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Abstract

» Pfeviohs studies ef the lon temperature gr;ad‘ient (I-TG) driven turbulence‘a.l"e‘ ex-
panded to -ilnclude. the eﬁ'ec-t ot sheared E X bB flows in 'sheered magri'etie fields. The
radial eigenmedes are 'éhown'td éhhstantially change character by shifting the modes
oﬁ' the rat1onal surface. The new mode structure and growth rate directly aﬁ'ects the '
transport of both therma,l energy and momentum in the sheared ﬂows The growth
§ rate first incteases with small shear ﬂew and then decreeses. r'Ii‘h'e theot’etlcal corre-

lation —of the'shear flow with‘ the thermal tra,nsport is imﬁortant with respect to the
: transitiohs'observed in tokamaks of a low (L-mode) to a high (H-mode) thermal con- .
' ﬁnement state as a function of the poloidal rotation velocity in the shear flow layer. The

thfee;dimensional no_nlineer_ simulatiens show tha-t the enomalous ion therrhal diffusiv-

ity is reduced significantly when dvE/dz:.eJ_ 2(cs/Ls) \/(_ITFW This condition is

thought to be satisfied in a boundary layer in tokamaks with shear flow.



I. Introduction

Previous theoretical studies’™ of ion temperature gradient turbulent transport considered
equilibrium plasma states with no equilibrium plasma flow velocities. Theoretical studies®~”
of drift wave and resistive-g stability including the shear flows in the equilibrium have shown
that these shear flows can substantially effect the stability of the these forms of drift wave
turbulence and the associated anomalous transport. A survey of the effect of the shear flow
on the stability of Va,rio'usr transport modes is given in the recent work of Tajima et al® An
intrinsic mechanism for the formation of a shear flow boundary layer as a plasma sheath
is shown in the studies of Theilhaber and Birdsall.® These works reassessing the stability
of the transport modes in the presence of shear flow are miotivated by the observations
of a strong shear flow layer in the edge plasinas of tokamaks (Ritz et al'®' and Taylor
et al.'?). Furthermore, the recent transport studies'®'* in the large tokamak DIII-D showing

“a sharp increase in the poloidal flow velocity coincident or preceding the change in the
thermal confinement properties known as the L to H mode transition implicate the shear
flow as a contributing factor in the thermal transport of the plasma. Thus it is important to
understand the theoretical structure of the well known ion thermal diffusivity driven by the
ion temperature gradient as a function of the sheared perpendicular and parallel ion fluid
flow velocities.

In this work we show that the sheared E x B flows directly modify the growth rate and
mode widths of the ion temperature gradient (ITG) driven turbulence. As a consequence
the mixing length formulas for the ion thermal diffusivities, which have been shown to
correlate well with fluxes obtained with full three dimensional fluid turbulence simulations,
are significantly modified by the change in the characteristics of the linear instabilities. The
results show that the plasma thermal ion confinement is indeed a function of the state of

the equilibrium flows in the system. In this description of the stability and the transport



- equations obtained from the space-time averages over the small scale ﬂuctuatlons in. the

nonhnear system descrlbe a couphng of the transport of the sheared ﬂow velocity through

“a Reynolds stress and eddy V1scos1ty with the anomalous ion thermal diffusivity.® This

coupling of the two transport pro cesses makes clear the dependence, in general, of the thermal
transport on the equ1hbr1um shear flows. -
In these stud1es we use the hydrodynamic model introduced in Hamaguchi and Horton3?

which models the effect of ion Landau damping with the. para_llel ion viscosity and paralle]

ion thermal diffusivity of order unity. The recent work of Hammet et al.® shows that these -
values for the parallel transport coefficients giue'good agreement with a simple hybrid ﬂuid
. treatment in which a linear integral operater is eonstruc't_ed for these transport term's using
a three pole app.rOXirnation to the Vlasov plasmia response function. |

' The Work is organized‘as follows: In Sec. II the basie nenlinear dynamical equatic»ns.are .
. given along With‘the ndn;dimensional parameters charaeterizing the equilibrium ﬂowS and -
gradients. In Sec. III thel‘linear stability analysis _is. present. In Sec. IV, ‘we show results of -
nonlinear 3D simulatio‘ns and calculate the anomialous io'n.'thermal; diffusivity in the presence -

- of poloidal sheared flows. Section V contains discussion and conclusions.

ILL . Dyn'arn'ical'Equati(')’ns

. The nonhnear evolution equatlons of the electrostatlc ion temperature gradlent driven mode

(or n; mode) are obtamed from the two-fluid equatlons under the assumptlons of charge

neutrality (n; = n, = n), constant electron temperature Te, zero res1st1v1ty and zero electron

‘ 1nert1a The sheared slab conﬁguration of the magnetlc field B = = B(Z + (z — :co) y/ L,)

is assumed here, which represents a nelghborhood of a rat10na1 surfac;e given by z = z,.

Here L, denotes the shear scale length, X, § and Z denote the unit vectors of the usual

orthogonal coordinate system (z,y,2). We split each.physical quantity into two parts such

as n = no(z) + 71; the unperturbed quantity denoted by subscript 0, which is assumed to be



a function of only z, and the perturbed quantity denoted by a tilde. It is straightforward
to show from the paralle]l electron momentum balance equation that electrons satisfy a
Boltzmann distribution 7i/ng = e®/T,.

For fluctuations localized on a particular rational surface at z = o, the mean ion flow

velocity vio may be expanded around the rational surface as
va(z) = Vio(zo) + (& — 20) P2 4+

The second term of this expansion may be regarded as a small term compared to the first
term v;o(zo) in the neighborhood of the rational surface. On the moving frame with the‘
constant velocity vio(zo), therefore, the mean ion flow velocity may be expressed as vy =
(z —20)0vi0/0z to the lowest order, which significantly simplifies the system of equations by
eliminating terms involving vo(%). In the present work, we use this moving (inertial) frame
to describe the system of equations, in which the magnitude of the mean sheared ion flow vy
is of the order of the magnitude of ion flow ﬂu;:tuations ¥;. The density-gradient scale length
L, = (dfnni/dz)~* and the ion temperature gradient scale length Lt = —(d¢n Tjo/dz)™!
are typical macroscopic scale lengths of the system. In a tokamak, L, and Lt are generally
of the order of the minor radius. The case of a flat-density i)roﬁle“ is briefly discussed in

Sec. IIIB. The appropriate nondimensional space-time variables are

ﬁ,_a;—wo g_y ¥ = z ‘{_tcs
Ps ’ Ps ’ L, ’ L,
and the nondimensional dependent variables are
b B In Ui In BT L
~ TB p-? ’ Cs ps ’ piO 1—‘e pa

With the use of the nondimensional variables, the system of the equations!® is given by

99
oy

d?%p

Loy

(1= A0)8 ~ {8,808 = ~(1 + KAL) 52 - S,3(1 - A1)



—51|v+{p,At¢}+{§3, §¢}+{'§—;ﬁ ,-g—§}¥ﬂLAi¢ W

d B o |
“5—;4'{45’”}— SN%-SH ¢-3n(z>+¢)+mAw+#u5n@ | | (2)
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8
8” smay %
= .0, .0 s =
V_L—x%'t‘y-a-i, ‘A_L—V_L
| 0f 99 _ 0f 0y
i }‘asz 8y 0y 0%

The nondimensioné;l parameters uséd in Egs. (1)—(3) are given by

7T L

. Ln . i> .'_ n
nEg K=EgOtm), T=agh, e=g
LV L, dog | |
Sy =20 5”=_$.

Cs ¢ dz

' Here'VO denotes the y compbnent of the E x B mean ﬂow caused by the mean electric
 potential @y, where . _
. 1 :

" with V’ = d%/dm evaluated at z = = Zo. The constants ﬂJ_” and X, in Egs. (1)- (3) are
appropnately chosen d1ss1pat10n rates For a colhsmnal plasma the values of uy I and X L)

“may be taken from_ the Coulomb transport theory.” For the hlgh temperature tokamak

" plasmas of interest, the appropriate choice of o and X| is to model the collisionless ion

'Landau effect. We note that the third term of the right-hand side of Eq. (1), =51 8*p/ 0% 07,

is derived from a so-called nonlinear finite-Larmor-radius (F LR) term i.e-._,{a.p/ 0%,0¢/0%} .
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(the 6th term of Eq .(1)) with the subsitution of ¢ — ¢o + ¢, where ¢o x P = (z —
z0)?BVy [ 2¢.

The domain on which Egs. (1)-(3) are solved is given by a cubic box |#| < L, 0 <§ < Ly
and 0 < < L,, L, and L, being constants of order unity. The size of the box in the z
direction L, is taken to be large enough, so that when there is magnetic shear (s # 0), single
helicity modes localized at ¥ = 0 decay sufﬁciently as || — L. In the case of zero shear
2L, represents the width of a constant background ion-pressure gradient and/or a constant
background density gradient. For the boundary conditions of Eqs. (1)~(3), all the dependent
variables are assumed to vanish at |Z| = L, and to be periodic in the § and Z directions.

We define the space average ( ) over the domain by

C)=ar, :1[;1, /e e e, @

If L, is taken to be co, the normalization factor 1/2 L, needs to be chosen appropriately.'”

The fluctuation energy balance equation associated with the set of equations (1)~(3) is

given by
d dp 0¢ 0¢ K /| 0¢
S (22)-5(05)-£6%)
where
Bo= 1 () + (1926P) + () + (7))
and

Wp = uo (1AL4f) + s (IV1of*) + < ‘6;|v|2>

X1 2 X” 2
+ 5 ( 1Vl -F—<\3up| > .
The three transport fluxes in the energy balance equations are

Op 0¢ \ ~ ~
<8_(IJ. _8_1;> X ('vdvaz> ’
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_ / 9 S ,‘ .
| <5§> o (5i92)

<Pg—j> x (PiVEe)
' where?)Ex = —B"laé/ay and ijdy = (eniB)fl 0p;/0z. These fluxes :;ré proportional to
the trensverse transports of the y component of the p'erturbed dia.inagneticv flow vgy, the
pefturbed‘para,llel flow v);, and the perturbed ion pressure‘ P;, respectively.

In addition to the fluctuation energy there is the'kinetic energy in the rnean flow field
Vo which is exchanged with the ﬂuetuetion enei‘gy through the ReynOlds stress '7r (v,'z. Viy)-
The Reynolds stress gives the change in the mean ﬂow velocity Vo through the turbulent
drag effect in a diffusion time scale as Vo /0t = —871' / 0z = 85(Veady OVo / Oz). The Reynolds

- stress effect is discussed and calculated in Refs: 5 and 6 and thus is not emph_asvized here.

III1. Linear Stablhty Analyses

AL The elgenmode problem

‘We now examine linear stablhty of the ITG dnven mode in the presence of sheared mean flows

based on the set of Eqs (l) (3). Assuming that the solutlons of the linearized equations of

 the system (1)—(3) have for_ms. such as ¢ = @(Z) exp z(ky —wt),lthe complex-valued function

| B(%) satisfies

28 (1-041X L, X*(K + B) — XBS| 3

X T \Eva-1x " tTEra-Ttx)AB-TX7))°
T d (TX(X-S8)+AK 2\ |
TEra- TXdX( ap-rxz  *)=% - ®

where X denotes the magnetlc-shear scaled radial length deﬁned as X = sz = Ly(z —
o)/ ps Ls, T = S 1/s = L, /LV denotes the ratic of the perpendicular flow shea,r to the

magnetic shear with the scale length of the perpendlcular sheared flow

Ly =_Ln/S-L =cs/Vo v ' _ (6)



k is the normalized wavenumber in the y direction defined as k= k, p, and Q = &/k = w/w}.

In Eq. (1)

A=Q—TX +imkX?,

B=Q-TX +'iX||kX2 ,

in the absence of parallel (or toroidal) sheared flows (S| = 0). Therefore, the complex growth
rate & = kQ for a given wavenumber & is given as a function of magnetic shear s, the ratio of
flow shear to the magnetic shear T = L,/ Ly and the ion pressure gradient K = T;(141;)/T.
as well the (almost) fixed physical parameters T, 1y and X||. It should be noted that the last
term of the left-hand side of Eq. (5) comes from the third term of the right-hand side of
Eq. (1) i.e. —S, 8%p/0% 0F. ‘

In order to analyze effects of the sheared perpendicular flow T on the eigenvalue 2, we set
I'= Sy = pyL=XpL =0and T <« 1. This is the simplest case where the basic properties
of the ITG driven mode are still maintained and effects of T are taken into account as
perturbations.

We now expand the eigenvalue  and the eigenfunction ¢ in terms of the small quantity
T, assuming that the mode is localized in such a way that |[X| ~ O(1) (or | XT| < 1).
Writing @ = Qo+ + Q2+ -+ and é = do+ ¢y + o+ - -, where ; and ¢, are assumed to
be of O(|XT|), and Q, and ¢; are of O(|X T ), etc., we obtain as the lowest-order equation

d2¢0 ].—QQ X2
2 — 2 —— - A
SdX2|<k F ko) =0 (M

In terms of the scaled radial variable ¢
£ = s‘}}o‘_zl/zX = a'l?z (8)

with
18
a=—,
0



Eq. (3) may be written as .~
| > ¢o
d¢?

HB-Bh=0, @

" where - . .
Ey= & <—k2,+
8

1—'Qo>
K+ Qg

The solution of Eq. (8) and (9) is given by ¢o-= 4> =ve“52/2H£(§“) with By = 2{+ 1 or

ix? ‘ \i 1/2. R
13 s
=)™ o

.- with the eigenvalues {1 satisfying

. _ (f) o 1 12 o .
=0y = ———————2(.1 ) {1 kK 23(26} 1)

| i\/[l—-‘k_?K—-z's(2Z+>1)]2'-4z's(1+k2)(2€{.1)K}." R (11)

Here Hy(£) denotes the £th-order Hermltlan function of the complex varlable f For a long- |

Wavelength mode, wh1ch is not the fastest growing mode, the elgenvalue (9) is simplified

to

Q’“’~i(2£+1)51{ )

~ under the assumptwn that (2€ + 1)5 < 1 and |k2K | < 1 The mode satlsfylng k2 ~ K 14

| | known to have the largest growth rate which is der1ved from Eq (9)as

‘o K /2(2e+1) . o
Q(e) ~ (-1 —\ 1
0" 2 (=1+1)5 K+1 1y

under the assumptlon that |1 — sz | S (2€ +1)s < 1. The most unstable mode is found by
maxu'mzmg the normahzed growth rate Fo = on with respect to the y-direction wavenumber
k =k, ps and the ra.dlal—mode number £. More details of the solution of Eq_. (7)-are found

- in Ref. 3, including the threshold c_aloulations for K.



Proceeding to the first- order equation of the small-T expansion, we have

d? Q K+1
dgszl + (EBo — &)1 +1 30 E 1) (h —€6)do
Q —¢&6 Ké d _
+2§2(—QO——)¢‘0+mE¢0—0, (14)

where:

§ = sTa % = (—isQ)/? Y,
Ey=20+1, Qp = Q((f) and ¢p = ¢(()e) = e~¢/2H,(¢). The solvability condition of the
inhomogeneous equation is given by integration of the product of ¢~§f’ and the left-hand side
of Eq. (14) over the total domain of £; i.e. —o0 < € < oco. Since ¢§f) is even (odd) if £ is even

(odd), the solvability condition yields

& (% Bt (g2 + 251; <£2¢0>) =0

(K + Qo)?
or, simply,
0, =0, 4 (15)
where ( ) denotes an integration over the total domain of ¢, i.e.
= [ s (16)

The first order solution ¢; = &E)(f) may also be calculated from Eq. (13). Expanding ¢§e)

in terms of the complete orthogonal system {¢§,"”(§ )} given in Eq. (9) as

&)=Y am #§M(8) (17)

m#L

and substituting this form into Eq. (14) yields

2
’ ¢21 +(Bo— &)1 =Y a, (2 +1) = (2n+1)) 4"
df n#l
_ o (K1) e o K§  dg{
=P e o O - g
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For the sake of s1mp11c1ty, we only consider the case of E =0, 1n which only o and as takes

.non -zero values, as shown in the followmg Multlplymg Eq. (17) by ¢0 and 1ntegrat1ng the

resulting equation over —oo < ¢ < oo, we obtain

6 (. (K+1) K _
e LG e s e ) R

Similarly, by multiplying Eq. (17) by ¢(()3) and integrating the resulting equation over —co <

£ < oo, we obtain

6

o =5 (20)

In deriving,Eqs. (19) and (20), we have used the integral formulae of the zeroth order

: e1genfunct1ons ¢( ) summarlzed in the Appendix.

‘We thus obtained the perturbed eigenfunction glven by ¢(§) = ¢(O)(£) + alqﬁg‘)‘({) +
, a,3¢0 )(6), Where ¢(1)(§) = 26_£ /25 and ¢ =4e ‘52/2(253 - 3¢). The oppoéite-parity»eigeh-;

' functions ¢> and ¢(3) which are added to the “pure” n,vmode ¢ as a perturba,tlon, rep-‘

resent a shift of the mode off the rational surface. In the cage of long-wavelength modes

-'_([k2KI < 1) in _weak magnetic shear ((ZZ + 1)3 < 1), we use the express1on (13) for O and

51mpl1fy a; and az as’ : ' , -
. =—=T =—=T _ , (21

R CmEVRS . ®Twyk @)

by usmg §= ( isQo)l/ T = 3\/— T and taking the lowest order of a; and a3 in s. Therefore,

the elgenfunctlon in the presence of small poloidal shear ﬂow may be expressed as

~ 22 3zT 2z e
¢(w) = e7K (1 + — 5K © (1 + 9_K—>> . - (22)
Since the first- order elgenvalue Q, is 0, we need to proceed to the next order in order to

- obtain the Iowest order eﬁect of the shear ﬂow T on the growth rate. Us1ng O, = 0, the

second order equatlon is glven by -

: d2¢ R (K+1)

n



863 0K +1)

_2'@;‘451‘*' S(I{+Qo)2 ?50
(20, i (K +1) 3
+ (Qo TS (KA )P 52) 0~ 54¢°
K& Ké K(K +200)8* , ddo _
w00 *t T+ 000 % 4+ CETATA (23)

In the case of £ = 0, we substitute ¢o = ((, ) = e=€/% and ¢ = a1¢¢()1)+a3¢(() ). The solvability
condition of Eq. (23) is obtained by multiplying Eq. (23) by ‘¢§,°) and integrating the resulting

equation over —oo < ¢ < 0o as

S D)) - 2 (g

’I:QO (I{ + 1) (0)2 52[{ (0)2
s (K + Q)2 7% (46 >+(K+Qo)m (57)

292 ZQO (K + 1)6 2 ,(0)2
+ ( Qo S K + 90)3) <£ >

362 4 (0)2 K (0) d

(.K + 290)521{ (©) d _
(K + )02 < ° d£¢>_0' (24)

In the case of long-wavelength modes in weak magnetic shear, Eq. (24) may be further

simplified. Using Eq. (12) or Qo = tsK (|Q%| < 1) and keeping the lowest order terms of
O(s~?%), we have

<€3 oM > < (0)2> L] 292 <€2 ()2 <£4 (0)2>

8 [ (0 d K 6 [ (o
It should be noted that ¢; is of O(6/s) and K > ]Qo|.' Using the integral formulae in the

Appendix and the expression (12), we obtain

‘€2
310 = éist .

0y =

12



Therefore, the second-order accurate eigenvalue Q = Qg + Q, i's‘ given by

- g
Q=?sK (1-{- 4]()

" In terms of dimensional quantities, w = w¥*Q is given by

w = iw¥ (%l) (;L/;) (H %g_)

(25)

(@)

~ We thus find that the growth rate 7¢ = Im w increases as T2 = (Ls/ Lv) when T S 1.

We now briefly cons1der an alternative formulation of the linear equation (5) _in- which the

resulting equation has a structure similar to that in the standard equation for the Kelvin-

Helmholtz instability. With the use of

__ ¢ ' e
T=aoxy o 9=0-XT
itis easy to show that . ,
’ Co2 2.r
d*¢ a*f oY daf

B ot rciatirr &
Ignoring the effe}cts‘ of pa.ra.llel.compressibility (T = 0), parallel shear flow (Sy

parallel diﬂ"usion _(u” =X = (), we may write Eq. (1) as |

(o) (e )

19X K+g
In order to further simplify this equatidn, we introduce |

K

i S e with e X
‘4.'_ T~ _ with a= o
“and rewrite Eq. (25) as
,k2_

2 df) (tatXt
FAGEEEIRIETE =

o (g T )}(cz-—’a%f;o-,

T {+a) T2+

13

= 0) and

1)

"(2'8')_ |



where the relation

T\ Ty e

is used. In order to obtain an approximate solution of Eq. (28) by means of the WKB method

X? 1( 20 92)

for large (, we transform ¢ to

1 ( —a
=% lnog (+a
when (% — a2 # 0. Noting the relation
d¢
d’? = Cg — a2’
we transform Eq. (28) to
SN\ U
a0 (&) 10 (29)
with
g2 (+a+ Y1 1 2Q 02
HO=++ m ira) TR o

The WKB solution of Eq. (29) is then given by

o W exp (:I:z'/C \/marc) : (30)

In general, it is not possible to perform the integration of Eq. (29) analytically for arbi-
trary T and . However, taking certain limiting cases, such as the strong shear flow limit
(T — o0), signiﬁcant;ly simplifies Eq. (29). In fact, the éolution and the dispersion relation
of Eq. (29) in the case of p({) ='1 with appropriate boundary conditions are known in simple
forms from the theory of the MHD Kelvin-Helmholtz instdbility.lg'Zo In the context of the
present work, however, we proceed to direct numerical calculations of the linearized system,
rather than discussing analytical solutions of Eq. (29) in certain limiting cases. Detailed

analyses based on the formulation of Eq. (28) and (29) will be presented elsewhere in the

light of thé relation betweén the ITG mode and the Kelvin-Helmholtz instability. Interested

14



readers are also suggested to refer to Refs. 6 and 8, in which the 1nteractlon between the
drift wave, g- modes and the Kelvm Helmholtz instability is d1scussed in some detaﬂ both

 linearly and nonlmearly.‘

B. Numerieal calculations of linear modes

Instead of solviné the eige‘n_vatlue pfohlem (5), we now solve the linearized system of Eqs. (1)—(3)
numerically as an initial:value prohlem to obtain the most unstable modes under various con-
ditions. The linear initial-value code used here is the same as the nonlinear initial-value code
used in Sec:. I1I except that all the nonlinear terms in Egs. (1)-(3) are .dro‘pped‘ in the linear
code. Details of the numertcal code is found in Sec. IIL |

Figure 1 shows the dlspers1on relation of the ITG drlven mode in the presence of per-'
‘pendlcular shear ﬂows It is shown that the most unstable mode is obtamed for k = kyps ~ |
0 T~ O 8 regardless of the magnitude of shea,r flow. It is also shown that a large perpend1cu-
lar sheared ﬂow (T=2) has a stablhzmg eﬁect on the mode. The parameters used in these
calcula,tlons are: magnetic. shear s = 0 1, ion pressure grad1ent K = (T; /T JX4+m) =3
and dlffuslon coefﬁc1ents_X”>= pp=1, X1 =py = 0.01. In Fig. 2, by ﬁxmg the_ y-direction
Wavenumber k = ki,ps = 0.6, which gives a mode close to the most unstahle mode, we
show the relatlon between the growth rate 7G and the perpendlcular-ﬂow shesir parameter
T=1 s/Lv in the two different cases of magnetlc shear, s=1L s/Ln =0.1 and 0 3. It is seen |
‘that, in both strong (s = 0.3) and weak (s = 0. 1) ‘magnetic shear cases, the cr1t1ca1 value
T, of the shear flow parameter T for stability is given by T, =~ 2. ‘We also note that as thel
perpendicular-ﬂow shear Y increases from zero, the' gi‘owth rate v initially increaées as a
weak function of T for small T, in accordance with Eq. (25), and theh deoreases sharply
near T'= T . .in'dicatir‘lg a transition from the magnetic—'Shearédomihant region»to the ﬁovt/—
‘ shear-dominant reglon In the magnetm—shea,r—dommant region, as shown in many earlier |

Works the rnode structure is sustained and limited by the magnetlc shear s =L,/ L. In the

15



ﬂow-shear—dominaﬁt region, the perpendicular-flow shear is so st‘rong that the vortex cells
created by the ITG instability are distorted significantly. Figure 3 shows similar relations
between v and T for two different ion pressure gradients; K = (T3/T.)(1 + 771') = 3 and 5.
Figure 4 shows the critical value T, of the poloidal flow shear T as a function of the ion
pressure gradient parameter K = (1 + n:)(Ti /T.). 1t is seen that, when K is larger than its

critical value K, (= 0.4), T, scales as

Te = 2VEK = 2¢/(1 +m)(T:/T.) - | _ (31)

As indicated in Fig. 3, the dependence of T, on magnetic shear s is weak.
We now heuristically derive the formula in Eq. (31). Near the marginally stable st’a,té,
where || < 1 (Eq. (13) indicates that the real and imaginary parts of the growth rate are

of the same order), we may write the eigenmode equation (5) approximately as

d24 1-TX X2\ ~ YK dé
2 _ L2 e il ASp—
 Ix (K—TX k +Q2>¢+ Qax 0 (32)

if T = g = X, = 0 and K = O(1). Requiring that the sum of the first two terms
(1-"X)/(K —YX) — k? is of the same order of the third term X%/Q? in the parentheses
() of Eq. (32), we expect K — TX = O(|Q7?) « 1 near the marginal stable state
(Y = Y,), where X represents a typical mode width. Equating X to the y-direction mode
width of the fastest growing mode given in Eq. (13), namely, X = k™ =~ VK (or, equivaiently
sAz = Ay = (k, p,)~* = VK, where Az and Ay are the mode widths normalized by ps),
we obtain K — YT, k™1 ~0, ie. To ~ VK.

The case of a flat density profile,* where L, — oo and n; — oo, exhibits similar linear
properties of the ITG driven mode to those of the cases of 7; o~ O(1) presented above. In
order to assess the case of a flat density profile, we need to use different normalization of
variables and parameters from those used in deriving Eqs. (1)~(3) since the density gradient

scale length, which is used as a typical macroscopic scale length, is inﬁniﬁy in this case. An
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appropriate normalization is given in Ref. 4, where macroscopic lengths are normalized by

(T./T;)Ly. Under this normalization, Egs. (1)~(3) with L, = oo are t.ran‘sformed to

¥ S a 03 9 o 0%
8t(1—AJ_)¢ {¢ (,Zs}v——.A_LaN—FSJ_ AJ_a~ S_Laxay
__a“v+{_p,m¢}+{% ,} 3§}+{8g, ST (39
o o5 ~ 03 o '
| E+{¢,v}——5¢w02 S” 6%—5||(p+¢)+mAJ.v+uu5“v, - (34)
p . n o5 83 o
5+ (B9} = S'J_a:a,, 7 —Top+ XL AP+%85, | _(35)

where the quantities denoted by the ca_ret have different normalization fi'o_m those defined in

Sec. 1I, Vna'mely-

é_ z 2\_ teg
_TLT _TTL
g__eg 'TLT 6_'1)” TLT
T ps e ps
5o B Lz
pz'O‘. Ps ,v
0 d .
B = =+ 0F —
=52 7" 55
and , o
. ' __“TLT __T = '_T'LTVH 8 _ TLT dvno
=7 T—T SJ_—-"VCS ) S||—_ e

. The diffusion coeﬂiaents By Bos X”, X, are also normalized accordlngly

We n now exarmne hnear properties of the flat dens1ty-proﬁ1e ITG dr1ven mode with finite

shear flow by solving the hnearlzed system of Egs. (33)—(35) numerlcally by means of the

S

linear initial-value code.

Figure 5 shows the dispersion relation of the ion temperature gradient driven mode

in a flat density profile with o = 7Lp/ L, =01 for four diffefeﬁt values of ﬂov&,shea,r;
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T=25./0=L,/Ly =0, 1.0, 1.5 and 1.8. Asin Fig. 1, the most unstable mode is obtained
for ky ps = 0.7 ~ 0.8. Choosing a Wa,venumber k, ps = 0.6, which gives a mode close to the
most unstable mode, the relation between the growth rate 4z and the flow-shear parameter
Y is shown in Fig. 6. As in the cases of finite 7;, the growth rate is an increasing function
of T for small T but decreases steeply near T = Y. ~ 2. It is evident in Fig. 6 that, for a
wide range of the magnétic shear values o = 0.05 — 0.4, the critical value of Y for stability
is given by

T.~2, (36)

in the case of a flat density profile.
IV. Nonlinear Numerical Simulations

We now solve the set of the nonlinear partial differential equations Eqs. (1)-(3) numerically
in the 3D domain and obtain the cross-field anomalous ion heat conductivity X; arising from
the ITG driven mode in the presence of finite sheared poloidal flow. As in Sec. III, we do not

consider sheared parallel flow (S = 0). The anomalous ion heat conductivity X; is defined

xi=@=—% (CT)< >/K (37)

Here the time average g(t) of a time-dependent function g(t) is defined by

o) = Jim = / (t)dt

and the space average ( ), which is somewhat different from Eq. (4), is defined by

by

L,z Ly Lz
s [ ' dy / dz (38)
o] 0

where A denotes the mode width in the z-direction. In practice, the time é,verage is taken

over a reasonably long time period of T after the saturation is attained. The size of the mode
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width A is used as e normalization factor of Eq. (37) SO that‘avera,g'ed values calcniated from
Egs. (36) do not depend on choice of L, when the modes are localized. In ouf simulations,
the definition of A is given as follows; for a function f(%) Arepresentin‘g a phyéical quartity
averaged over § and Z, we define
; ~' 1 if |f(x)| > fmax/IO

1B ,{o if |£(5)] < fraae/10 -
where fumax 1s the maximnm value of |f (?z:')| on ]5| 3 L,. Then the mode .Width A ié defined
by |

A= / m) dz ,

; - which gives a reasonable estimate of the ° ‘support” of the locahzed mode. The ﬂuctuatlon o
level of the spgce—averaged anomalous ion heat conductivity. Xi(t) = (ps U1r) /( on) is thenu |
given by | - A ‘
| ae={O-%xr )", (39)
- which is shown by error, bars in the following ﬁgures forXt .

The initial vaIue code used to solve Egs. (1)-(3) is modified from the code used in Refs 3
and 4. In the 1n1t1al value code, Founer representafcmn for the § ¥ and 2 varlables and a ﬁnlte
v' dlfference scheme for the T var1able are employed At each time step the dependent variables

are advanced by : means of the predictor-corrector method The nonhnearlty employed in the
current version of the initial value code is due to the convective derivative {¢, } and
‘the nonlinear ﬁnife-Larmor—radins terms {p, Aqu} + {ap/ai, 8¢/5§} + {0p/0Y,04/0y} in

(1) The boundary conditione are that all the physical variables be periodic injand 7
with penods L, and L, respectwely, and they vanish at |:c| Lm, as dlscussed in Sec IL. We-
refer to the (m, n) mode of the Fourier representatlon as the mode whose yand Z dependence
- is glven by the phase 2r(my/L, —nZ/L,). The wave nnmber_s ky and %, are thus given by

k, = 2rm/L, and F, = 2mn/L,. The rational surface of the (m,n) mode is located at
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z = nLy/ms L, since V|| « (msz/L, —n/L;) = (ms/L,)(z —nLy/ms L) for the (m,n)
mode. As initial conditions, small perturbations are given to each (m;n) mode at £ = 0.

The size <;f the domain used throughout the following calculations is given by L, = 20,
L, = 107 and L, = 7.57, so that the smallest finite wavenufnbers are ky p; = 0.2 and
k, L, = 0.267 and the distance between the two rational surfaces of the m = 1/n = 0 mode
and the m = 1/n = 1 mode in the case of magnetic shear s = 0.1 is about 13p,. The equally
spaced 150 mesh points are used for descritiéation of the interval —L, < Z < L, and 56
modes (0 <m <7, =3 <n < 3) are chosen for the Fourier representation that cover at
least all the unstable modes. The perpendicular diffusion parameters used in the simulations
are ;. = X3 = 0.1. As noted in Sec. II, the parallel diffusion parameters p = X = 1.0
are chosen so as to model the collisionless ion Landau effect for high temperature plasmas.
In order to obtain turbulent saturation, rather than local quasilinear saturation, all the
background quantities are kept constant (i.e. the m = n = 0 components of ¢,v aﬁd p are
set to be 0 at each time step).

Figure 7 shows the dependence of X; on the magnitude of the perpendicular sheared
flow T = L,/Ly for two different values of magnetic shear s = 0.1 and 0.3. As expected
from linear properties of the mode discussed in Sec. II, X; is reduced significantly when
T 2 2. Figure 8 shows potential contours. (¢ = const.) at saturation in the case of T = 1.5
and s = 0.3. The constant potential contours are the streamlines of the perturbed E x B
flow: the streamlines of the mean flow are not shown in Fig. 8. It is seen that the vortex
cells are considerably elongated in the y-direction due to the sheared flow. There are 7
rational surfaces for the m = 1 modes, located at z/p, = 0, £4.4, 8.9, and +13.3, (and
more rational surfaces for higher m modes) in the domain of Fig. 8. Figure 9 shows the X;
dependence on the sheared perpendicular flow S, in the case of zero magnetic shear (s = 0),
in which T = S1/s = oo. It is observed that Sy, rather than T = L,/Lv, becomes a

characteristic parameter in determining X; when the magnetic shear s < 0.1. From Figs. 7
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and 9, the anomalous ion heat éonductivity X; in weak magnetic shear CIS 0'.1) is shown
to be reduced significantly when S 2 0.2. The other"parvameters' chosen for Figs. 7-9 are

K=T(1+n)/T.=3and T = 2.
V. Discussion and Conclusions

We .havé shown based on linear and nonlinear calculations that the ITG driven turbulenvce

is significantly reduced in the presence of sufficiently strong sheared poloidal flows as ch_ar—-

acterized by the parameter T = L, / Ly ~ Tc, Whel_'e‘

T, =~ 2y/(1 +n:)Ti/T.

,denotes. the critical value of Y. The condition of such reduction of the ITG turbulence i,s,v- h

therefore, also given by | ‘ o
| dvg _ 2, [LF 00T,
de -~ L, T. '

The linear,léalculations show that this reduction of the ITG mode activity is basically at-

_ tributed to linear stabilization due to the sheared poloidal flows, rather than a nonlinear

 stabilization. It is also shown analytically and numerically that weak sheared flows (T 1) |

increases the linear growth rate of the ITG mode as T2, whereas the aforémentidhéd reduc-

tion of the gfowf;h rate and stabiliéation_oécut when T = (’)( 1). Three-dimensional nonlinear

cdlculations_ demonstrate that the ITG driven turbulence ?m’d the associated anomalous ion .

heat transporf coeflicient X, are reduced -signiﬁcan_ﬂy when T ~ T.in a realistic parameter

-range of K = (1+ n:)T:/ T, and s=1L,/L,.
These conditions are well satisfied in the shear;ﬂow 'b’oilndé,ry'la.yer of toke_imaks. For

example, in TEXT the shééred poloidal flow ha,s”b.een found to be greater than dvg/dz z ‘

1055~ in the edge boundary layer Where L, > 200 cm giving Lydvg/dz ~ 2 x 107 cm/s which

WoudldAexAceed ¢s unless the edge temperature T, > 500eV. At the actual temperature in the
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shear layer T, ~ 50eV the parameter Y is several times greater than T, and the experirﬁent
shows a local reduction in the fluctuation level of & as shown in F ig. 1 of Ritz et al'

In the DIII-D tokamak (Groebner et al. 1990) the onset of the high confinement regime
(H-mode) appears to follow the increase of the sheared poloidal flow inferred from Doppler
shift measurements of spectral lines inside and outside the shear flow layer of width Ly =
2 cm. In this case the value of dvg/dz is reported to increase from 5 x 10°/s to 1.5 x 10%/s in
thé time (5 — 10 ms) required to go from the low confinement regime to the high confinement
regime. For L, = 300cm and ¢, = 107 cm/s (values not given in Groebner et al. 1990) the
dimensionless parameter T would increase from 5/3 to 5 in this transition. Certainly, such a
change in T would predict a dramatic reduction in the ion thermal diffusivity X;(X, Y) from

our theory and simulations.
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Appendlx

Here we sumnmarize the integral formulae used in Sec. III Writing W(f) = €77 Hg(é) with
Hermitian function Hy(€) = (—1)% (d" "52/d§"),we have .- |

_fralF (n=m)
(tntim) = {0 (n#m)

| ' 2In_1n!\/7? (n= m + 1) -

(otherwise)

B 2"“2n!ﬁ - (n=m+2) |
<§2u " > _ J 2 (2n + nly/r (n=m) |
e 2*(n +2)ly/T (n=m=-2)
0 (0therw1se)
Il r (n=m+3)
, 3.2 2nnly/r - (n=m+1)
(Cupum)={3-27 "+ D+ 1DIy7T - (n=m-1)
B S n=m—9)
' L0 "~ (otherwise).
(27—4n! (n=m+ 4)
P DIE (n=m+2)
() = 3 2207 Font DolyF  (n=m)
S\ T 2”(2n+3)(n+2)'\/— (n=m —2)
S : 2”(n+3')\/_ (n=m-—4)
L0 (othervvlse)

. ' —2’”'1n!.\/7?v'v (n=m+1)
(nt) {gn<n+l>!ﬁ (n=m~1)

(otherwise)
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—2m=2nly/m
_ ] =2rtalym

(fnnu;n)“ 2”(n+2)!\/7_r
0

Here the prime (') denotes d/d¢.
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Figure Captions “ i

1. The diépersion relation of the ITG mode for various T values. Here K = 3, ' =2,
‘and s = 0.1. |

" 9. The relation between the growth rate v¢ and the pololdal flow shear T for two different
magnetic shear s=0.1 and 0.3. Here K =3,I=2,and k,p, = 0.6.

3. The relation between the growth rate 45 and the poloidal flow shear T for two different

- ion temperefﬁre gradients: K =.3 and 5. Here s - O.‘-l; I' =2, and kyp, = 0.6.

4. The critical poloidal flow shear T, as a function of the ion pressure gradient parameter
= (1 + 7:)(Ti/T.). The dashed line is a fitting curve given by T = 1. 78\/_ Note
that the crltlcal value for K in the absence of ﬂow (T = 0) is glven by K. =04.

5. The d1spers1on relat1on in the case of the flat den51ty proﬁle for dlﬁ'erent Si/e. Here
o=01and T =2. | o

6. The relation betwéen the growth rate 7g and the poloidal ﬂew shear T = L,/Ly for -
four different magnetic shear: .a' = 0.05,0.1,_0.2 and 0.4. Here k,p, = 0.6 and I' = 2. '

7. The anomalous ion heat conductivity X; (normalized By (ps/Ln)(cT./eB)) obtained - »l
from 3D nonlinear simulations as a function of the poloidal flow shear T = L;,/LV in
-two different _fnagnetic shear s = 0.1 and 0.3. The parameters used here are K = 3,
T'=2py =X, =01, and g = X'= 1.0,

‘8. Potential contours (¢ = const.) at"a nonlinearly -saturated state when T = 1.5 and

s =0.3. The other parameters are the same as those used in Fig. 7.

9. The anomalous ion heat conductivity X; (normalized by (p,/ Ln)(cTe/ eB)) obtained
- from 3D nonlinear simulations as a function of S in zero magnetic shear (s = 0). The

other parameter used in these calculations are the same as those in Fig. 6.
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