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Abstract

In the homogeneous Hasegawa-Mima equation the dipole vortex or modon solution
is well known to be robustly stable from both analytic and numerical studies. In the
inhomogeneous plasma where V7, # 0 the corresponding vortex has an external struc-
ture extending into the high temperature region. Lyapunov stability method is used
to determine the stability properties of fhese extended vortex structures. The overall
growth rate of deformation caused by the presence of temperature inhomogeneity is
shown to be bounded by (R/Lt)?, where R is the radius of the core of the vortex
and L7 is the scale length of the temperature gradient. The most important source
of instability is identified as the excitation of monopolar and dipolar perturbations
with short spatial scales S R, which are approximately independent of the presence of

density and temperature gradients.



I. Introduction

- In the past decade a number of stationary travelling nonlinear solitary-vortex solutions have
been obtained for a class of models in plasma and fluid dynamics.!~® These equations are im-
portant both in plasma physics, and in oceanic and atmospheric physics, where they are used
to study the convective motion responsible for anomalous transport. Coherent structures in
the form of monopolar and /or dipolar vortices in plasmas arise in the strongly nonlinear stage
of various plasma instabilities driven by density and temperature inhomogeneities,!*? plasma
flows,5 parametric processes,” time-stationary electric fields (Kelvin-Helmholtz instability)
when the particle trapping takes place.

A particularly important equation of this type is the Charney-Hasegawa-Mima equation,
which describes both nonlinear drift waves in plasmas, and nonlinear Rossby waves in shallow
rotating fluid such as the Earth’s atmosphere and oceans. This two-dimensional nonlinear

wave equation is

%(1—A2V2)<p+vdg—:—(ezxVap)-VVzgo:O. (1)

where vy is the macroscopic fluid drift velocity, and ) is the so-called Rossby radius. Although
Eq. (1) is not fully integrable,’ and the corresponding dipole vortex solutions (or modons)
are not solitons in the strict sense, it has been proven that they are linearly stable,!°! while
numerical'? and laboratory’® experiments show that they, in most cases, “survive” even large
perturbations, such as collisions with other vortices propagating in the same (or opposite)
direction. This property of modons allows the turbulent plasma state to be described as the
superposition of coherent vortices and weakly correlated fluctuations, and to calculate the
corresponding transport coefficients.4

Structural stability of the Hasegawa-Mima modons is an important, unresolved issue.
In the present context, structural stability corresponds to the existence and the lifetime of

the modons in systems which are slightly different than the one described by Eq. (1), due
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to the presence of the finite temperature (A?-gradient) and density (v4-gradient) gradients
over the scale of the vortex structure.!® In the presence of weak dissipation due to plasma
viscosity'® and Landau damping by resonant electrons,® an adiabatic theory of dipole vortices
was developed, and it was shown that they preserve their shape, but gradually spread, and
change their phase velocity.

Presence of a temperature inhomogeneity which is not included in Eq. (1), is essential
for the development of the drift wave instability, which is thought to be responsible for the
high level of potential fluctuations in laboratory plasmas. The drift wave coherent structures
lead to the anomalous particle transport, as well as to plasma self-organization in the form
of vortices. In an early work!” the existence of a new class of solutions in the form of
moving monopolar vortices was suggested, these results were strongly criticized later,'® but
authors of a recent work?!® argué that such monopoles are possible (within a certain ordering
of space-time scales), and prove their structural stability in the presence of a wéak vector
nonlinearity. Dipole vortices in such plasmas develop a wake (or oscillating tail) of linear

14,15,19,20 ;ndicate

drift waves on the high temperature side, and some numerical simulations
break-up of the vortex into two monopoles, one of which is rapidly dispersed. However, it
may be argued that these results were based on an equation whose validity is questionable,®
and that the experiments did not take into account the existence of the wake in the initial
data. Thus, instability of the dipole reported in these simulations could be interpreted as
the inability of the plasma to build up the wake from the initial distribution of the potential
used in*1%1920 the initial data.

In this work we study the linear stability of dipole vortices in the presence of a strong tem-
perature inhomogeneity using Lyapunov’s functional method. We demonstrate that adoption

of proper initial data, including the presence of a connected wake, may stabilize the vortex if

the temperature profile satisfies certain conditions, and that the Lyapunov.instability expo-

R
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nent for growth is a small quantity, smaller than (E;) , where R and Lt are characteristic



radius of the vortex and the scale length of the temperature inhomogeneity, respectively.
We show analytically that the perturbations which are critical for the development of the
instability corresponds to the rotation or tilting of the dipole , which may in the next stage
lead to its splitting into monopole structures. However, this process occurs on a slow time
scale, being related to the excitation of monopole and dipole-like perturbations with short
scales in the radial direction, rather than to the temperature gradient, and we may conclude
that the dipole vortex structure in the presence of a finite temperature gradient is more
stable than it was previously thought.

Stability of the dipole vortex in the presence of monopole and dipole perturbations,
which are critical for the stability, is investigated numerically in the case VT, = 0. Vortices
propagating in the direction of the electron diamagnetic drift clearly show the presence of a
tilt instability, which leads to the exponential growth of the initial tilt, and to the splitting
of the vortex.

However, vortices propagating in the opposite direction, that is parallel to the ion dia-
magnetic drift, appear to be stable to tilt perturbations. In a numerical experiment they
were preserving their shape for as long as At ~ 1007z where 75 is the period of the vortex
rotation, 7g ~ R/vg where R is radius of the vortex and vg the mean E x B flow velncity

in the vortex.

II. Basic Equations

We study low frequency perturbations ( ;‘i; < A, (); being the ion gyrofrequency) in plasma
with cold ions and warm electrons, in which the equilibrium plasma density ng, and electron
temperature T, are inhomogeneous along the y axis. Using the well-known expression for the

ion drift velocity in the presence of a slowly time-varying electrostatic potential ¢(z,y,1):

1 1 ) 1
CERSTRE (5T R

(e: xVg)-VIV.é (2)



and assuming quasineutrality n; = n., and Boltzmann distributed electrons (i.e. neglecting

finite electron mass effects)
e¢
Ne =1n exp | =/ 3
e O(y) p (Te(y)) ( )
we readily obtain from the ion continuity equation:

d

1 ep 1
TR

(here e is the ion charge). Equation (4) is equivalent to Eq. (45) of Ref. 15 when z and y
are interchanged and the log no(y) is expanded in powers of y — yq.
More conveniently, in the reference frame moving with the velocity v, along the z axis,

we may write:

(Gt gl Vo Bovsl V[ +78=0 )
where
u(y) = 22 tog n(y)
PR Sy ) = L) 2 _ Te(w)
P=cy P Vi, (¥) Tiwe) ' P e (6)

and the parameter yo is chosen arbitrarily. Any stationary solution of Eq. (5) which propa-

gates with the velocity v, along the = axes, ¢,, satisfies

8s + Bovsy = Glu(y) + 5és] D ()

where G is arbitrary function of its argument. Evidently, the form of the stationé.ry solution
¢, depends on our choice of the function G. The standard modon is obtained in a plasma

with exponential density profile and homogeheous temperature,

no(y) = Npexp <Li-)

n

T.(y) = const (8)
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if we adopt G to be a linear function, G(§) = G- ¢, allowing the coefficient G to have different
values G'*, G°*, inside and outside of a closed circle with the radius R, respectively. Interior

of the circle, r < R, is called the modon core. The modon has the form:

2
I p* Ji(kr)
<1+/~:2> R+n2 Ji(kR)’ r<R
¢ = Byv,Rsind - (9)
Ki(pr)
- , r>R
K1(pR)

where r = (22 4+ y?)'/2, § = arctan L, J1, Ky, are the first order ordinary and modified Bessel
functions, and the characteristic wavenumber « is determined from the dispersion relation:

~1 Jo(xR) _ 1 Ksy(pR)
K Jl(KZR) P [\,1(,01'?,)

1 1 1 1 eBy Vg
_ L )i R L=
P Ps Gout K ps Y Gin T. Uz V4

where vy = T./eBL, is the electron diamagnetic drift velocity. In plasmas with strong

(10)

inhomogeneities, i.e. when the density and temperature profiles are not given by Eq. (8),

adoption of a linear function G in Eq. (7) in the form
G(f) — Ggut + Gouté

allows us to separate variables in Cartesian coordinates, and to write the standard WKB

solution outside of the modon core:

out __ g(y) - 1 d2 g(y) L * tkx | .2 _ 2_1/4
7= k() " ®2(y) dy? x2(y) | 2n /—oo dke'™ |w(y) — k |

[O® e (i [ R =R ar) + 80me (~i [ ) )] )

or, more conveniently, in the cylindrical frame r,8:

gly) 1 & (y

¢out___ l
T Ry)  KA(y) dy? A2 2

Z iné [ O (yYHD + a@(y) H(2)] (11b)



where the following notations were used:

1 1 g
9(y) = ] [u(y) ~ Gow " Dovay + G°‘“] :
1 1 p—icotn/2 ) L N ,
HY = = dypexp1i [—n(8 + )+ / dr'e(y’)sin(6 + ¢ )]

ioo+ 5 . Tl o /
HP =2 [T dpexpi[-n(0-+0)+ [[drn(y)sin6 + )]

T J—ico+m/2

K(y)

" = arcsin [ sin Lp} ,
’ <(y)

1 2r . )
aﬁf)’m(y)=§ /0 dpe’™ |k(y) cos |2 - g3 (k(y) sin ) - (12)

and G°® is given by Eq. (10). It can be easily seen that in the limit of homogeneous
temperature, k(y) = & = const, functions H{"(®) reduce to the Hankel functions H{""®(xr).

The WKB solution which in the region y ~ yo behaves like the vortex (9) is obtained if
the Fourier amplitudes ¢(1):(2)(k) are given by:

$O(k) = $A(k) = |2(wo) = K" . (13)

The Bessel function approximation in Eq. (13) is used in Ref. 15, Eqs. (32)-(36). In the
following we will translate the y coordinate to take yo = 0.

The solution within the modon core is obtained alilowing for a weakly nonlinear function
G,

G(¢) = Gg + GYe + GF¢?

and treating the nonlinearities and inhomogeneities as small perturbations. Keeping only

-1
small terms of the order -LET-, where Lt = (d—d; log Te) , we can write the interior solution



as:

¢ =g 4 2O _ 4 540 — 66, cos 26 (14)

K2 2Gm
where ¢(?) is given by Eq. (9), and:

8¢.(r) = Ju(kr) [an / dr h(r )Yn(/cr')] +Yﬂ(fcr)/0rdr'h(r').]n(fcr') n=0,2

We assume that the cutoff is far away from the modon core, y. > R, and with the same

r Gin ) : 2 dr?(y)
— . Bouvyy)’ — 4@ )
A(r) 4sin® 6 [pr‘“ (¢’ il y) ¢y dy

accuracy ZB; as above we take the core to be a circle with a radius R, slightly shifted from

the origin z =0,y = 0:

r=R(8) =R-(1+nsin) n=o(%) . (16)

The free parameters R, v,, Git, G3**, GI* appearing in (11), (14)~(15) are determined from
the usual continuity conditions for the functions ¢, %?, and G. Continuity of the first
cylindrical harmonic readily recovers Eq. (10), while continuity of the zeroth and second

cylindrical harmonics of the potential ¢,, and of the function G(u(y) + po,) gives:

6)/0 6 ¢out

/d'h )Jo(r!) +——/ df

r=R

L 0Jo(xR) [ Gg Yo(xR) /OR dr'h(r")Jo(kr') + 2%_/02” Aoy (r = R)]

~ Jo(kR)  OR |k?p2Gim
and
aYz(fﬂR) : o
/d h(r m’)+ 0 " 49 cos 20 22~ Sl
_ 1 aJ2("5R) 1o ' 1 g2~ out(, _
= T,sB) R [—YQ(K,R)/(; dr h(r)Jg(m*)-i-?r/o dl cos 2043 (r = R)
where

in,ou 9 in,ou o
Gy = (14 sind B [60+ Bovay = G (uy) +24)] . ()



The system of equations (17) from which, in principle, all constants of integration G2,
GS™, GS™, ag, a, can be determined, is closed by the requirement that the right-hand side of
Eq. (17) is independent on §. Thus, the stationary solution (11) and (14) is fully determined.

It should be noted here that the outer solution with a linear function G is possible only
if the density profile is such that g(y) in Eq. (12) is finite for both y = *o0. One easily
verifies that solution (11) is well localized at the low temperature side (where x*(y) < 0),
while at the high temperature side beyond the cutoff y. (i.e., where x2(y) > 0), the vortex is
accompanied by a wake of drift waves. Energy of the wake can be very large, even infinite,
with the largest contribution coming from the region y — —oo. Thus, if a vortex was made
initially with an incomplete wake, its central part would radiate energy until the wake is
“filled.” Physically, one may envisage the vortex as being produced by a drift-wave coming
from the hot electron side, and the wake is simply a standing wave, due to the reflection in

the cutoff region.

ITI. Stability Analysis

A particular stationary solution ¢, is said to be stable if any small perturbation §¢ remains
bounded as ¢t — co. Linearizing Eq. (5) around ¢,, and using (7), we obtain the following

equation for the perturbation:

0 . ~
5 p6s = AH pés (18)

where the notation was used:

~ =1 _
A=25 {ex VIuly) +58]} -V
° (19)
H=G-p', G=GnG™.
Our Eq. (18) coincides with Eq. (64) in Ref. 10 by Laedke and Spatschek.

Although Eq. (18) is linear, it is impossible to find analytically its general solution, which

would, of course, give us complete information about the time evolution of the response to
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any initial distribution of the electrostatic potential. However, the stability can be studied
using a version of the Lyapunov method.
First, multiplying Eq. (18) by H p6¢, and integrating for the whole space, we obtain the

following conservation law:

oL
5= 0 (20)
where L is a quadratic integral of motion:
L= / de dy 5 H psp = (p6¢|H|pss) . (21)

Next, we note that the eigenvalue problem, corresponding to the operator H:

—

Hh = Ah (22a)

or, equivalently

[vi + pl—z (5-1_-7 - T—(ly-)ﬂ A(Ar1) =0 (22b)

generates a set of eigenfunctions 2(Amn, 1) = Am s, which provide a complete basis. This

allows us to expand the function pé¢ as
pbd = Z P6Pmm P (23)

and to rewrite the conservation law (20) as:

L=73 AnnpSgl , = const (24)

Our system is stable if all amplitudes pé¢,, , remain finite at ¢ — oo. This is obviously ful-
filled if all the eigenvalues A, , have the same sign, or equivalently, if the conserved quantity
L has the same sign for all realizations of the perturbation §¢. It has been shown!® that
the latter statement is both a sufficient and necessary condition, in the case of homogeneous

temperature.
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In the absence of the temperature gradient, 7(y) = 1, Egs. (22) is readily solved, and we

can express eigenfunctions A, , in the form:

(""'m nT)

o | BeneB) TS
hnn(r,0) = amne™ K. " (25)

(;)m ik R) , r>R

where .
1 1 12
T, (Gin . 1)

(26)

1 1 12
mn — T - .
Pm, s ( Gout _Am,n>

Here ap, , is determined from the normalization (Amn|hma) = 1, coefficients G, G°** are
given by Eq. (10), and A, is determined from the following dispersion relation, resulting

from the continuity of Vhp, , at 7 = R:

— Jn—l(K‘m,nR) - I{n—l(pm,nR)
M Tl B) O RalpmaB)

The number of negative eigenvalues A, in the sum (24) can now be determined by the

(27)

following argument. Since the right-hand side of Eq. (27) is positive, wavenumber &, , must

be located between zeros of the same order of the functions J,_;, Ju:
jm,n-l S K;m,nR S jm,n (28)

(here j, » is the mth zero of the function J,). From Eq. (28) we may see that there are only
two wavenumbers which are smaller than the wavenumber x of the ground state modon®®
(see Eq. (10)). These two wavenumbers & o, k1,1, correspond to the ground states of zeroth
and first cylindrical harmonics, and they possess negative eigenvalues A; g, A1 1, respectively.
We note also that the dispersion relation for the eigenfunction ki3, which gives A2 = 0,
coincides with the dispersion relation for the ground state modon, Eq. (10).

In the presence of a weak temperature gradient,

R
s-O(LT)<<1
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where R, Lt are scale lengths of the vortex and of the temperature inhomogeneity, respec-
tively, and under assumption that the cutoff is far from the modon, y, > R, eigenvalues A,
will be shifted only by the small amount ¢ relative to their 7, = const values. Thus, there
will still be two negative eigenvalues, A; o, A1,1, and possibly the third one will arise if A12 =0
is shifted toward negative values (however, this one will be relatively small, [A12] ~ €).

In order to complete the stability proof, it would be necessary to demonstrate that
amplitudes pé¢y ., n = 0, 1,2, corresponding to negative eigenvalues, are equal to zero. Their

maximum values will be estimated by the use of following linear integrals of the motion:
A. Multiplying Eq. (5) by ¢ + Bo vy, and integrating for the whole space, we obtain
0 .
[ dzdy(6+ Bovey) - 559 =0 (29)

Since Eq. (29) is valid for arbitrary v,, we obviously must have:

/ dz dy y pd = const (30)

which, after linearization gives:

/dmdyyﬁ&qS:O. (31)

B. Multiplying Eq. (5) by F'[u(y) + p¢], where F is an arbitrary function of its argument,

we have

/d:t: dy Flu(y) + pé] = const (32)

or, after linearization:
[ dody Flu(y) + .] - 556 = 0. (33)

The second integral of motion which we use below is obtained from Eq. (33) when we

choose F' = 1:

/ dzdyp6p =0 . (34)
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C. Finally, choosing F'(£) = [G(¢)]? —[G°*(¢)]? in Eq. (33), we obtain the third constraint
/ dz dy (45 + Bovsy)? - 566 = 0 . (35)
r<R(6)

Next, we expand pé¢ in (31) and (34) in terms of functions A, . Using Eq. (22) and

performing the partial integration, we obtain after some algebra:

1 1 1 1
SSPPIRY S By B S W LS Y S |
¢ ,;,p ém, /r=R(o) {% (ﬂl‘;,n(y) p?n,n(y)> vi &2..(y)  PE A (Y) '

S n dedy by V2 —22 —/ ddhmw—f"—]:o,':o,l 36)
+;,np ¢ ’[/»R(e) PV L ) Jrern I () g (36)

where

) = ( 1 1 )”2
Km,n = - : -
, Y Ps Gm - ’\m,n T(y)

1 /1 1 12
prnly) = - (T(y) TG /\m,n>

po=1
pr1=y ‘ (37)

The last term (volume integral) in Eq. (36) obviously vanishes in the absence of temperature
inhomogeneity. It can be shown that this is true also in the presence of a weak temperature
gradient, when the eigenfunctions k., , are approximated by the WKB solutions similar to
Eqgs. (11) and (14), and provided that the characteristic wavenumber Pm.n is a well-behaved
function on the high temperature side, that is

_pif' G A P (Zy;T) (38)

The above analysis, with Eqs. (35) and (36), indicate that amplitudes pé¢n, n of the elec-

p1271,n(y - —OO) S

trostatic perturbations are determined by the physical processes within the modon core
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(r < R'(H)) only. If the cutoff is far from the modon core, the modon is only slightly per-

turbed by the presence of the temperature gradient, see Egs. (11) and (14):

40 +0(2) (39)

where ¢{9) is the first cylindrical harmonic given by Eq. (9), and the small correction @ (%)

contains only @ independent and cos 260 components. Furthermore, the modon core is a circle

centered at (z,y) = (0, O (%) ), that is
. R
r=R(0)=R-(l+nsinb), n=0(—) (40)
which permits us to approximate line integrals in Eq. (36) as

2 ) 8
e, -/mm) de x £(r,0) ~ —VR/O do - {f,(R, 0) +nsinf 5= [Rf,(,0)] - ncosﬂfg(R,H)} .
(41)
We note also that eigenfunctions Ay, k11, k12 Within the modon core are predominantly

zeroth, first, and second cylindrical harmonics, having sidebands of the order ¢
Bon(r,0) ~e™ . H, {1 +e [am (1) + by ( —;o]}
Am,n(T) ~ bmn(r) ~1, (42)

and that the above linear integrals of the motion automatically give zero for the component
of the function p6¢ which is antisymmetric in z. Then within the accuracy to the first order

in € we can rewrite Eqs. (31), (34), and (35) as

o0
D emo P5¢$:,g> tECm,1 Pécbg:,i =

m=1}

z A1 PO} + € (Ao PEGT) + diy pBST)) = 0

m==1

Z €m,2 P5¢£:,% +e (em,l P5¢,(::i + €m,3 p6¢m,3) =0 (43)
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where pég{t) ) are arnplltudes of eigenfunctions h(+) which are even functions of z, and all

coefficients in Eq. (43) are of the order unity,

Cmn ™~ dm,n ~ Emn "~ 1. (44)

'

Following the authors of Ref. 10, we assume that in the sums in Eq. (43) only the ground
state modes, with m = 1, are present; which is eduival_ent to the assumption that only
perturbations with the longest possible radial scales are excited. Namely, if total energy of
initial perturbations is very small, it seems reasonable to expect that it is distributed mostly
in the ground state modes whose energy content is the smallest. Then, from Eq. (43) we can
estimate the amplitudes p6¢1 o, D6 qSl ,, and pé‘qbg;) which correspond to modes with negative

eigenvalues A1, A11, A12:
(+) 3
P5¢1,0 ~¢e"P
¢5¢(+)
6645 ~ P (45)

where P is some typical mode amplitude with a positive value of A. It can also be seen from
Eq. (43) that at least one mode with A > 0 is always present when modes with negative
eigenvalues are excited.

The amplitudes of the antisymmetric eigenfunctions are estimated directly from Eq. (18),
which separates into odd and even functions of z, due to the fact that the stationary solution
¢, 1s even in z

%ﬁ&gﬁ(*) = AHp6¢ (46a)
or, inversely,

po8™) = H1A™ 2 554 (46b)

15



where

| . ~
P86 (2,y) = 5 [F84(z,y) + p84(~z,y)] . (47)
The inverse operator A~! is given by

GO V) + 6.)
Jower X W) + 007

~h(z,y') (48)

where the integration is performed along the equiline u(y)+ 54, = const Noting that Eq. (48)

couples the n-th cylindrical harmonic of the function f with n — 1 and n + 1 harmonics of 4,

we can expand Eq. (46) into cylindrical harmonics and solve for §¢(7),. If 5¢§4;), n=0,1,2are

kept small at all times, (see Eq. (45)), we may conclude that their antisymmetric counterparts
¢1 05 qSl 1 5¢1 » are also small quantities:

_ 0
p5¢§,0) ~ € 5t P

- 0
P&f’g,l) ~E 5 P

-y 0
pogLd ~ =P (49)

Finally, from Egs. (24), (45), and (49) we find that the Lyapunov functional (24) has the
lower limit of the order —g?
3 2 2
L=—cale+BT = |P*+ > Annpbdl,R —€P (50)
ot Am,n>0
where o ~ f ~ 1 and T ~ R/v, is a typical vortex period of rotation. The growth rate of

the fastest growing mode can be estimated via the variational principle,© yielding

e R Vo
7max~?~z; E (51)

The fastest growing modes are those with A < 0, whose amplitudes are small (< ¢P), and

thus they do not contribute significantly to the overall vortex evolution. Using Egs. (45) and

16



(49) we find that the “overall growth rate,” i.e. rate of change of modes with the order O(1)
is - : )
2

7~ (%) % )

However, these results are correct only as long as we may neglect the presence of m > 2
modes in Eq. (43), which correspond to monopoles, dipoles, and quadrupoles having shorter
radial scale lengths than the ground modes Ay, A1, and Ay2. On the long time scale these
modes may develop, even if they were completely absent in the initial data, possibly leading
to the tilt instability, whose existence was suggested in?® for westward propagating Rossby-
wave modons in the Earth’s atmosphere. Similarly, short-scale perturbations, excited by the
structural change in the equation produced by Landau damping of hot electrons, can lead to

the universal instability of plasma vortices.?* Characteristic time for the tilt instability can

not be estimated by the present analytic method. It may be expected that the temperature

gradient does not play a crucial role in its development, since it exists also in plasmas with’

homogeneous temperature, and thus we conclude that the temperature gradient should not

be considered as the main source of instability.

IV. Numerical Results and Conclusions

In the preceding section we showed that in the presence of an inhomogeneous electron tem-
perature the oscillating tail (provided that it is complete) does not contribute significantly
to the instability of the Hasegawa-Mima dipole, Eq. (9). However, the main problém of
the dipole stability in plasmas with homogeneous tempera,turé still remains unresolved as
recently pointed out by Nycander.??

Perturbations which are critical for the vortex stability correspond to monopole and
dipole-like perturbations, as shown by Eqs. (24) and (28). Although their amplitudes are

constrained by the linear integrals of motion, Eqs. (33) and (34), the presence of higher
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order monopole and dipole modes still make it possible for the critical modes (those with
the longest radial scale length, ;¢ and A;;) to grow indefinitely, which can be seen from
Eq. (43).

In order to derive a constraint of the critical modes of perturbation, (ko and hy;), it
would be necessary to make use of an infinite number of integrals of motion, which would
determine the amplitudes of all the monopole and dipole modes, Am 0, Am,1,m > 1. However,
the Hasegawa-Mima equation is not fully integrable,® it has only a finite number of conserved
quantities, and consequently such a general proof cannot be constructed.

However, it still may be possible that vortices within a certain range of dipole parameters
are stable. In order to check this, we study numerically the evolution of a vortex which is
initially perturbed in the critical way, by a small monopole and dipole, which corresponds to
a small asymmetry, and tilt of the dipole. If the vortex is not destroyed under such critical
perturbation, we may conclude that the negative eigenvalue modes k,,(r) and Ay 1(r)e” in
the sums in Eqgs. (23) and (24) retain finite amplitudes at all times, and that consequently
the vortex remains stable.

First, we test the vortex stability to the dipole (tilt) initial perturbations. We find that
vortices propagating in the direction of ion diamagnetic drift, with v, > vg, i.e. faster than
the linear drift waves (which corresponds to G°** = v,/v; > 0) are unstable. Small initial
tilt is growing exponentially, leading to the splitting of the cyclone and anticyclone parts of
the vortex, which propagate independently of each other, and eventually disperse.

Conversely, vortices with v;/vs < 0 are stable for the tilt perturbations. They oscillate
around the equilibrium position, and preserve the shape for a long time. In our computer
simulations we were able to follow two complete cycles around the box of length L, = 20,

in the tvy/p, = 100.
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Next, we perturb the vortex with a small amplitude monopole
eByv.R
I

1+ (%)

As a result, we obtain a slightly asymmetric dipole vortex. As it can be seen from Fig. 1, such

Pap — Pdp £ (53)

asymmetric vortex has a curved trajectory. Similarly, to the previous case of a simple tilt, for
dipoles propagating in the electron diamagnetic drift direction, v, > vg, such perturbations
are found to be unstable, since the trajectory is curving away from the straight line. For the
case vz/vg = 2 and R/p, = 6 the dipole veers off by Ay ~ R in the time Atvy/p, = 25 — 30.
In the opposite case, v;/vy < 0, shown in Fig. 2, the trajectory is always curving back toward
the straight one, and the dipole is essentially following a trajectory along ¢ = v,t, with small
oscillations in y(t).

We may conclude that the vortices with v,/vy < 0 are stable for our choice of initial
monopole and dipole perturbations. Since this type of perturbation is critical for the stability,
we expect that they remain stable for arbitrary (small) initial perturbations.

The stability analysis of the dipole-like vortex solution of the nonlinear drift wave-Rossby
wave equation for a certain class of electron temperature profiles T, (y) is presented in detail,
assuming that the vortex size R is small compared with the temperature gradient scale
length L. The stability analysis shows that mostly the rotational or tilt perturbation give a
potentially unstable contribution to Lyapunov functional. The analysis also shows that the
growth rate is no larger than the vortex rotation frequency times (R/Lr)%. Other studies
indicate potential destabilization independent on temperature inhomogeneity,v but arising
from small scale modes localized to the surface of the dipole vortex and to the presence of

an external shear flow in the surrounding fluid or plasma.
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Figure Captions

1; Unstable motion of vortex propagating parallel to the electron diamagnetic direction
due to a 2% monopolar perturbation of the form in Eq. (53). The angular rotation
frequency is Qg ~ 3 in frame (a). In frame (b) at t.vd/p, = 20 the position the tilt is
at 45% and the center is at Az ~ 40 and Ay = R ~ 6. In frame (c) at tvg/p, = 40
the anticyclone (¢ > 0) dominates and Ay = 9p,. In frame (d) tv4/p, = 200, about

50 rotations of the core, dispersion is setting in.

(3

Stable motion of the vortex propagating in the ion diamagnetic direction. The same
2% monopolar perturbation is applied. In frame (a) the rotation rate is g = 3 and
the initial speed is v-/vg = —1. In frame (b) tva/p, = 20 and Az = -20, Ay = 0 after

ten rotations. Frames (c) and (d) show the stable structure at times t vy/p, = 40 and

120, respectively. The vortex is slowly losing speed probably due to numerical effects.
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