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The coupled set of differential equations describing the
electromagnetic perturbations in Tokamak plasmas is reduced to a single
simple integral equation with a symmetric kernel. Obvious analytical

and computational advantages are discussed.



D
Slab model analyses of various electromagnetic instabilities in
Tokamaks are generally carried out within the framework of the coupled

differential equations[1];

W kfy = Ty - x) (1)
%2
ol - k%4 = _%w - x¢) (2)
XX.A.
where ¢ is the normalized electrostatic potential, ¢ = (wA“/ckﬁ)Vis

proportidnal to the pérallel cbmponent of the vector potential, xﬁ =

wlw + wix)/(kth)g; kj = k/Lg, k is the poloidal mode number, Lg is the
shear length, and o, the genéralized conductivity, can be a very
complicated function of x; Equations (1) and (2) are the statements of
the parallel component of Ampere's law J” = c"E", and charge neutrality

respectively.

Conventionally this system 1is solved wunder two distinect
approximations, Most drift wave analysés ignoré the vector potential
P, and most tearing mode analyses ignore terms proportional to k2.
Thus proper analytical methods to deal with finite B drift waves or
finite k tearing modes for a general conductivity have been almost
nonexistent. Below we show that the above set of coupled equations is
reducible to a comparatively simple single integral equation with a
symmetric kernel. In addition the integral equation is in the
localized variable E or Jy as distinet from ¢ and ¢ which are not
localized for tearing modes. The integral equation is easily amenable

to a variational principle for an analytical treatmént. It must also
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be stressed that even for numerical work, this method seems to be
considerably better because we are dealing with one equation in a
localized variable; and by the very nature of the integral equation,
the boundary conditions are built in. In the following analyses, we
assume that o(x) = o(-x), which is, in general, true., The method,
however, can be extended even if ¢ was not an even or odd function of

X,
With the definitions

J(x) = o/x°(p-x¢) =L E (3)
%2

Egs. (1) and (2) can be rewritten as

- x2y = Jx) (1)

o k2 = X 3, (5)

X
2
Xp

which can be formally solved to obtain the particular integrals

~+00 . .
b = = o [ anre kK Ix gy (6)
1 4+ -k‘X—X" x! .
b, = = —=— [ dx'e J(x') — ., . (7)
p 2k -00 xi

Notice that the solutions wp and ¢p are localized, i.e., wp + 0, ¢p + 0
as |x| + o, These are, in general, the required solutions for all

twisting modes including drift waves, and large poloidal mode number



I
modes, There 1is, however, one very - important exception; the 1low

poloidal mode number tearing modes. We shall deal with this case

later.

For localized solutions, we simply equate

I BT S PCY T
VoE = - f_mdx e J(x") (8)
o = o b agre~kKix=x"1 40y X' ,
b =0y = -5 f;wdx e J(x )<;§ . (9)
‘ . A
From Eqs. (8) and (9), we construct
x2 1 > k| x-x"| xx!
V=% = = J = = — [ dx'e™% (1 = Z222)J(x")y |, (10)
(o) 2k -00 X2
A
which can also be written as
2 400
LI [ dx' K(x,x")J(x")
(e} -0
where a1
1
K(x,x') = K(x',x) = - (1 = XXy klx=x"]
2k 2

is a symmetric kernel., Equation (11) readily allows a variational

principle

A et e e g s = e 4 Y
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2
S=<x

X - IT ax ax' K(x,x)I0IG"), (12)

which can be exploited wusing standard methods for stability

analysis[1'2]. Equation (11) could be written in an alternative way
o + =
— E = [ dx' K(x,x")E(x') , (13)
2 —00
X
with a
- - ‘ ' '
K(x,x') = K(x',x) = = ;L,e~klx-x'l 5£512£§-2(1 - X
2k x2x' xi

which is also a symmetric kernel. Thus one can use either Eq. (11) or
Eq. (13) for an analytical stability analysis because both allow a
variational treatment. For numerical work Eq. (11) is clearly much
better because of its simplicity. Since either Eq. (11) or Eq. (13)
does not have a meaningful k=0 limit, we now treat this special case.
Since it applies only to tearing modes, we have y(x) = P(-x), ¢(x) =

-p(=x), and J(x) = J(~x).

For this limit (k=0), Egs. (%) and (5) can be easily solved to

obtain

1 400
v = §.f dx' [x-x"{J(x")dx' +a , (14
- ,
b = %.f dx!' |x-x"'| 3% J(x')dx' + bx (15)

X
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where we have added the even homogeneous solution (a = constant) to
construct ¥, and the odd homogeneous solution (constant x) to construct
¢. We remind the reader that the homogeneous equations are ¢" = 0,
¢H -

= 0 respectively.

In the conventional tearing mode theory, the perturbation ¥ has

the asymptotic form[2]

T > g + alx| , (16)
x| > »
with the definition

r oot
A' =u:gg - (17)
Yo Yo

In addition

(¢—X¢)Ix| +°°'>'O . ' (18)

Within the framework of Eq. (14)-(18), it is straightforward to see

that

= Maxrax'y | be (19)
a= o f_wdx J(x') , b=0 . 9

Therefore, the solutions which satisfy the required boundary

¥

conditions, are
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= l dx'| Y1J(x')dx! ;L~ dx'J(x") (20)
¥ = 5 f_w X' | x-% X X' + X f x'J(x ,

_ ] VU lyey! 1y X!
b= f_ dx' [x-x'|J(x )'—5 , (21)

Xp

which can be combined as before to yield the integral equation

2 +00 +00 '
ol Mavaxy + [ axlx=x' 101 = D), (22)
g AY ~-00 —00 X%

which describes the conventional tearing modes.

Now we show that we can start with ¥y and ¢p given by Fgs. (6) and
(7), and derive the tearing mode equation suitable for low as well as

zero k. Notice that for k#0, the solutions of the homogeneous equations

kx

kx and e ", Remembering that for

w" - k2¢ = 0, ¢" - k2¢ = 0, are e

tearing modes ¢ is even and ¢ is odd, we could construct

V=g + o[ e e ] (23)
- br kx -kx (24
b= ¢y + E{e S 241)

We again demand that the asymptotic behaviour given by Eqg. (10)-(18).
In addition, we demand that even when |x| » o, kix| << 1 so that the
exponentials can be expanded. Notice that this is essential to make
contact with the éonventional tearing mode theory. This limits the
analysis to kw £ 1 where w is thé width of the tearing layer, because

Ix] + = really means |x} >> w. Under these conditions, it can be shown
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by straightforward algebra that the finite k version of Eq. (22)

becomes

1 , k2(x—x')2
N [ ax' 3+ )
- (25)

+00 2
[ Tax a0 = Xy rex 101+ Kox-x)21,

which for collisional and semicollisional version of ¢ has already been

-discussed[3],,

It is appropriate here to remark that in the large k localized
tearing mode theory, A' is either irrelevant, or identically equals

—2kl37,

Thus we have shown that for any generalized conductivity, the
coupled set of differential equations is reducible to a rather simple
single integral equation with a symmetric kernel. The advantages of
this formulation for an analytic or a computational solution are
obvious. Analytically difficult problems like finite B drift waves or

large k tearing modes become analytically tractable.

Applications of the formalism will be presented in future work.
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