proportional to X while the curl-free part of the electric

field perturbation is due to £

In the vacuum region, 7~ > r > 0 and rw > r > r¥, outside the annulus of energetic ion

wr

lc

small ( R “’2;2 55 < gf), and the field variable £(r) is approximately determined by

10 8¢ &
ror or r2£ - 0 | (10)

The solution of this equation is

= () [(—)I -(=) (_ﬂ

rT>r >, - (11a)

T ST >t (11b)

&r)=¢(r) [(

where {(r) is continuous at r = r+, 7~ and £(ry) =0, ¢(r.) =0, due to conducting walls at
T =Ty, T =T ‘

Inside the annulus, 7+ > r > r~, we assume X (r) to have the form

6B '




where X, is constant. Thus the magnetic field perturbation B, is proportional to 0B/dr

Bz = _z'lxo_a_'geiw—iwt .

or

This perturbation is exactly a “rigid” displacement of the annulus for I =1, and corresponds
to the equilibrium magnetic field moving with the displacement of the layer. It is hereafter
referred to as the rigid mode approximation.?!*

The rigid mode approximation can be justified by an examination of the quadratic
variational form of the eigenmode equations. It can be shown that in the limit of Qf >
02 (rp) (w? + £2Q7 (rp)), the quadratic form is dominated by a “large” term proportional to
(8Xo/ 67‘)2, or more physically a “large” term proportional to the magnetic compressional en-
ergy. Thus, to minimize the magnetic compfessional energy, er need to take to lowest order
(in the layer) Xo constant independent of r. Because of its complicated structure, we will not
write down the complete quadratic form including terms proportional to (9Xo/ dr)?. Instead
we take Xo to be constant at the outset, and in Sec. I1IC, we construct a simplified quadratic
variational form valid in the limit where the rigid mode approximation is applicable.

We also find it convenient to introduce a new field variable Co(r) inside the annulus in

terms of which £(r) may be expressed
£(r) = Co(r) — XorB(r) . (13)

Thus, inside the annulus

%(r) _ 90 _y p_xopB
ar = 87' —XoB-XoT (14)

or
and the perturbed radial electric field is

¢ (r%) = Co (r¥) = Xor*B (r*) . (15)



We assume (and justify later) that Co(r) varies slowly inside the annulus: 0Co/0r <
Co/A. I this inequality is not satisfied, fhe perturbation of the background plasma would

result in large radial electric fields, and the energy in the radial electric field would not be

minimized.
We now proceed to evaluate the perturbed currents of the beam and background plasma

induced by these perturbed fields.

B. Perturbed currénts

The perturbed ion beam distribution function is determined by the linearized Liouville equa-

tion
of

where the Poisson brackets are defined in the usual way with respect to the canonical variables

(Pi =PryDoy02, ¢ = r,8,2), and F is the beam equilibrium distribution function (we delete

the subscript ‘b4’ for convenience).

—[0f 8 Ofog
00 G~ o)

g

‘and the perturbed Hamiltonian H; can be written as follows:

e
e e | ot (P@ - g%f’) ile OB o—is
= ——Vv. = ——— - N € 7S XnP e | pitf—iw
H e’ Al me |2 or + r r +prXor or | ©
__°c 4, itg—iwt . we il0—iwt € OB g it
- cdtge " e mceroT or ' (17)
‘The solution of this equation is
f=[FW], 4 . (18)

where W = — [*dt'H, (pr,7,0',t') and the integration in time is along the equilibrium phase

space trajectory
r' —r = 6rg[sin (¢ + Qp (¢ . t)) — sin ¢]
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P —0=-0 (rg) (' —t) — %Q—g:—)[cos(qﬁ+ﬂg (t' —t)) —cos @]

pl. = mQpérgcos (¢ + Qs (t' —1)) .

Since Co(r) is assumed to vary slowly through the annular layer and B(r) varies linearly,

we can make the following expansions to evaluate the time integration of Hy
oC
Co(r") = Co(r) + (r' — 7')—5-;0- 4o

r'B(r') = rB(r) + (r' — r)g;rB(r) +eee

Hence .
() = £(r) + (7 — ) g+

We then obtain for W

w (prapea L aat) = W (Pr,Po, T) eiw_th ) (19)
where
W = g1 (pr,78 (Po) ,7) [Co(r) — XorB(r)]
0B aC :
 an (o ), 7) [ ey o (G2 08 )| 1)
r or
and

e e|@t0E) =) = B wia )

91 (p1oro (0)7) = ST TI0(r0)) T 0 (w0 + 12(rp) (% — (w0 + 12.(r6)))

[0 ¢~ ) = 22w+ 19.(r5)

€

92 (P (P0)7) = 10 ) (9 — (0 + 12(r0))°)

The perturbed ion beam currents are determined by
J, = 3_3,,‘/_5)_/3.3.2_'“ 1
Jb—/dpm\p ~Ao) f = [ dp—AF, (21)
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where d®p = 1dp, dp, dp,.

Substituting for f, we obtain for the radial perturbed current

_ ”3 e Ny
g = / Cp=p,[F, W] / Pp—A.F

F

_/d:,,e‘ 0 p0W 8 L OW 0 oW 9 ow
Yo "ol o T 5 ps  Ops~ B0

—/d3 ‘3—2121'1F "(22
p—AF. )

Since F is even in p, and OW/0p, is independent of p,, the first term is zero. The fourth term
yields zero on integration. The third term is smaller than the second term by Alrg € 1.

Thus, Jp, may be approximated by

/d3p F__ —/dsp—A F = ezl&-zwt/d,gp € F(w + ZQ (’I"g)) v (Co, XQ,ZT, Tﬁ)
me (9% — (w + 12 (rp)) )

+ hlgher order terms in ;A— | (23)
0 .

where

| v 0B aC,
T (Co, Xo, 7, 7g) = I (78) g Xo + ( % _ XOB)

wlQ) (rg)
g (w+ 10 (rp)

] (Co — XorB) .- (24)
- Similarly, we obtain for the azimuthal perturbed curreht- h

~ ' e e e? -
Jyg = /dSP% (Pe - ?ﬁ) [F,W] - /dSP%AoF

S o (o) 5y ¢ i () r G

+ / &p eZZFW / d3p—A;F

i3




= __.eiw—iwt/ 3 € 1w’ (Co — XorB)

d F
Pme’ Q) T
e
+ eiw—iwt/dS e (pe - ?’b) [ il (rp) _ . 0] _F¥(Co,Xo,r,1p)
P mr rg(w+1Q(rg)) 0Or] QF —(w+19 (rﬁ))2
. . A
+ higher order terms in — (25)
0

where we have made use of the relations

Brg _ Q

Opy  mrgQ}

o _ 9 00 1 1__(2
Opy  mrgQ}ors T omri 0 9%

(Pe - %1/’(7'))

mr

=—rpQl(rg) + - -

The perturbation of the cold background plasma produces perturbed currents given by

~ w Ne? _— —_~
I =iy — L I05A +iwA
i c;mj(wz—ﬂg){Jx }
N;e? {A[ 2(000 ) wlf; ]
= —w? [ =2 —XoB )+ —2(Co — XorB
;m,-c (w2_9?> r|—w or 0 r ( 0 o’ )
~ y 2
+0 [iwﬂj (%%—-XoB) —Z—Z:J—(GO—XOT‘B)] }", (26)

where the sum is over the electron (j = €) and ion (j = ) species.

C. Quadratic form of eigenmode equations

Substituting the perturbed currents in Maxwell’s equation, we obtain the eigenmode equa-

tions
1 8°A 4r

Vx (V<A) + Ser = (3, +3,) . (27)
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These eigenmode equations can be written more compactly as a quadratic variational
form. If we multiply Eq. (27) by the adjoint function KI = Kie"””“”, and integrate over

space, we obtain

~ A 2~ — ~ —_— l ~ —
(CJ,XO,OO,XO - /d3 {BZB;*‘ - %A-A”f} - %/d%.r,, A - %/d*”’r.]b At
dB 2 aC 2 p
=— / dr 222 ( ar> - [ & [(a—r“ - XOB) + 5 (Co - XorB)z]
+ Ly (Co, Xo) + Ly (Co, Xo) . (28)
where

Ly (Co, Xo) = —= / &Y, A+

Nje? 8C, 10, 2
o ()R]

5 my

2 (w2 — 02 \
+ “—( 2 J“) (Co — XorB)? } (29)

e? w? £ 2
mc2 (w + Z\Q (T‘ﬁ))ZT_Z (CO - XOT'B) >

(00,-x0) =_= / &r3, Ao <

E F <Po - —¢(7‘)) o2 C' | >
+ b X ?
(e oG] e CoXonms
+ higher order terms in;A— . | | (30)
0

The angular brackets denote integration over the phase space variables (( )) = [d®pd®r( ).
We have deleted the superscript + on the functions A* since A+ = A. This is due to

- the symmetry of the quadratic form: A+ are solutions of the same eigenmode equations
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with the same boundary conditions as A. The eigenmode equations are the Euler-Lagrange
equations obtained from first variations of the quadratic form with respect to Co and Xo and
are identical to Eq. (27).

We do not attempt to solve these equations exactly. Instead, we consider our variational
quadratic form to be a dispersion functional, and for Co(r) we substitute an approximate
solution based on the thinness of the plasma layer and thereby obtain the dispersion relation
for the eigenvalue w. |

Furthermore, we simplify the analysis by considering the limit of large betatron frequency
08 > 0 (rg) (w? + £202 (rp)).

Since

1 1 { R CER G il (rﬁ)}

(@3 - (w +192(rs))") NCEID) (03 — (w +12(rs))’)

and
&  _ _B(m)
0% —Q2(rg) 2 (rp)’

we can approximate the beam contribution to the quadratic form in the limit of large betatron
frequency as follows:
e? w? 22

me (w + 10 (rg)) 2

Ly (Co, Xo) = <F (Co — XorB)2>

C mr

+ <EF—<£f———z—¢)—€2%f—X3> — (Fmt®3 [(w + 19 (rg))" = 0% (r0)])

_[Fe 8Co _ Wi} (rs) _
<Fczlx0 [w ( < XOB) b ) (G = XorB)
~——-1—/d3r€2 QE 2X2

T 4r or 0
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2
+ [ &r { Nie?  w 252 (Co—Xar BY — Nmuf? [(@ + 190)" — 2] x3

mbc2 w + N )
[ 800 “-’ZQO

where |
| | A% )
Qo = Q(rg)pg=po+s, = Yro) — 8 By o)+

Thus the quadratic form [Eq. (28)] may now be approximated by

2 .
roL (Co, Xo) = —20—21/0 (Coy Xo) + %AO'L1 (Co,Xo) + L, (Co, Xo)

S fe )0 o

where ][dsr denotes integration over the vacuum region

0 (Co, Xo) E/dsr ay (r) (3—09) o o (33)
L (co,xo) = / d3r2a2(r)00—— - / &r 2a3(r)X0 60" (34)
Ly (Coy Xo) = / &Pr agC2 + / Pr 20, CoXo + / &Pr a, X2 (35)

‘&é%&m
By = B (ry)

Njerd W2 _ Nie?rd w? (02 — w¥Yb) Me
oi(r) = Z me (w2-02)  mic? QF(QF-u7) +0(%)

: N;

2 (LY 2

ar(r) =3 = Nier§ i, Neerdl® (Q" <E _1> ki ) +0 (m)
T myc? (wZ - QZ) T me Q; (2 —w?) m;

J
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B(r) _ Nye’rd lw

myc?z o

aa(r) = (—ax(r) + a(r))

N;e?r2 B(r)  ? lw (me
T my2 By (¥ —w?) 1-q;) +© _)

2,2 2
)= iy B ]

M (w + 1)

3 B(r) Nee*rdl? w B
al(r) = ao(r) B, myc? (w + lQo) t a2(r) By
_\BMr) _ Nien3f? [ (0 + 1)’ 2w B(r)
aa(r) = eo(r)—pr — = 02 (w+1%) B

Bz(r) Nye?rl 21w B(r)
mb62 Qo Bo ’

+ (a1(r) — 2a1(r))

where the summation over j does not include the energetic beam ions. We note that typically
Lo, L1, Ly are of the same order, while the contribution from the vacuum is smaller (for
completeness, we retain this contribution).

In the last term of Eq. (32), £(r) is determined in the vacuum region by Eq. (11) with
¢ (r*) related to Cp and X, by Eq. (13).

IV. Dispersion Relation

We first define a “standard ordering” given by

5= (-3 > [l (Rl 1w

where |a;| > ;A: |a|. Furthermore, we assume that the conducting walls are not in contact

with the boundaries of the plasma annulus so that

S{n ) a(Z))

18
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where

1 +821
(5) 1 — sz[ ¢

The largest term in the quadratic form in a A /rg ordering is Lo (Cp, Xp), and it is due to the
inertial response of the background plasma ions. In order to minimize this response, it is

necessary to minimize the magnitude of IE',, ‘~ ’: 380;

to be constant to lowest

v order in A/ro. Thus Cp equal to a constant is the lowest order solution of the eigenmode
equation. This is consistent with the assumption made earlier that C, varies slowly inside

the annulus.

Let

CO=CYQ+SA—C(()1)+"", ' 7'+>7'>T‘_, (36)

where C’o is equal to a constant. Substituting for Cp in L (Co,Xo) and extrexmzmg W1th

respect to oCY /0z, we obtain

00"  ay(r) 4 as(r)e
Oz al(r)O ay(r)

XO ’ . (37)

where
a NI <1_&') W
a1 N w N, 0 _ w_2
: b
as B(r) wlQ;  B(r)
ay Bo QZ _ w_2 BQ
¢ b
and
N;m
b= L .
_ (1+Neme) >1

' : RN
The perturbed radial electric field * (—g—g— %‘g—) induced by the perturbed a21muthal field

—u (C’o - 5201%) is peaked at the location of the lower hybrid resonance w? = b2 (r).
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Thus, within the annulus

Lo (Co, Xo) + —L1 (Co, Xo) + La (Co, Xo) = /d3 [—— + ao] Ce

A2
R 2 R
+ /ds’)” [a2033 + al] 252000 + deT [—% + az] Xg y (38)
a . a
where

_ﬁ_{_a -~ Nee2€2 Hﬁ (_]& _ 1)2 _ bw? n Nym; w?

ay °™ "mic?2 | N; \N, (007 —w?)  Nemy (w+ 10)*
asas . N.e2¢? {P_w bw? B Nym;B w? B Nym; w }
a, 1™ "mic2 | Bo(l' " —w?) NempBo(w+ ZQO)2 Nemy (w + 1)
B Nl NB bo? | NemiB?

a1 2 muct N.B? (602 —w?) ' N.myBE (w + 1Q)°

_ Nym; [(w+ 10)? 1 2wB
Nemy Q3 (w+1Q)Bo} |

Since B(r) varies linearly inside the annulus, the spatial integrals can readily be evaluated.

The quadratic form may then be written as follows:

SN 21 NoroAe2f? [ 4, o s -
r2L (C’O,Xo) = /dz—z—n:?—;— [Cg-Ao + 2CoXo A1 + X?)Az] ) (39)
where
N\ 2 L LBl/2 + +
A{):—]\E(l—&) _Nem, wb A<1 A ].gA>
Ni Ne Nimb 2906Q Al A7
Nym;  w? Nym; w?rd ( . 4(7“*’))
ey - _(z (-—> 72| = 40
+ Ne my (w -+ lQo)2 Nemb |l|6269 : rT T Ty ( )
m? w? AfAT  Nymiw (2w + Qo)
A = 250260 O ———— — T AaZ
my 2QO5Q A1 A7 N, my (w + lQo)
Nym; w?r? (B (r7) e B (r+) ( >)
_ Z (—) 41
T N |60\ Bo ' \r- (41

N; m? w? mi W Af 3
A=-Fmm [1 T s 2006250 (1 BRI A‘)]
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Nym; (w + 10p)° w? A? ( 1 6B)2 2w
SALRAL b I 14+ = (=== e
+Nemb[ % ey T \&e) ) Tormy
Nym; w2 (B2(r-) (rc) B? (7"") |
— 7 (=<
N filzs \~ B3 \m) T BT B £ Tw (42)
w
A =0 () - 575
+
AF =0 (r )+W5
(1 +5%)

Z](s) = m— .

We have extremized our quadratic form with respect to 9C,/8z. We still have the
freedom to extremize Eq. (39) with respect to the overall constant C, in order to determine

the unknown constant Co in terms of Xo. Thus by extremizing with respect to 6’0, we obta;in

~ Aj ' :
qo = —x?xo . | (43)
Substituting for 5’0, we obtain the dispersion relation
A? '
Ay — j =0. (44)

For equilibria in which there is no field reversal (1> 6Q but 60 > %— to satisfy the
large betatron frequency assumption), we obtain an approximate solution of the dispersion

. 3 . . 2
relation in the limit 1 > lﬁ‘ > #N’f @L ;f-}\—,sfe—zl, Where

t 22 (59)
Ao~ ~N,.mb £o ( 4 )

2
A = 2’21,72&}2 (1 + (60)° )
m

2 12
Nm me
N — z£2f~2 1 _£2 .
Az Nem} Nrm,(1 _ )
o=
=7 -
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Substitﬁting in Eq. (44), we obtain the unstable root:

~ . meb(£2 - 1) 12 12
w=1 =
Nimf2  (662)?

and the perturbations are unstable with growth rate

m 1/2
Im(w) ~ Qo ‘[%Rﬁ,-(ﬁ"l) (5%2] : (45)

For equilibria in which there is field reversal (6@ > 2) so that a resonance at the lower hybrid
frequency w = +b1/2Q(r) is possible at some radius r, we obtain an approximate solution in

the limit &% ~ JE\,‘: < 1, where

log AT = —iT
log Ay — i,
AT A7 Qi)
l 2 1
CeRTN . PO
. N.mp wbt/?
Ao m im [Tk S5
m?  w? Q2(rt)
A ~ — ——=1 : ,
' mI 20360 © 3(r)
N; m? w? Ny my
~ A 2 (1=
Az Mm@t Nm Y
A2
A > 2.
: Ao
The dispersion relation may then be approximated by
2 Nym
%= om, &Y
and the perturbations are unstable with growth rate
N, 1/2
Im(w) = Qo [ N”Z” (&2 - 1)] : (46)
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We solve Eq. (44) numerically, neglecting the typically small contributions from the
vacuum region surrounding the annulus. In Figé. 2 and 3 we plot the frequency & as a
function of ‘%’3 for several values of the azimuthal mode number ¢ and the field reversal
parameter 6{). We have included solutions for values of %’: — 1 since Eq. (44) remains valid
in this limit for reasons discussed below. We predict instability for all non-zero values of %‘:—
However, for equilibria with large field reversal Whére 50 > 25.6, £ = 2 can be stable (see
Eq. (50)). “ |

We note that if N;/N, — 0 or there is field reversal (then the pole contribution from
resonance at the lower hybrid frequency yields Ao ~ 012 > 1); Ao > A; and hence
Co < Xo. Strictly, the “standard ordering;’ is not valid in the limit N;/N, — 0. However,
as we demonstrate below, the quadratic form is extremized by Co = 0 when N;/N, — 0
As this is also the prediction from our “standard ordering” analysis we can validly use the
dispersion relation given by Eq. (44) for arbitrary N;/ N..

We now consider the low background ion density limit where the “standard brdering”

formally fails and the following inequality applies:

w0 %)l

>(a(2)+2 (D).

azl } and the dominant term in the quadratic form [Eq (32)]

Further, we assume that

N mb
Nb m;

i

wQ

In this case, ,—(12, >
is
3L (o Xo) = 2 [ ar D)2,
_ A Oz
This term is due to the “electric drift” of the plasma electrons, and since the energetic
beam ions do not respond similarly, large charge density perturbations would arise unless
the field variable Co is zero. Thus the quadratic form is extremized to lowest order in A/rg

by choosing Cy = 0. The dispersion relation is therefore Az = 0 with N;/N, = 0.
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If we neglect the term proportional to I_li_cz_:’f; < 1 which is the contribution of the vacuum

region between the plasma annulus and the conducting walls, we obtain

(w + IQ)*

~\ 2
60)
ol — (2w +100)" - w2(—)— =0. (47)
0

12

- For (5@)2 /12 < 1, the solutions are

w -1 il -1
Q {—(l—l):i:(l+1)1/2

and the growth rate of the unstable mode is
Imw =.(I — 1)1/2Q, . - (48)

For £ > ;4(—;3%3 > 1. The solution of the unstable mode is

L 12
+i%% (ﬂ-) . (49)

—000 + 60 iy O

(3)1/2

For a given value of I, Eq. (47) predicts stability for sufficiently large (5@)2 /12. Let

T =15 We can rewrite Eq. (47) as follows:
Yi(z) = Ya(2)

where

Ya(z) = 2z +1)*

N2 _
Ya(z) =m2—(§1—ﬂ2)—— + 2z +1)%.
We note that (I > 1)
Y: > Y, z=0
Y.> Y, z= -1

Yi>Y,, z — Fo00.
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Hence there are two real roots of ¥;(z) = Y;(z) for z < 0, and a sufficient condition for the
occurrence of two real roots of ¥;(z) = Y3(z) for z > 0 is the existence of a finite value of
z = zo > 0 such that

Y, (z0) > Y1 (z0)

that is g
(%) #@o+1)* _ (200 +1)

2 2
12 S z§

The minimum value of (zo + 1)*/x3 for 25 > 0 occurs at z, = 1. Thus a sufficient condition

for the occurrence of four real roots of Yi(z) = Y3(z) (and therefore stability) is
(60)" > 19262 — 108 . (50)

For I =2,
60 > 25.7 .

We solve Eq. (47) numerically, and in Flg 4 we plot the frequency of the unstable modes
as a funct1on of the field reversal factor 60. For [ = 2 stability, we estimate numerlcally that

60 > 925.6.
V. Discussion

We have investigated the low frequency stablhty of an equlhbnum configuration consisting
of a thm annular layer of energetic large orbit jons in a neutrahzmg background plasma. The
energetic ion motion exhibits two characteristic frequenaes, the frequency of radial betatron
oscillations Q5 = Q, (1 + 3 5@) Y2 a,nvd the revolution about the axis of symmetry Q. Here
N >> 1, and field reversal requires 6} = QA g—?"- > 2. 60 is proportional to the current per

unit ax1al length and is related to the ﬁeld reversal factor ¢ by ( = 2"_"_5?9

In order to simplify the analysis:
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1) We neglected parallel electric field perturbations and we considered only flute pertur-
bations with no variations along the magnetic field.

2) We considered the limit of a very thin annular layer where ;% |¢| < 1. In this limit,
the betatron frequency g is much larger than the beam circulation frequency €, and. for

low frequency perturbations w? S £2Q3,
0% > Qow? + £202)Y2 .
This inequality also allows us to make the rigid mode approximation.?!
3) We neglected the temperature of the background plasma. We are therefore assuming
that the thermal velocities of the background species are smaller than the phase velocity of

the unstable perturbations.

4) We assume that the dielectric properties of the system are dominant so that pertur-

2l {a () 2 ()

The electric field energy within the beam equilibrium is then large compared to that in the

bations can be considered quasineutral:
),

w

1 2 ToO mp 2{
1ot P a T

vacuum.

The beam equilibrium distribution function was taken to be monoenergetic with no spread
in the particle canonical momentum p,. In reality, a small spread in py is likely. However,
we expect our analysis to be valid for small spreads in py provided the spread introduced in
the circulation frequency Q(rg(pe)) is small. This requires: (w + £§0) > |£|% Qo.

We constructed a quadratic variational form, ordered the individual terms in the smallness
parameter -r% < 1, and by successive extremization of the lowest order terms, we obtained
the dispersion relation (equation (44)).

For %‘: & 1, the equilibrium is unstable for azimuthal mode numbers £ > 2 with growth

rates

Imw=Q [(£2 1)

my Ny 12 12 25 63 5 [ 1208 = L)y Ny 12
m; N; (6Q)2] 2m; N;
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my Ny
m; N,'

. 1/2 -
Imw:Qo[(Ez—l) ] , 000> 2.
Instability persists for finite values of ]ﬂ\,f When %’f = 1, the growth rate of the unstable

mode is

. X¢)
Imw = Qo(£ —1)'/2, 2(3)12 <1

~ 1/2 ~
£6Q o0
Imw=ﬂo(§(3)—1/2) ,Z>W>1

However, stability can be achieved for mode numbers 2 < £ < 4, if the following sufficient
condition (%‘: = 1) is satisfied, 68 > (19262 — 108)!/2. Thus, &{) must be greater than 25.6
in order to stabilize the £ = 2 mode. Highe'r £ modes are more. difficult to stabilize but their
effect on containment should be less detrimental. .

Residual instabilities due to the coupling of ion beam modes to the background plasré?la

at frequencies equal to the local lower hybrid frequency may still persist but they hav_e'

small growth rates when %‘: ~ 1. Such ion beam-plasma interactions have previously been
investigated by Gerver and Sudan.!4

This geometry has £ = 1 marginally éta.Ble. However, when ﬁeld‘ line curvature is taken
into account, the £ = 1 mode becomes the well-known precessional mode which can be
stabilized by quadrupole fields, walls, or toroidal fields.? |

We note that the stabilization of kink modes requires strong current layers (69 large).
This raises the question of whether the ax1ally extended annula,r equilibrium is stable to
“tearing” £ = 0 modes. This topic has previously been discussed by many authors,5:16:17:18
but for convenience, we reproduce in Appendix A the stability analysis for an annular layer
in the slab approximation. -

We ﬁnd that stability to £ = 0 modes can only be achieved for a flat current profile if both

outer and inner conducting walls at r = r,, and r = r. respectively are placed close to the

boundaries of the annulus. The general stability crltena is of the form (r,, —r.) < 2gA where
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the numerical factor g is g = 1 for flat current profiles. The magnitude of g exceeds unity with
hollow current profiles. However such equilibria can be produced with distribution functions
(where (v2) = (v2)) only if the perpendicular energy of betatron oscillations approaches and
exceeds the directed energy of the ion beams, (v2) R v,. For this situation, the assumptions
used in our analysis is violated.

We note that smooth current profiles with a maximum inside the annulus (which can
be produced by smooth distribution functions F(H, ps, p.)) requires conducting wall nearly
touching the layer if (v2) = (v?). Less stringent tearing instability can be attained by having
(v2) > (v?) as shown in Refs. 16 and 17. We also note that attaining a hollow or flat beam
current profile rather than a peaked one requires high beam quality for which the spread
of pg is less than ps — po, where po is the angular momentum of the betatron qrbit. Thus

2

if self-collisions force (v) = (v?

?) a system without a toroidal magnetic field is susceptilf;le

to tearing mode instability. The effect of a toroidal magnetic field is clearly important and
needs further study.

In addition, we expect that the presence of an azimuthal magnetic field will also be
effective in enhancing stability to tearing £ = 0 mode instabilities.

However, the stability to kink £ > 2 modes of hollow or peaked current profiles or
equilibria with azimuthal magnetic fields is not covered by our analysis and remains to be
investigated.

The result of this analysis indicates the existence of a possible stability window for mod-
erate values of the azimuthal mode number (¢ > 2) when the reversal limit (that is as
60 — o0, ¢ = ;2_% — 2) is approached. It could be difficult to achieve experimentally, since
¢ = 2 stability requires the field reversal factor ( > 1.86, whereas { has an upper limit of 2.

However, the model equilibrium of a thin field-reversed layer is somewhat idealized. More

favorable stability criteria may be expected for thick layers. It is noteworthy that 6-pinch

experiments have already established the occurrence of relatively long-lived field-reversed
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equilibria. ‘It is interesting to note that on the basis of MHD theory (without rotation),
¢ = 2 for systems in such an equilibrium.

We observe that Lovelace’s criterion!® for stability réquires

_ To BB |
I:maroa. (51)

Our analysis does not indicate any transition to stability for small Q). However as we

have assumed %5@ > 3, and it is not surprising fhat we have not recovered Lovelace’s

criterion. Lovelace suggested that I > 3 would be unstable. This is generally confirmed

“in our analysis although atf:/é?y large I values we find surprisingly that low azimuthal
mode numbér perturbations can be stable when %‘: — 1. We note that with thick layers

Lovelace’s s;uability criterion can be satisfied .even for a field reversed layer, and this suggests

an alternative limit for stable operation of a long layer of energetic ion beams where tlﬁe

geometry resembles a field reversed #-pinch. | '
Furthér stability studies need to consider.equilibria configurations with a layer of finite

thickness, finite axial length, and a finite azimuthal magnetic field.
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Appendix A

In this Appendix, we discuss the stability of long annular field-reversed equilibria to £ = 0
perturbation of the form é=0, A= Ag(r)e’””‘@\, and f = f(r)e’**. These perturbations, if
unstable, can lead to the “break-up” of the cylindrical annulus into “rings” of finite axial
length. We consider time independent perturbations and we analyze the eigenmode equations
for the occurrence of “neighboring stationary states.” The existence of such states implies
instability.1815 However, if they do not occur, the equilibriurﬁ is stable to these perturbations.

The perturbed ion distribution function f is:

- 8F
[F, Hol = —[F(Ho, pa), B} = — 57 [Ho, Hi]
where
e e 3Ho
Hl——mbrc ( C)Ag—rAe o
Thus
oF
f(r) =rAy(r) )
and the perturbed ion beam current §Jpy is:
4—7£5Jb0 _ _47rNe Ao(r)
c mb
4re 3
+ e Aolr) [ (ps __¢) %
0 4w Ap(r) 8 e
=rAy(r) = 5% o — Jos() = B(r) or o Jos
Ag(’l‘) 0*B
B(r) or?

The perturbed currents of the cold background plasma is zero. The eigenmode equation
(with k the eigenvalue) is therefore given by

0%A,
Oz?

KAy = 2 i (A1)
C
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: ; 2 L .
where z = r —rg and we neglect the curvature of the annulus (% % r 3% — %;) . It is sufficient

to discuss only the k — 0 limit since this determines the condition for marginal stability.!®5

In the case of a thin annulus with uniform current where we assume exact field reversal:

B 2> 2
2z 2
B={ B~ - —_
B A 7 > 7> 5
-B z< -2
2
we obtain (k = 0):
0% Ag 244 Ay A ’
5 =4 1(e+3) +5(e-3)) (42)
where §(z) is the Dirac delta function.
We assume the annulus is bounded by conducting walls at z = Ty and at z = —z1 (Ag =0

at = z9, —21).

The solutions of Eq. (A2), inside and outside the annulus, are:

(@G D AR D), 2ot
17\ 2Ta) T\ \9)3TA) 27773
Ae(é) ________-(-’32—2) ) - $2>z>é
As = | 2 (w __). 2
279
A\ (z14+2) A '
A"(‘E)@’ SR Ty e
\ 175
A

By imposing the matching conditions at ¢ = i—z—:

-
04" __3A<é>
6.’3 A_, - A 9 2

-8 e ‘
04s T __2 A <_é>
6:1: _%_c - A f o2
where ¢ is infinitesimally small, we find that z; + z; = 2A at marginal stabiliﬁy (k - 0). No
solutions for real values of & exist and hence the equilibrium is stable to £ = 0 perturbations
if
Ty + 31 < 2A. |  (A3)
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This result implies that the £ = 0 mode can be stabilized only by placing two conducting
walls relatively close to the boundaries of the annulus. Hollow equilibrium current maxima
at the boundaries tend to be more stable than those with a maximum at the center of the
annulus. In order to explore the sensitivity of the stability criterion to the current profile,
we consider the following model of the magnetic field variation inside the annulus which is

in fact an exact solution for the equilibrium distribution function discussed in Section IIB:

(- A
B T > —é—
~ sinh az
B=!{B m —2' >z > —5
—B z< _A
\ ) 2 g =
where “24A2 = wz’::z ~ m?zfég ~ %. The corresponding eigenmode equation (k = 0) is:
a7 a“Ay© (T —z°| — Agacothaz [5 (:v -3 +é6lxz+ —2—>] (A4)
where O(z) is the step function.
The solution inside the annulus is
A A sinh az
el () ()]
N RN *\"2/] 2sinh 28
A A coshar A A
+a(3) + 4 (-3)) Seoh 2 07 T

Proceeding as before, we find that the £ = 0 mode can be stabilized if

2 ., aA aA
Tot+ 2 <A [1 +a—A—~ sinh TCOSh_Q_]

Thus, as % increases (more hollow current profiles), stability can be achieved with the
conducting walls at larger distances from the boundaries of the annulus.

As an example of a smooth current profile with a maximum at the mid-point of the
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annulus, we consider

B T > %
~ A
B={BsnIZ —>a:>—é
A 2 2
—-B z< -2
2 .
For this case, the current at the boundaries is zero, and the eigenmode equation (k = 0) is
82149 71'2 A2 2

The marginal stability condition is z, + m1‘= A and the conducting walls must be at the
- boundaries of the annulus to obtain stability to £ = 0 perturbations.

We note that the eigenmode equation (Eq. (Al)) was derived assuming an equilibrium
distribution function Fy(Hy, pg) which depends only on Hp and py. Thus the average “tem-
peratures of the radi‘al (v?) and axial (v?) motion are equal. If Fy = Fy(Ho, ps, p;), We can
have (v2) # (v2). It has been shown by Berk and Pearlstein,'® Uhm and Davidson,!” that
when '
| (2)> (£)
significant improvement in the conduction wall requirements needed for tearing £ = 0 mode

stability can be achieved.

33



References

1. N. Rostoker and A. Fisher, 6th Int. Conf. on High Power Particle Beams, Kobe, Japan,
June 9-12 (1986).

2. H.P. Furth, Phys. Fluids 8, 2020 (1965).

3. J.W. Beal, M. Brettschneider, N.C. Christofilos, R.E. Hester, W.A.S. Lamb, W.A.
Sherwood, R.L. Spoerlin, P.B. Weiss, and R.E. Wright, in Plasma Physics and Con-
trolled Nuclear Fusion Research (IAEA, Vienna, 1969) Vol. I, p. 967.

4. R.V. Lovelace, Phys. Rev. Lett. 35, 162 (1975); and Phys. Fluids 19, 723 (1976).
5. R.V. Lovelace, Phys. Fluids 21, 1389 (1978).

6. R.V. Lovelace, Phys. Rev. Lett. 41, 1801 (1978).

7. R.N. Sudan and M.N. Rosenbluth, Phys. Fluids 22, 282 (1979).

8. J.M. Finn and R.N. Sudan, Phys. Fluids 22, 1198 (1975), J.M. Finn, Phys. Fluids 22,
1770 (1979); J.M. Finn and R.N. Sudan, Nucl. Fusion 22, 1443 (1982).

9. C.B. Ruchti and R.V. Lovelace, Phys. Fluids 27, 1789 (1984).
10. R.V. Lovelace, Phys. Fluids 22, 708 (1979).
11. D.S. Harned, Phys. Fluids 25, 1915 (1982).
12. Z. Mikic and E.C. Morse, Phys. Fluids 30, 2806 (1987).
13. H.L. Berk and H.V. Wong, and K.T. Tsang, Phys. Fluids 30, 2681 (1987).
14. R.V. Lovelace and R.N. Sudan, Phys. Fluids 15, 1842 (1972).

15. M.J. Gerver and R.N. Sudan, Phys. Fluids 22, 686 (1979).

34



16. K.D Marx, Phys. Fluids 11, 357 (1968).
'17. H.L. Berk and C.D. Pearlstein, Phys. Fluids 15, 2396 (1972).
18. H. Uhm and R.C. Davidson, Phys. Fluids 23, 348 (1980).

19. D. Pfirsch, Z. Naturforschg. 17a, 861 (1962).

35



Figure Captions

1. Annular equilibrium of beam ions.

a) Cylindrical annulus of energetic ions of radius ro and thickness A bounded by

conducting walls at r = r,, and r = r..
b) Cross-section of annulus — betatron orbit of energetic ions.

2. Real and imaginary part of the frequency & for equilibria with no field reversal (60 =

0.2) as a function of %’: . (M = 2).

mg

a) £=2
b) £=3
c) =4

3. Real and imaginary part of the frequency @ of the £ = 2 mode for field-reversed

equilibria (69 = 3,10,30) as a function of %‘: . (—:ﬁ-’: = 2).

4. Real and imaginary part of the frequency & of the £ = 2 mode for ]Nvf =1, =2 as

a function of the field-reversed parameter 6¢).

36



LA i i)

77777777777
-"-_-Jr_______________;’____-__!L_".- .

 Fig. 1(a)



energetic ion orbit
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