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Abstract

The cyclone-anticyclone asymmetry; i.e., the predominant genefation of anticy-
clones in roﬁating shallow water, is considered from the viewpoint of flow relaxation
towafd vortices with minimal energy and fixed enstrophy (“selebtive decé,y” process). .
Three invariants of the set of equations for roﬁating shallow water are taken into ac-
count: total energy, enstrophy, and “mass.” A nonlinear second order differential
équation is obtained that describes the relaxed flows. Itis shown that t-he anticyclone-
like solution corresponds to a minimal enérgy value, in comparison with the cyclone-like

solution for the same generalized enstrophy and “mass.”.

®)1.V. Kurchatov Institute of Atomic Energy, Moscow 123 182, U.S.S.R.
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I. Introduction

3 reveal the ef-

Experiments with rotating shallow water and also numerical simuiationsl‘
fect of cyclone-anticyclone asymmetry in which anticycloné-like vortices are predominantly
observed whereas cyclone-like ones occur only occasionally. In these experiments, a thin
liquid layer that is much thinner than the characteristic length of a flow inhomogeneity ro-
tates with the characteristic frequency 2 in the presence of a gravitational force, g. The
paraboloid-shape bottom provides an equilibrium layer with a spatially uniform depth H.
Any flow with nonzero velocity in the rotating coordinate system leads to the occurrence of
depth perturbations. In the case of anticyclones, these perturbations look like hills and the
vorticity vector is in the direction opposite to that of the rotation £2. Inversely, cyclones
correspond to valley-like perturbations of the depth H, with the vorticity vector and € in
the same direction. Thus, during the process of flow evolution, especially in the case of a
turbulent flow, anticyclones are predominantly observed. As for cyclones, they are hardly
created.

Various reasons for this asymmetry can be considered. It could be due to a peculiarity
of the experimental device, for example, the way in which the velocity shear is maintained.
Another explanation, more general and device-independent, for this asymmetry can be re-
lated with the linear stability analysis result* that an anticyclonic profile for sheared flow of
the rotating shallow water is more stable than a cyclonic profile.

In the present paper we propose another explanation, namely, that the cyclone-anticyclone
asymmetry is a manifestation of the self-organization process in the two-dimensional flow
of the rotating shallow water. This process is closely connected with “selective decay”®® of
the ideal invariants under the dissipation action. In accordance with the “selective decay”

mechanism, the realistic dissipative system (flow) tends to the state corresponding to ex-

tremum value of the most rapidly decaying integral of motion, under the condition that any



‘other integrals are conserved. The choice and the number of integrals of motion which are
important from the ‘viewpbini.; of the “sélective décay” mechanism depends on the specifics
of the syst;em. Here we will consider 2D flow relaxation under the “guidance” of the main
three integrals of motion for rotating shallow water: namely, the total enérgy, the potential
enstrophy, and the total fluid amount (mass). In this case, the relaxed flow to which the
“realistic dissipative flow tends during the turbulent evolution corresponds to the state with
minimum total energy, under the condition tha,f enstrophy and mass are conserved. We will
show that the relaxed flow corresponds to the anticyclone-like vorticity distribution, and
hence anticyclones are the preferable stl;uctures. |
This paper is organized. as follows: In Sec. II the rotating shallow water eqﬁa.tions and
the three main integralé of motion are presented. In Sec. III the “selecti,vé decay” approa,ch
is considered and the corresponding 2D nonlinear differential equation describing the félaxed

. flow is obtained. In Sec. IV the case of plane-tangential flows is analyzed and the existence of

only the anticyclone-like profiles for the relaxed flow is shown. In Sec. V axially symmetric

relaxed flows are considered. It is shown that anticyclones are thve-_most preferable (with

minimal total energy) relaxed flows. Our conclusions are presented in Sec. VI.



II. Basic Equations

The simple model of rotating shallow water with constant Coriolis parameter 2 can be

described by the following set of equations

%+(V-V)v:—g-VH—Q-2XV, (1)
o vy =0, &

Here “H” is the depth of the shallow water; “g” is the gravitational acceleration; v is the
flow velocity vector in the (z, y)-plane of a rotating system of coordinates; Z is the unit vector
in the z-direction perpendicular to the (z,y)-plane; V = )’E% +S75%; and the other notations
are standard. The geometry for the problem is illustrated in Fig. 1. We do not take into
account here the spatial inhomogeneity of the Coriolis parameter Q (so called “g-effect”)
i.e., we neglect the difference between Z and the unit vector n normal to the bottom at
any point. Thus, the radius of curvature of the bottom, R, is considered to be much larger
than the characteristic length L = (% - |VH|)™; i.e., R > L > H. As will be shown, the
cyclone-anticyclone asymmetry is a sufficiently strong effect, which occurs even without the
B-effect being taken into account. The term “cyclone” means that the z-component of the
vorticity vector, w(= V X v) has the same sign as (2, and the spatial depth profile looks
like a valley. Inversely, an anticyclone corresponds to w and € having opposite signs and
the spatial profile of the depth looks like a hill. Of course, one does not always have a clear
underétanding whether the flow can be considered as cyclone or, perhaps anticyclone, since
solutions of Eqs. (1) and (2) with spatially oscillating signs of w and V?H can exist. This
problem arises, for example, in Sec. V where axially-symmetric “oscillating” solutions are
considered. Nevertheless, it is possible to classify any solution as a cyclone-like vortex or
as an anticyclone-like one in the case when these oscillations are only a disappearing “tail”

around a well-distinguished “kernel.”



The ideal Egs. (1) and (2) have three well-known integrals of motion: the total energy
E, Which is the sum of the kinetic and potential energies of a fluid in a gravitational fleld,

a1 2 2 '
E=; D(H-v +g-H)dmdy—va, (3)

the enstrophy .S, which is closely related to the potential vorticity, { = % (w + ), being

frozen-in with the flow,

_ [ 1. 2 _ | Ny
S=[ g+ W dedy~5e; (4

and the mass M of the fluid,

M:/DHd:r,dy—Moo. R (5)

Here integration over the flow domain, D, (which may be infinite) is assumed, and renor-

" malization terms Foo, Seo, and My, are introduced to avoid diverg.ence of the integrals in

the case of an infinite domain D. If D is a finite domain, then Feo, Soo, and M., are equal

to zero.
III. “Selective Decay” Relaxation

Let us now consider dissipative flows that are more realistic. In the shallow water approx-
imatibn, at least two kinds of dissipation mechanism can be considered: viscosity effects,
which are déscribed by the -(1/ - V2v)-term on the right-hand side of Eq. (1); and friction
between the flow and the bottom, corresponding to the term —% v on the right-hand side of
Eq. (1). Here v is the kinematic viscosity coefﬁcient, and 7 is the characteristic momentum
- relaxation time. If dissi?a,tion effects are taken into account, then the “i-ntegra,ls of motion”

E and S are not exactly conserved:

dE 0 1 9
_%—z/-/D‘H(V-VV)d:cdy~—;/DH~vd:cdy, ' : (6)
dS ' (w+Q) _, 2 1 ww+0) .

— =2 | —= —= | —————*dzdy. 7
7 2v /D Vi Viw dz dy 7_/D i z y (7)



The dissipation, of course, does not affect the continuity equation, Eq. (2), and the corre-
sponding conservation law 44 dt = 0, which is valid even for dissipative flow.

The decay rates for energy and enstrophy given in Egs. (6) and (7) are different from each
other, but in the general case of spatially nonuniform depth H, it is not clear which of these
two invariants is more rapidly decaying. It seems that the enstrophy S can be considered .
as a long-lived invariant in comparison with the energy E in the case when friction between
the flow and the bottom is the main dissipative process (this is the case for most of the

1 clE)

experiments with rotating shallow water). Indeed, if v — 0 in Eqs. (6) and (7), then (5 %

and (% ‘fif are of the same order of magnitude, but E is strictly negative whereas the sign of

as

£2) is not definite. So, during the same characteristic time 7, the energy F is monotonically

decreasing in value, whereas the enstrophy S can oscillate around a slowly decreasing average
value. This conclusion appears to be in contradiction with the well-known result that for
2D incompressible viscous flows, the enstrophy is a rapidly decaying integral of motion in
comparison with the energy. But in reality there is no contradiction because two different
dissipation mechanisms are considered.

In accordance with the “selective decay” approach,®® a system (i.e., flow) tends to the
state corresponding to the minimum value of the rapidly decaying invariants, under the
condition that other long-lived invariants are approximately constant. Let us consider the
total energy E, given in Eq. (3), as the integral of motion that must be minimized under
the condition that enstrophy S and mass M are conserved. The corresponding variational

problem is as follows:

6L=0 , where

L=E+X-S+up-M. (8)

Here A and p are undefined Lagrange multipliers, which can be calculated as usual, from

the conditions that enstrophy S and mass M are equal to their corresponding initial values.
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Varying the functional £, one can obtain the folloWing set -of Euler’s equations:

M. (wtQy -
v_ﬂ-zxv(ﬂ), N (9)
2 Q .

——+gH+y A(“Z.) =0. (10)

Here the velocity variation, év, and the depth variation, H, are considered to be indepen-
dent, and Eqs; (9) and (10) correspond to v and §H, respectively. Multiplying Eq. (9) by

: (%) and using Eq. (10), one can obtain the equilibrium equation

0 VE=-V (5] -@rExv, (1)

which is the same as Eq. (1 ) with £ = 0. Let us notice that Eq. (11) describee all possible

equilibrium flows and does not select any special one. The selection is made by the use

of Eq. (9), which depends on the peculiarities of the functional L. Therefore, the most

important (and informative) equation from the viewpoint of the description of relaxed flows

is Eq. (9), Whil_e Eq. (11) describes the relationship between the velocity, v, and the‘depth,

H, in any arbitrary equilibrium flow. By solving Egs. (9) and (10), one can obtain the
 solutions in the form of v[x; A, 4| and H[x; /\,‘,u]. The undefined Lagrange multipliers A, and

¢ can be determined from the nonlinear preblem S u] = So and M [/\, ¢] = Mo, where So

and M, are the initial preset values of enstrophy. and mass. Finally, the total energy E can

be calculated for the solution v[x; A, 4] and H[x; A, p], and the solution with th_e minimal

‘energy can be selected

Instead of this comphcated procedure, it is useful to consider the approximate solutlon '

of Eq. (11) that corresponds to the Well-known ‘geostrophic” flow

Q

and describes the balance between the Coriolis force and the “pressure” gradient term,

g+ VH, in Eq. (11). It can be obtained in the limit that the Obukhov-Rossby radius,

7

v=lgz.vH, (12) -



ro = & v/9Hw, is small in comparison with the characteristic depth spatial inhomogeneity
length, L = (% |VH|)~*. Formally, v in Eq. (12) is obtained to the lowest order in a (g)
power expansion at {8 — co. To the same order in a (%) power expansion, the expression

for the z-component of the vorticity vector is as follows:

w=ZLVH. (13)

By using Eqs. (12) and (13), together with Eq. (9), one can obtain the nonlinear differential

equation that describes relaxed geostrophic flows;

2X [, 0? 1,
¥ (V H+ 7) - EH = const. (14)

We will consider only the localized solutions of Eq. (14), for which the boundary conditions
are

H(|x| = 00) = Hoo , (15a)

v(jx| = 00) =0, | (15b)

By the use of Eq. (10) at |x| — oo, it is possible to express the value Hy in terms of A and

L
2
e R Ly (16)
g g

If the boundary conditions in Eqgs. (152) and (15b) are taken into account in Eq. (14), then

it is possible to write Eq. (14) in the following form
1 oo \° gH?
25 — A= =1 . — 2 =
wu--ny (& (ae5) (-2} 0.
Now it is useful to introduce the dimensionless variables

H=F H,, xszvgé{“ = 02/0%% + %07 .

Then the relaxed (i.e., most preferred) geostrophic flows are described by the dimensionless

equation,

VH~(H-1)-1+A-H-(H+1)| =0, (18)
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"~ where A = 4/\ 92 The corresponding b'ou,ndery condition is
H([%| = 00) =1 . o (9)

We can write the expressions for the integrals of motion, Eqs. (3), (4), and (5), in terms of

the dimensionless variables as follows:

»

2 73 - '
E={ = -/D'{H2_1+H-(VH)2} dzdy, (20)
S=g. /{ 1—|—V2H)2—1} 3 dij | (21)
HY [ = s | - B,
M_gm -/D(H—l)d:cdy L : - (22

Here the integration over the infinite domam D is assumed, and the renormahzatwn constants
FEooy Seo, and Moo are properly chosen.

Thus, if at the initial moment t= 0 the values of enstfophy, So, and mass, My, are knowﬁ,
then the most preferred (eelf—organized) geostrophic flow is fully described by Eqs. (18) and
(19) and Eqs (21) and (22). Indeed, in accordance with Eqgs. (18) and (19) the solution
H(%; A) depends only on the parameter A. The value of this parameter can be calculated

from the equality S [A] = So, where the functional S[A] is defined by Eq. (21). Once the value
bf A is known, the parameters H,, and )\ e'a,n be determined from the equahty MI[A, H,] =

My and from the definition of A. That is to say, we have the equahtles

-
Ho, = [m./p(ﬂ—l)dxdy] ,
| (23)
_ 9HS |
A= g |
where the parameter A obeys the equation
S (1+V2H) - |
. /D { = Zy | (24)

and H is the solution of Eqs. (18) and (19); i.e., it depends only on the spatial coordinates,

X, and on the parameter A.



IV. Plane-Tangential Anticyclone-Like Relaxed
Flows ‘

Let us now consider the solution of Egs. (18) and (19) in the form of a plane-tangential
flow when H depends on only one of the (%, #)-coordinates, say Z: H=H (Z). In this case

Eq. (18) can be transformed to the following form:

% (-‘%) _U@) =0, (25a)
where
U(H) = %(E —1)%. [1 + —’3— (H + 1)2] : (25b)

The boundary condition of Eq. (19) is used in the definition of U (ﬁ ). The dependence of
the potential energy, U, on the dimensionless depth, H, at different values of the parameter
A is shown in Fig. 2. In accordance with Eq. (25a), only positive or zero values of U (E )
are accessible; i.e., the solution of Eqs. (25a) and (25b) does not exist when A < —2 where
A > 0, only solutions with a “dry bottom,” viz. H = 0, or an infinitely increasing depth,
viz., H — oo, are possible. Indeed, the only extremal H value with ‘fg =0is H =1, if
the case of A > 0 is considered. These solutions are “bad” from the physical point of view,
and we exclude them. When —2 < A < —3%, only “bad” solutions with a dry bottom can
exist, as well as when —% < A <0 and H < 1. Hence, the only region of A values in which
nontrivial “good” solutions exist is —3 < A < 0 and H <1 (see Fig. 2b). This corresponds
to the existence of the root U(E) =0at H > 2 However, the inequality H > 1 means that

the most preferred self-organized vorticity distribution in the case of a plane-tangential flow

is anticyclone-like vorticity. No regular cyclone-like solutions of Egs. (25) exist.
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V. Axially. Symmetric Vortices

The axially symmetric solutions of Eq. (18) corresponds to a radially varyingf[—f (%) in the
cylindrical system of coordinates. Such solutions are described by the following equation ‘
d (_dH\ = = = ‘
(T'E;')—(H—l)'[l-}-A-(H-i-l)'H}:O. (26)
Because of the explicit #-dependence, the analysis of the solutions of Eq. (26) is complicated.

Nevertheless, it is possible to obtain useful qualitative information about these solutions.

Multiplying Eq. (26)be <%€5>, one can obtain

d |1 (dH = 1 (dH
a »[5 (?) ~vA )} 5 <?>
where U (f—f ) is the same as in Eq. (25b). By integrating this equation, one obtains

L&) e [E(E) &

T

2

=0,

The last term in Eq. (27) is positive definite, so the boundary condition (which is assumed),
ﬁamely, .
dH

&7

r=0

‘can be valid only if U(H)|_ < 0. This means that solutions of Eq. (27) exist only in
' “lr=0. '

the case when A < 0. Most of these solutions are oscillating ones, and it is not a well-

defined problem to distinguish which of them are anticyclones or cyclones. For example, at

large enough distances from the center of a cylindrical system of coordinates, the linearized

‘version of Eq. (26) (i.e., with IE- 1] - 0) has solutions in the form of Bessel functions. We -

will not discuss the oscillating solutions with “flakey-paste”-like structures for the sheared

flow, for which only a few oscillations of the depth H occur, with large amplit-udé. These

solutions do not contribute to an understanding of the cyclone-anticyclone asymmetry, due

" to the impossibility to classifying them. Hence, we have to shrink the solutions under

11



consideration and investigate more representative solutions from the viewpoint of cyclone-
anticyclone classification. Let us consider the solutions that consist of two parts: a vortex-
like kernel with monotonically varyiﬁg H at 7 < Fx, aﬁd a disappearing, oscillating “tail”
at ¥ > 7x. Another parameter (besides 7x) is the value of H at the origin location of
the coordinates, Hy = H (7 =0). In order to have a “tail” with small amplitude, which is
matched with the kernel at 7 = 7, we assume also tl'xe “boundary” condition H (F=7x) =1
Of course, the probability of analytically finding an exact solution of Eq. (26) with these
properties is very small. Therefore it is more convenient first to consider the variational
problem of Eq. (8), with the following trial function

_ —_ F\2 o

= Era-T)-(5), 7<n o)

0 , > T .
Equation (28) represents a three-parameter (Hw,ﬁo,F*) family of vortices, where 7x de-
scribes the vortex size, and where Hy and H,, are the central (dimensionless) and peripheral
depth, so that H, < 1 corresponds to cyclones and H, > 1 corresponds to anticyclones.

Two of these parameters are fixed by the condition that the enstrophy and mass are known

(being preset):
~ — a2
So _ThtnHlo [, 41— Ho) (292)
g (Ho—1) % ’
M, H2 —~
W_;=-2h°ﬁ2-ri-(1+ﬂo). (29b)

These equations are equivalent to the inclusion of S and M into the functional £ of Eq. (8).

By means of Egs. (29a) and (29b), it is possible to express 7x and Hy, in terms of Ho:

-1

— S 1 S 1 )?
P2=4.(1-H)- —(1+-3- ~)¢ <1+ ° . ~) ~1 , (30
™ ( o) 79 4fn Ho 219 4 .0n Hy (30)

2 1/2
Hoo={2MOQ _ 1 } ' (31)
79 7% (14 Hp)
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As a result, we obtain an expression for the total energy E as an implicit function of Hy:

E gH? — = — 2(1 — H, 1 — Hy)? 41 — Hy)\:
B¢ almida-To 1+ 25 ) Lo (1, R

The last step is to analyze the F (FO) .dependence and to find at what value of Hy the energy
E is minimal. In _Fig. 3, the B (fi:o) dependence is presented qualitatively. The two branches,
labeled “i” and “2,” corresponds to different signs of the root in Eq. (30) (“~” and “+”;
respectively). When Hy < FOC(SO), only complex (ulj.physica,l) values 7““',2,‘ are possible. Here
the critical va,lue. EOC(SO) decreases when S increases aﬁd Eo;(so)' = 1. Because we are
interested in the solutions of the form in Eq. (28) with minimal energy E, the branch “1”
_is the most attractive for our purpose. In Fig. 4, the branch “1” for the £ (Eo) dependence

is presented for various values of enstrophy So. As can be seen, the anticyclones.(ﬁo > 1)

~ are the most preferred vortices with minimal energy. The amplitude (ﬁo) of these relaxed -

" vortices decreases along with the growth in the enstrophy.

VI. Conclusions

The experimentally observed cyclone-anticyclone asymmetry is a manifestation of the self-

- organization process that takes place in rotating shallow water. In the present papér it has

been shown that the anticyclone-like vortices. are the most preferred relaxed states to which
a realistic dissipative flow tends during the “selective decay” self-organization process. The
anticyclones éfe characterized by minirﬁal energy F, under the condition that the enstrophy
S and the mass M are conserved. The corresponding Val‘iatiOI.la,l problem was formulated
and the nonlinear two-dimensional differential equation for shallow water of depth 7, was
obtained in the geostréphic limit where L = (% |[VH|)™ > ro = & /gH [see Egs. (18) and
(19)]. The solutions of this equation were analyzed in the cases of both plane-tangential and

also axially-symmetric vortex-like relaxed flow. In both cases, the anticyclone-like solutions

13



are shown to have minimal energy."
Another interesting problem that was not considered in the present paper is the exisfence

of axially non-uniform solutions of Eq. (18), say, in the form of coupled vortices.
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Figure Captions

1. Schematic of the geometry: “L” indicates the thin liquid layer (shallow water), “B”
indicates the bottom, and “H” is the depth of the shallow water. Other notations are
explained in the text. |

2. Dependence of the “potential energy” U on the dimensionless depth H

a) Curvel: A>0; Curve 2: A< -2
b) Curve l: —2<A< —%; Curve2: —3 <A<O.
The shaded area corresponds to the existence of a “good” solution.
3. Dependence of the total energy F layer on the depth of a shallow water at the center

of a trial vortex [Eq. (28)]. Branches labeled “1” and “2” corresponds to different signs

of the root in the expression for the vortex width rx.

s.

4. Branch “1” from Fig. 3 for three different values of the enstrophy, S = =

a) Curve 1: §=1; Curve 2: 5§ =5; Curve 3: §=25.
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