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A 2-D ballooning transform is devised to investigate ballooning symmetry breaking
effects. It is found that there are stringent limitations on the use of 1-D eigenmode

equations to describe plasma stability.

The problem of plasma stability in an axisymmetric torus (like a tokamak) is intrinsi-
cally two-dimensional (2-D); i.e., the associated eigenvalue equation is a pastial differential
equation in two variables. For modes with large toroidal mode number n, it is generally
believed that the modes are localized about a rational surface. Such a mode is conveniently

expressed as
®(z,0,() = exp(in¢ —imb) > exp(—ild)d(z, L) , (1)
£

where () is the toroidal (poloidal) angle, and & = Sk¢(r — ro) with kg = m/ro, and
the shear parameter § = [ro/q(r0)](dg/dr),,, is the normalized local radial variable. Since
{ characterizes the number of sidebands coupled to the central Fourier mode (n,m), the
localization of the total mode to a small region, (r —rg)/ro < 1, necessarily implies £ < m.

The ansatz of a local mode (£ <« m) immediately reveals the approximate translational
symmetry! £ — z 4+ 1,£ — £ + 1 obeyed by the operator for the 2-D eigenmode ¢(z, ). It
is this translational invariance which we call the ‘ballooning symmetry’ thét reduces the in-

trinsic 2-D eigenvalue to a 1-D problem. The translational invariance is manifestly displayed
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in the ballooning representation constructed by taking the ballooning transform of the 2-D
equation for ¢(z,£) converting it into the well-known 1-D ballooning equation.'??
To investigate the appropriateness of the ballooning equations for the description of

plasma stability, let us introduce a 2-D ballooning transform
8(z,0) = 74 d\ dk explik(z — £) — iMJB(k, ), )

which can be viewed as a generalization of the Lee-Van Dam representation;' the latter is
the limiting case of Eq. (2) as g(k, ) — @(k)6(A — Ag). It is obvious from this observation
that the ballooning equatioﬁ is meaningful only if the 2-D wave function @(k, A) is localized
at a certain A\g. Making use of Eq. (2), one can easily obtain the transform of the 2-D
equation for ¢(z,£) by the set of substitutions: z — ¢ — 19/0k, £ — —i0/0A, 0/0z — ik,
#(z,l) — @(k, ), and ¢(z,£ £ 1) — exp[Fi(k + N)]@(k,A). In the transformed equation,
the symmetry breaking terms (the terms not invariant under the transform z — =z +‘1,
{ — £+ 1, e.g. terms proportional to £/m etc.) will appear as derivatives with respect to A.
Because of the assumed localization in A(~ Ag), even for large-m = ng(ry); these derivative
terms should not be neglected without a proper analysis. In other words, the stability
properties determined by the ballooning equation alone would not be consistent with the
original assumptions (in particular, £//m < 1), unless oﬁe can show that in the presence
of the symmetry breaking terms, the quantity |AM| = |(8/9X)¢n @(k, X)|~t, which is the
inverse of the effective rate of change of the 2-D mode &(k, A) (localized at A, the parameter
of the ballooning equation), is sufficiently large that the contribution of terms containing
(1/n)8/0X,(1/n*)0%/ 0N - - - is negligible. More precisely, the inequality 27 > |[AA] > 1/n
must be satisfied.

Without loss of generality, we consider a fluid model for drift waves in an axisymmetric
tokamak. The linear equation is

o 2

~ ~
g e Cs 2 Wde _ :
prﬁfI)——(1—253—?)@—JV”(I>-—2—(;—@—0, (3)
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where V|| = [¢(r)0/0( + 0/00]/qR, Vi = (1/7')(8/37")7"(8/37‘) (1/7'2)(82/892)
oF = —i(Tec/Benor)(dno/dr)(8/86), ¢ = Te/mz, Bge = —z(Tec/Be Rr)(sm 0rd/or +
cos 0 9/96), p? = T.c/eBw, with w the mode frequency, T, the eiec‘broﬁ temperature, ng |
the plasma density, B the magnetic field, e(> 0) t.he electron charge, R the major radius of
the torus, r the radial position, m; the ion mass, c the speed of light, w,; = eB/cm; the ion
cyclotron frequency, and §, stands for the electron dissipation. For simplicity B and R are
assumed constant throughout the letter. Defining the variable z by z = nlg(r) = q(rd)] with.
ro given by g(ro) = m/n, we take the ballooning transform [Eq.v (2)] of Eq..(3) to-derive the- |

2-D equations for @(k, A),
204 00 0 & +£0) ¢k, ) =0 | | (4)
o e h=E

with £0 = I1{) 62/6k2+1'[(’) k2 4TI )+cos(k+/\)H(’)+sin(k+/\)1'[§i)k (i =0,1,2,1), where
H§°) ~ O(1), Hgl) ~ O(1/n), H§2) ~ O(1/n?) are independent of k, );, determinéd completely -
by the local parameters, and HED% F(E) + g(k) 8]0k ~ O(1/n). Expressions for all s
can be derived in a straightforward manner. For example, TI{" = 2T /ng(ro) with IV =
(cs/waR ps kg)%,, and IV = —(2i/n)(d?q/dr?),,/(dg/dr)?,. In Eq. (4) we have assumed
that the terms associated with (1/n®)(8%/8)%), (1v/n2)(62>/8k2), (1/n?)(8/8\)(8/Bk) etc., |
are higher order terms, and are negligible. o | o |

Equation (4) can be solved perturbatively. The.lowest order equation is the ballo‘oning.

equation

£<°xN(k- A) = [,c<°>+11 (A) H(b)]:XN(k'/\):O - (5)

where IIy()) is the elgenvalue for an arbltrarlly glven A, and N la,bels the spectrum In . .

the rest of the letter we deal only with the fundamental elgenmode X = XN__O, we. shall
drop the subscript N. Since the ballooning equatlon is 1nvar1ant under the transform E—
—~k, A — =), II(A) must be an even function of A. Then, we write gq(k,_A) = 1/)(/\) (k,A)+
©1(k, A) + 0o (k, \), with 1 ~ €, @a ~ €, treating € as the pertﬁrbation parameter. Noting
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that (0/0A)n X(k,A) ~ O(1), we expect 1(A) to be a fast varying function in A, so that

27 > |A)| can be satisfied. The first order equation is
d -
(g) LOX 4 Fypr =0, , (6)

implying that ¢y is proportional to (di/d)); i.e., 1 = (dip/d)) $1 which converts Eq. (6)
into

Lo +LDXx=0. (7)

The adjointness of Lo yields the solvability condition
/ kX LOX =0, (8)

which will be examined later. The second order equation, given by

%
TP =0, )

where Q(A) = [II{Y — II(\) + (X LO(8X/0X)) + (X LOX)] / [(XLOX) + (XLO G1)] with
() = / dk .- / / dk X2, determines (), and the 2-D eigeﬁva.lue. Equation (9) is a Hill-
equation; the A-dependence in Q()) comes from cos A and sin A. Notice that Q(A) is pro- -
portional to a large number n? arising from the smallness:of £ and LM &;. If the \-
dependent part of II(}) is not very small (generically it is O(1)), the most localized 1())
can be obtained by expanding %(A) at its minimum Ao, which yields a Weber equation.
The fundamental solution is ¥(A) ~ exp[—an(X — Ag)?] (a ~ O(1)) leading to the expected
ordering A\ ~ 1/./n ~ ¢, that satisfies the requirement 27 > [AX| > 1/n for the validity
of the ballooning equation. For example, if the A-dependent part of II(A) ~ cos A (a good
approximation if toroidal coupling is not strong), Ao can only be 0, or 7, with a correction of
O(1/n), depending on the sign of <X£(2)X> + <X£(1)¢1>. The O(1/n) shift of Ao from 0, or
7 is caused by the terms <X£(1)(8X / 3)\)> + <XL(1)X> in @(A), which are odd functions in A.

The effective eigenvalue of Eq. (9), I —TI(Xo), is a quantity of O(1/n) which necessitates
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the inclusion of terms like <XL'(1)(8X / (9)\)> to obtain an eigenvalue fully correct to O(1/n). |
When the toroidal coupling is strong, the A-dependence in Q(A) can be very different from
cos A, and more than one extrema could emerge. This is indeed the behavior for the ideal
ballooning mode in some range of parameters; two additional minima are observed about
A~ w/2,

From the preceding discussion it would appear that the broken ballooning symmetry
has only an unimportant effect, an O(1/n) correction to the eigenvalue predicted by the
ballooning equation. However, this may not be true. The broken ballooning-symmetry-also-
requires that the solvability condition, Eq. (8), be satisfied; i.e., the iocalized mode may exist
only at some rq for a given equilibrium with an envelope width Ar ~ r9/4/n. When the
solvability condition is not satisfied, a fast variation of (1) (AX ~ 1/n) is superimposed on
the already obtained intermediate variation (AX ~1/4/n), so that all higher order derivatives.
with respect to A, such as (1/n3)(8%/8)\3) etc., can not be neglected in Eq. (4), implying
£/m ~ O(1), which is inconsistent with the basic assumption of a localized mode. .

It is crucial, therefore, to focus our attention on the solvability condition Eq. (8). The
solvability condition, in general, will be complex séve for some special modes like the ‘ideal
mode’. The discussion on the real solvability condition will be presented.elsewhere.. For.the.
complex form, it leads to two real simultaneous equations, which place strong limitations on
the existence of localized modes. To illustrate flle general situation we concentrate in this
letter on drift waves described by the ﬂuid model Eq. (2).

At this point, we would draw the reader’s aftentio_n to the fact that for analyzing the
effects of broken ballooning symmetry, our theory is quantitatively different from the theory
of Connor et al.? In the latter theory the symmetry breaking effects arise solely from the
variation of equilibrium, while our analysis includes the equally important sideband coupling.
The term (1/r?)(9%/96?) is, for instance, approximated by (m/r)? in Ref. 2, however, it

should be (m/r)%(1 4 £/m)?, the form used in our 2-D ballooning transform.



For a given equilibrium there are only two adjustable parameters in the solvability con-
dition: 7o and n, when the mode frequency is expressed in terms of the solution of the
ballooning equation. The toroidal mode number n has an upper bound because very large n
drift waves are physically uninteresting. We find that for n numbers, in the range of interest,
the ensuing complex solvability condition can rarely be satisfied for the fluid drift waves.-
A typical result illustrating the aforementioned difficulty, is shown in Fig. 1, where we plot
Re F' and Im F as functions of ro for a few values of n. The function F(p) in Fig. 1 is
defined by ¢F'(p)/ng(re) = <m>, where p = ro/a is the radial position.normalized.to the
plasma minor radius a. Required expressions containing X and the eigenvalue are obtained
by solving the ballooning equation numerically. For the equilibrium, we choose a constant
density scale length L, a constant electron dissipation &, a T.-profile Te(p) = T.(0)(1 —p?)?,
and a g-profile ¢(p) = go + (¢a —2g0)p* + o p*. I, for a given equilibrium, F(p) is never very
close to zero throughout the plasma minor radius, then the localized drift wave predicted by
the ballooning equation analysis turns out to be inconsistent with the assum?tions, and can
not exist within the model.

The plasma stability predicted by the ballooning eciuation, therefore, is acceptable only
if the solvability condition in a given equilibrium has been shown to be satisfied; i.e., there
exist a set(s) (n,ro) for which F(p) = 0. Evidently one may not expect a solution for any
particular n. On the other hand, even if the localized modes indeed exist, they may not be

the most unstable modes.
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Appendix A — The Explicit Expressions of ng‘) for Drift
Waves

Defining ¢ = n[gq(r) —g(ro)], and substituting Eq. (1) into Eq. (3), we obtain the 2D-equation
for ¢(z,£)

4 dad 0y ‘:—2 (e —£%4(z,0)

1—46, —F 1 2\?
‘[ ARE R (”E”“‘”"z)

T.cm 1 £4+1 q
BeRm.png[(u——w— )qB(:c £+1)

P+ L -] =0, (A1)
where @ = — [Te(r)e(m + £)/ B ng(r)er] (dno/dr), ¥ = r/ro, kg = m/[ro, g0 = q(ro), ¢ =

dq/dr, 3 = (rq'/q)r=ry, and ws = (Cs/Rq)/ps ke 3. When we demand r = rg, and £ = 0 in
Eq. (Al), and use the 1D ballooning representation, Eq. (A1) is converted into the ballooning
equation. To evaluate the effect of broken ballooning symmetry, we should retain the terms
proportional to (r — rg)/ro, and £/n to second order.. In accordance with-the ballooning-

symmetry, we expand the function G[r(q),£] for small y/n = (x —{)/n, and £/n

oG y oG 1  8G 1 ¢
clria = (T°’0)+<3r> o Nt <ar 7 ?z);o};

+l (826’ q 8G> y> [ 1 (82(}’ q’ 8G> L 0*°G 1 ] yt
12

drz ¢ or ro0 7240 2¢% \Or2 ¢ or ordl qf oo 12
1 (G ¢"0G\, &G 1 1 &G £ ,
+[“2575 (srz-q ar> arazﬁwq?"ffﬁhpﬁ*“" (42)

where ¢" = d*q/dr®.
Making use of the 2D ballooning transform Eq. (2), and Eq. (A2), we convert Eq. (Al)
into Eq. (4), where the higher order terms are neglected. All relevant H;-i) of Eq. (4) are
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given explicitly below

I = wi(ro)/w? ,
=1,
I = 04(0) +1/3%,
with Qx(0) = (1~ b —w/w)/pi(ro) 5 8 with wf = &7,
I = —2uwg. /v,
with wye = (T, cm/Be Rr)/p? k} 32 ,

=70

nf’ =13,
I = (2i/ngo)”
I = (=2i/n)(¢" /4o

) = (i/ng0) [(2/8°)(1/5 = 1) — (3/Or)a/ g — 0/0]

with (90 /0r)r0 = —Qu(0) {(dT./dr)/T. + (0&%/0r)/[w(1 —i6.) — w:‘]}mp,
and (O0x/04),00 = —Qs(0)w¥/[w(1 ~46,) —w¥], o

3
1) = (i/mgo)(1/5 — )T, |
1Y = —(i/ngo)(rq" [¢)re IS
) = —(3/n?g)T{”
) = —(1/n®)(¢" /4% ,
with ¢” = d3q/dr?,

) = —(1/2n2q3){[a2n*/ar2 —(¢"4)(000/0r)](¢* /4™

8
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+2(0"Qx/0r 0€)(a/¢') + 2[(3 + ¢"r/¢') /8 — 4/5 + 1]/ 32} ; (A15)
with  (8%Qu/0),0 = Q*(O){(aﬂ*/é)r)/ﬂ*(O) — (PT./dr)T, + (dT./dr)*/T,
— (8 [0r" + (05%/0r) (1 — i6.) ~ wH)/lw(1 — i6) ~wH]}

79,0

and (0040 8l),0 = Q*(O)w;"{(dTe/dr)/Te + (0¥ /0r)[1 — (0*/00) Jw¥]/[w(l — i6.)

~ Aol - i8,) - o]

?

0,0
0P =101 - 1/3 —r¢" /25 )rs /> @5, (A16)
I = ~IP(rq" /47 — rq"/¢)s /20" g0 (A17)
I0 = —(2i/ngo)I 8/0k (A18)
1§ = (i/ngf)(q" — ¢ /v + 29"k 0/ 0k)ro [ , (A19)
1§ = (i/ngo) (00/0r)a/ o — 2/, B/0k:, (A20)
P = —(i/sng)I 8/0k , (A21)

and
) = (i/nao) 1" (rq" /)y (9 OF) . (A22)
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Figure Captions

Fig. 1 Complex F(p) versus p. Curves a (hollow circles), b (hollow squares), ¢ (dark circles),
and d (dark squares) are respectively for normalized p2kZ = T,(0)cn?/eBw.a® =

0.35,0.5,1.0, and 2.5 with ¢o = 1.0, ¢, = 3.0,-6, = 0.8, L,/R = 0.2 and Xg = 0. The

numbers by the curves indicate p = ro/a. -
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