& ~omszs e B

INSTITUTE FOR
FUSION STUDIES

DOE/ET-53088-477 IFSR #477

Linear Studies of m =1 Modes in High-Temperature
Plasmas with a Four-Field Model

AY. AYDEMIR
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

March 1991

THE UNIVERSITY OF TEXAS

AUSTIN







IFSR #477

Linear Studies of m =1 Modes in High-Temperature
Plasmas with a Four-Field Model

» A. Y. Aydemir
Institute for Fusion Studies

The University of Texas at Austin
Austin, Texas 78712

The m = 1 mode in high temperature plasmas is examined using a simple four-field
model of tokamak dynamics derived by Hazeltine, Hsu, and Morrison [Phys. Fluids 30,
3204 (1987)]. It is shown that, despite its simplicity, the model reproduces with remarkable
accuracy results obtained with more sophisticated kinetic treatments in various collisionality
regimes. The effects of parallel compressibility on the m = 1 mode in the collisional, semi-
collisional and collisionless regimes are also discussed. Coupling to the ion sound waves
is found to be weakly destabilizing in the collisional regime, and stabilizing in the semi-
collisional and collisionless regimes.



I. Introduction

One of the ubiquitous features of tokamak plasmas is the sawtooth oscillations exhibited
by the central electron temperature.! Since the oscillations affect the central core, the hottest
part of the plasma column, and because their understanding and possible control may have
significant impact on the present and the next generation of tokamaks, they continue to
receive a great deal of attentian, both experimentally and theoretically.

These relaxation oscillations are generally assumed to be intimately connected with the
m = 1 internal kink mode,? which has been studied, in various degrees of detail and sophis-
tication, by many workers in the field. Coppi et al.’s unified treatment of the resistive and
ideal branches of the mode® was later extended to include diamagnetic drift effects.* Bussac
et al.’ examined geometric effects and found the ideal mode to be stabilized by toroidicity for
typical plasma parameters. Subsequent workers considered kinetic effects, finite plasma pres-
sure, and finite ion Larmor radius (FLR) effects.®® More recently, m = 1 has been treated
with even more sophisticated techniques extending the earlier small-FLR calculations to the
arbitrary FLR limit.!0-12

Our goal in this work is not to add an even more sophisticated model to the already
extensive literature on the m = 1 mode, but to prepare for a future nonlinear treatment of
the m = 1 mode that goes beyond the well-known resistive magnetohydrodynamic (MHD)
calculations.’®® Here we examine the linear properties of a simplified model that describes
tokamak dynamics with only four fields: the four-field model of Hazeltine et al.,'® that ex-
tends the usual reduced MHD equations by including FLR effects, finite electron and ion
drift frequencies, and long-mean-free-path electron dynamics. One goal of the present work
is to compare the results of the four-field model in all three collisionality regimes (colli-
sional, semi-collisional, and collisionless m = 1 modes) with those results in the literature

that have been obtained with more rigorous and complete kinetic treatments. We will see
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that the model is eminently successful in this regard, at least for the resistive branch of the
m = 1 mode (infinite-A") that will be considered here. Secondly, we will extend the anal-
ysis to include the effects of parallel compressibility, in particular the ion sound waves, on
the m = 1 mode. A similar analysis for the m > 2 modes?® has shown the ion sound waves
to be stabilizing. Here we will find that the sound waves are weakly destabilizing in the
collisional regime and tend to be stabilizing in the semi-collisional and collisionless regimes.
A nonlinear study of the m = 1 mode and self-consistent stﬁdies of sawtooth oscillations in
high-temperature plasmas with this model will be presented in a future publication.

In the next section, the four-field model of Hazeltine et al.'® is described in some detail.
In Section III, the linearized version of the model and a resulting general dispersion equation
are presented. In Sect. IV, the dispersion relation without the ion-sound modifications are
compared with those in the literature, and the veffects‘ of ion sound waves in collisional, semi-
collisional, and collisioniess regimes are discussed. Finally, a discussion of the results and

conclusions are presented in Secti<§n V.
II. The Four-Field Model

The four-field model used in this study is a simplified nonlinear rdes’cr'iption of tokamak
dynamics that extends widely used reduced resistive magnetohydrodynamic (MHD) models
into high temperature regimes by including electron and ion diamagnetic drifts, finite-ion-
Larmor-radius (FLR) effects, and long-mean-free-path electron dynamics in a-self-consistent
manner.®

Omitting the curvature terms and some other terms of order p?V?2, and includiné; terms
due to finite electron inertia in the Ohm’s law, we write the four-field model of Hazeltine et

al.'® in the form
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The variables have been normalized as follows: ¢ — t/7g,,r — r/a,n = T, /Tr, Where
THp = a[UHp, TR = {oa?/n,, and ug, = 2 [\/Poio. THp and Tg are the poloidal Alfvén
time and the resistive diffusion time, respectively, defined in terms of the minor radius a, a
characteristic poloidal field strength B,,, and resistivity 7,.

The brackets are defined by [¢,U] = f - V16 x V, U, where QA' is a unit vector in the
toroidal direction, and V is the 2-D gradient in the plane perpendicular to the magnetic
field. The parallel gradient operator is defined as ViIJ = 0J/8¢ + [J, 9] for any scalar J.
The parameter 6, in combination with the electron g, is related to the ion Larmor radius, as

it can be shown that
7828 = (p:/2)?, (8)
where p; is the ion gyro radius normalized to the minor radius. Finally, 6, is the collisionless

skin depth.



The vorticity equation, Eq. (1), includes a term due to ion gyroviscosity on the right hand
side, through which the ion diamagnetic drift frequency is introduced in the linear regime.
The parallel Ohm’s law, Eq. (2), includes the parallel pressure gradient, which introduces
the electron diamagnetic drift frequency, and electron inertia terms, which bring the colli-
sionless skin-depth length-scale and the associated collisionless physics into the system. An
isothermal equation of state is assumed; thus, the equation for pressure, Eq. (3), actuaily
describes the electron density. The parallel electron compressibility appearing in this equa-
tion makes it possible to describe long-mean-free-path (semi-collisional) physics. Finally, v

- is the parallel ion velocity through which parallel sound speed physics is introduced. Note
that the stream function ¢ is equal to the electrostatic potential ¢eee: only in the cold ion
limit, 7 = 0.

The frequency wpe(;) is the electron (ion) plasma frequency, and the drift frequencies that

we will encounter later are defined by

m /
Wike = —57p0, Wi = ~TWie, (9)

where m is the poloidal mode number, and p)(r) is the local equilibrium density gradient.
The apparent simplicity of the model makes it particularly useful in nonlinear computa-
tional studies; however, the present work will focus on various linear modes that are described
by the model and is intended to serve as an introduction to nonlinear computional studies
that will follow at a later date. Below we will briefly describe the linearized equations ob-
tained from Eqs. (1-4). In subsequent sections, dispersion relations for m = 1 modes in

various collisionality regimes will be derived and discussed.



III. Linear Equations

Linearizing Eqgs. (1-4) and ignoring gradients of the equilibrium quantities U, and J,, we

obtain in the slab limit
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where we assumed the perturbed quantities have the form f(r, 8, () = f(r) exp[i(—wt +mb —

n{)]. The variable z measures the distance from the rational surface, z = r — r,, and we

have used for the parallel wave-vector k= —{n + (m/r)(9¢,/0r)} = k.

Various length scales used throughout this work are defined below:
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Above, x 4% is the inertial layer width, z, is the sound layer width, and Zp, is the resistive

layer width, defined in terms of 5,, which includes the finite-electron-inertia modifications

of the parallel Spitzer resistivity but no other physics. Essentially all the non-MHD physics

of the four-field model is contained in the generalized resistive layer width, Z,,, defined in

Eq. (15). The quantity z; is a measure of the current channel width; its meaning will become
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more tfansparent during the discussion of the semi-collisional regime below. Note that for
convenience we have absorbed a factor of (1 4+ 7) into the definition of the ion sound speed

cs; the actual ion sound speed in the four-field model is equal to /3/2.

Equations (10) and (11) can be combined to yield®2!

dz

2

T
where we defined E = ¢’, which measures the radial electric field. This dispersion equation
ﬁeeds to be solved with the boundary condi_tioﬁ E — 0 for ]cc] — oo. Note that in general,
Egs. (10) and (‘11) lead to an inhomogeneous version of the Eq. (17); however, the inho- |
inogeneity can be shown to vanish in the lirm:t that the ideal internal kink mode becomes
marginally stable (A’ — 00).>*! Thus, this work will be mainly concerned with the “resis-
tive” branch of the m = 1 mode. This is not an overly restrictive assumption beca,us? many
of the interesting results are obtained in this limit.

Below we will examine the solutions of Eq. (17) in various collisionality regimes. Our aim
will be two-fold. We will focus on the effects of ion sound waves on the m = 1 mode, while
at the same time making connections with Préviously published results, some obtained using
sophisj;i.c.ated kinetic treatments, thus exhibiting the versatility of the four-field model. An
important result of this analysis will be that the sound waves are destabilizing for m = 1 in

the collisional regime, contrary to the results obtained for m > 2 (finite-A’) modes, but

have a stabilizing influence in the semi-collisional and collisionless regimes.
IV. Effects of Ion Sound Waves

Before entering a discussion of the effects of parallel compressibility on the m = 1 mode,
we need to make explicit what is meant by collisional, semi-collisional, and collisionless

regimes in the context of the four field model.

- In the definitions of various length-scales in Egs. (12-15), the FLR parameter § explicitly
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appears only in Eq. (14), and in the form 46% + iz2 . Thus, for |z,,| > 26, FLR effects
become unimportant. Note, however, that finite drift frequencies and sound speed are still
retained in this limit, giving rise to a “collisional drift-tearing” regime. The opposite limit
26 >> |z, | describes semi-collisional, or collisionless regimes, and the boundary between these

two regimes is determined by |z, | ~ &, as it can be seen in Eq. (13). Using My = MeVei /2€*n,,

where v,; is the electron-ion collision frequency, these results can be summarized as follows:

[Zn,| ~ |z,] > 26, (ﬁ > 22) collisional regime, (18)
w Me
|Zne | ~ |zq| < 26, (1 <o 2-@) semi-collisional regime, (19)
w Me
Ty, | ~ 6, (25 < 65), Ve <l collisionless regime. 20
Ns ; n w

We begin with the discussion of the effects of sound waves in the collisional regime.

A. Collisional Regime

In the collisional regime, |z,,| > 26, or vei/w > 2m;/m,, we have 2% ~ A;22, and 7,

reduces to
i o (20 2= Ay (21)
T T\ A ) 22— Azt

With this form of the generalized resistivity (i%,,° = in./w, where 7, is the generalized

resistivity), the dispersion equation (17) can be solved in terms of the variational functional??

R ix? z? — A,‘(II? E? 1 1
H=/-m{(‘a—l7) (—‘—wz—aexz) (;2-) * (ﬁ*m) Ez}‘”' (22)

Assuming a trial function of the form E = exp(—az?/2), the integrals in Eq. (22) are easily

performed to yield

-1/2 > 2 Ai
H = 71/? {— [2a1/2 + %ﬁT] + %af"” [(1 - ZZ) ¢Z(()+ 1]} , (23)

where ( = a'/2Al/%z,, « is a parameter to be determined variationally, and Z (¢) is the

plasma dispersion function. For bounded solutions, we require Re(a) > 0. The parameter o
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and the dispersion relation are determined by the equations H = 0 and 6 H = 0 (0H/da = 0),

which after some algebra lead to

A
?=_ 2 4 ' 24
e (24)
A4, 1 A\ ¢
e o (1-52) 5 25
“ i T2 (1 Ae) 2% (25)

Above we have assumed that the mode width w ~ a™V/? &« A2z, and used the large-
argument expansion for the Z function, with the further assumption that |Im({)| > |Re({)}-
Equation (24) reveals that the mode width is not affected, to order c2 ~ B, by finite—pf

effects. Combining equations (24) and (25) leads to the dispersion relation

W(w — wie) (W — wai) = —t7R {1 + % <1 - %) cf} , | (26) ‘

where g = k|’|2 /3771/ 3 is the growth rate of the classical, resistive m = 1 kink mode, and

we recall that A, = 1 — wx./w, and A; = 1 — wx;/w. Note that for ¢, = 0, we obtain the
well-known dispersion relation of Ara, Basu et al.%

Equation (26) was derived with the following assumptions: i) Re(a) > 0, which localizeé
the mode around the rational surface. This requirement is easily satisfied by unstable modes.
i) Im(¢) > 0 and | Im(¢)| > |Re(¢)|, which were used in the derivation of the terms involving
Z—functions and their aSymptotiq expansions. Numerical solution of Eq. (26) shows two
unstable branches, one with an approximately zero real-frequency and 4 ~ vz, and a second
one with a real frequency w, =~ wx,, and v < Q*e. Although both of these branches satisfy
the consistency reqﬁirement Re(a) > 0, the second branch with w =~ wx, is inconsistent with

the second set of assumptions and is not considered any further.

For wy(esy < vr, Eq. (26) can be solved perturbatively to give
" Wie + Wi (@ )c'ﬁ
p—ri v — s e - 2. —
| 3 * *i) %
2 2 2 2
Wiee — Wik, + Wie; 2w*e - 3w*ew*i + Wx; o
9% 187% )

+ iR {1 - (27)



Thus, we find that coupling to the ion sound terms is destabilizing for the resistive m =1
mode in the collisional regime, although the effect is weak and appears only in the second
order in wy(,;)/Yr. In contrast, the sound terms were found to be stabilizing for the m = 2
modes.?® In Fig. 1, predictions of Eq. (27) are compared with the results of an eigenvalue
code that integrates the linearized versions of Egs. (1-4) [not Eq. (17), which was derived
from those equations]. In Fig. 1(a), the mode frequency, normalized to g, is plotted as a
function of B = ¢? (we assume 7 = 1) for n = 1078, ~g/wx. = 10, and a g—profile with
¢ = 0.90, and ¢, = 3.5 (kI’I = —1.87). In this and subsequent plots, 3 is varied while keeping
Wa(e,i) fixed. Note that the sound terms break the symmetry between the electron and ion
drift frequencies; with ¢2 > 0, the mode rotates in the ion direction with a frequency that
increases with ¢2, w, ™ wx;c?. Figure 1(b) shows the change in the growth rate as function of
B under the same conditions, clearly indicating the destabilizing effect of the ion sound waves.
For comparison, for the parameters used above, Eq. (27) predicts w,/yr = —3.33 x 10723,
and (v —vr)/vr = 3.33 x 1073(~1 + B). Thus, the variational solution for w, and + is found
to be approximately within 20% of the numerical solutions.

Although a variational analysis of the collisional problem under assumptions consistent
with w, ~ w«,Yr/wx. € 1 is possible, a search with our eigenvalue code has revealed no
unstable modes in this parameter regime. Earlier, we had found a mode driven by the
gradient of the drift frequency® with w, =~ wx,. However, the ion sound terms were found
to be strongly stabilizing for this mode, and the effects of finite w) are not considered here.

Therefore, we next turn our attention to the more interesting semi-collisional regime.

B. Semi-Collisional Regime

In this regime, defined by Eq. (19), collisions are still important (ve/w > 1); however,
now the electron mean-free-path is long enough for the parallel electron compressibility to

play a significant role in limiting the width of the current channel to far below the mode
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width itself.”*?2?* The length-scale z; is now given by &% = iz2 z%,/(46%c?) < (225, 2).
For 22 > 2%, the effective resistivity (or “ac” resistivity) is greatly increased, thus confining
the current to |z| < 27, a region much narrower than observed in the collisional regime,
where the current channel width (and the mode width) is g‘iven‘by w, = (—im%xi;/Ae)l/ 4
[See Eq. (24)]. At the same time, the parallel electric field is less effectively shorted out by
the electrons for |z| > z;, leading to a much wider region around the rational surface with
significant parallel electric fields. A stronger coupling to the ion sound waves, caused by the
increased mode width, makes the ion-sound effects more important than was observed in the
collisional case.

A variational solution of the dispersion equation, Eq. (17), in the semi-collisional regime
proves unfeasible because of the presence of t:hree distinct length-scales. Although it is well
known that an accurate trial function is not necessary for an accurate variational evaluation
of the eigenvalues,?? here the trial functions amenable to analytic treatment do not lead
to'a,ccurate dispersion relations that a,gree'with numerical solution.s. of the linear equationé.
"Thus, we are forced to use a boundary-layer analysis with three sub-layers across which the
solutions have to be asymptotically matched. These three layers are defined by 1) z < z,
2) T S z4%, and 3) z S z,. Finally, the solution from sub-layer 3 has to be asymptotically
matched to the exterior solution (the “ideal solution” from z > z,), which simply requires
decaying solutions for large z in layer 3.

It is more convenient to carry out the analysis in terms of a new variable, F = Ey/z,

where we define B = ¢ — (z/x44:)¢ [See Eq. (11)]. In terms of F, Eq. (17) becomes®

d z? dF 2% [1—2%/A.z?
TR Py "
de |22 —2%,] dz  w!| 1—22/2%
where w, is the “classical” mode width, w} = (—iz2 2%,/A.). Note that in the semi-
collisional regime, we have z2, = z? —i6? o~ zZ. However, to maintain generality and

applicability of the results to the collisionless regime, we will continue to use zZ, in this

section for the square of the resistive diffusion length scale.
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1) In layer 1 (z < z7), Eq. (28) reduces to

d :z:zdF _ A, z?
dz= dz izl |1-2%/z}

] F=0. (29)
The odd solution (E) is assumed to be even), written in terms of Legendre functions, is
H(z) = P(z/2s) — P(—z/z1), (30)

where H = d(zF)/dz, and

2 2
Ae.’I:J ~ _Ae:I:A*
% R 2c2
iz, 4622

viv+1)=— (31)

Large-argument expansion of H gives

o v+ 1\ x5\ T ol —ir\ L (=12 =0)(1+v) _y
Fi(z) = z¥ — < ” ) (—2—-> COt(EV) (ze ) /25 2) T (=) 2=+ (32)

2) In layer 2, z; < = S 4%, Eq. (28) becomes

d 2z? dF A,

drz? — g%, do  46%c2

0. (33)
The solution can be written in terms of modified Bessel functions,

u(() = L() + AKL({), (34)

where A is a constant to be determined, ¢ = (AY?/26¢c,)x, and u is given by

2
2_ 1 _ ATy x

V=i e (%)
u(() is related to F(z) through
fa(z) = &*u(¢),
dFy z? — 12
d:: I - fa(@)
Small-argument expansion of u(() leads to
A AL/2 —2p .
fol@) m 242 4 S D) (p +1) [ e } g et (36)
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where we assumed Re(u) > 0. Using dFy/dz &= —(2%4/2?) f2(z) to obtain Fy(z) and matching
the result with Fi(z) from Eq. (32) determines the constant. A, o

_ p+1/2\* [—iz AV2) I(—p)I (s +1/2)
A=-2 (N—1/2> [ Sgcs ] T () (~p + /2T (u+ 1) coti(

B 1/2)’ (37)

where we also noted that matching requires v = p — 1/2, which is identically satisfied.

A large-argument expansion of u(({) is not needed. Using (8) and (16) we can show that

= (pi/2)*(Te/T; + 1)/2, which leads to
(oA, ]2, 1% (= (38)
2603 Te/lI;' +1 Pi '

Thus, for z >~ z 4%, we have { ~ z 4x/p;. We assume z4%/p; < 1 in the semi-collisional regime

and use (36) for z ~ z 4% (large-argument limit) also. Note that this assumption, which also
implies p =~ 1/2, needs to be justified a posteriori.

3) In layer 3, z4% < = < z,, Eq. (28) sinipliﬁes to

&F Agd [1 2

Aesz F=o. - - (39)

dz?  ix? zh,
The solution that decays for z — oo is given in terms of parabolic cylinder functions,?®

F3(z) = U(a, z), where

“Jﬁf’ (40)
Cr=2fz, &= (-8 = (~5%2)"". (41)

Expanding U(a, 2) for z — 0 and using fs(z) = 2%/(2? — 2%, )(dFs/dz) ~ dFs/dz, we obtain

21/2::: I'(a/2 + 3/4)

S S (T ESV) (42)

This function can match the fao(z) of Eq. (36) only if p ~ 1/2; we will show presently
that the 4 — 1/2 limit, requiring z4 < p;, is self-consistent. Thus, Eqs (36) and (42) yield

the dispersion relation

13



12 (1/2 —p) I'(3/2 — p) (1 + p) T, 1 _ [.azs] I'(1/4+a/2)
2/ (1/24+ w2 T(1/2+ w1 —p) tan 5(3 —#) = - [Z 2% ] I'(3/4+a/2) (43)

Expanding the left-hand-side around g = 1/2, (43) can be put in the form

3/2 A3/2_3
ﬂ_A_’___x_A = % ;72 6c2G(a), (44)

Ty

8

where
_(a\Y2T'(1/4+a/2)
Gla) = <§> T(3/4+a/2)

We can easily recover from (44) the semi-collisional dispersion relation for m = 1 without

(45)

the sound effects. From the definition of a above, we have a ~ z,/46c, ~ z,/2p;. Thus, if
we ignore the ion sound contributions to the dispersion relation by letting z, — oo at fixed

pi, we have G(a) — 1 and(44) reduces to
3 s_ (8Y 7 caape
W(Ww — wike) (W — wx;)° = (;-r-) i 8k, (46)

A perturbative solution of (46) for w ~ iy >> wx gives

_ 3(w*e + w*i)

7 + Yse, (47)
where the semi-collisional growth-rate is given by
2/7
o= (2) sty 49

Note that (46) appears to be exactly equivalent to the dispersion relation found by
Hahm.?® Hahm uses a kinetic approach, starting with the drift-kinetic equation for the
electron response and the gyro-kinetic equation for the ion response. In addition, in the
resistive layer, which is less than one ion gyro-radius wide in the semi-collisional regime,
ions are treated as unmagnetized. In fact, slight differences between Hahm’s dispersion
relation and Drake et al.’s earlier work™® are attributed to this more physical treatment of

the ion response. Thus, the fact that we obtained the same dispersion relation as Hahm’s

14



from a simplified two-fluid model is quite remarkable and indicates that the four field model,
despite its simplicity, contains essential features of the sophisticated kinetic treatments. More
supportive evidence in this direction will be presented in the discussion of the collisionless
regime. Parenthetically, we have also reproduced Hahm and Chen’s dispersion relation for
the semi-collisional kinetic Alfvén waves?” with the four-field model; however, a discussion
of this mode is outside the scope of this paper.

In order to consider the effects of ion sound waves in the semi-collisional regime, we note
that a >~ z,/(2p;) and asymptotically expand G(a) for large a to obtain G(a) ~ 1 —1/(4a?).
Substituting for G(a) in (44) then leads to the ion-sound-modified dispersion relation

oo~ = {1+ (2) (B ) 2L )

(W — wae)

where we used 62c2 = p(T./T; + 1)/8. Finally, assuming w ~ 47, > wx and solving (49)

perturbatively leads to

_ 3(wke + W) | . 1(T ) 2k} :
w= Z +z'ysc{1 53 T+1 732c L 111(50)

Note that the ion-sound waves have a stabilizing influence in the semi-collisional regime,
contrary to what was observed in the collisional regime above, although the effect is again
rather weak.

The éemi—collisional dispersion relation (49) was obtained in the limit a ~ z,/p; > 1. In
the 6pposite limit, ¢ < 1, we obtain

I(1/4)
T(3/4)

oo —omeo = n? = 5 |

] 82k, (51)

which predicts a mode with a stronger dependence on 7, v ~ 7/, However, a < 1 seems
to be an unphysical limit, requiring very high B; it will not be considered further.

In Figures (2-4), analytic results of this section are compared with numerical calcula-
tions using an eigenvalue code that solves the linearized versions of the original four-field

equations (1-4). Fig. 2 shows the scaling of the growth rate (ion-sound-modified) with 7 for
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T=1, Yse/wx =10, §=2.0x10"2, B =1.0x1072, which gives for the ion Larmor radius
pi = 4.0x1073. Recall that all lengths are normalized to the minor radius. The observed scal-
ing, v ~ 7184 is within 15% of the theoretically expected value of ¥ ~ n%/7. Fig. 3 shows the
relative change in the growth rate as a function of 8 = ¢% (1 = 1 is assumed) while maintain-
ing p; = 4 x 1073, The stabilizing influence of the ion sound waves is clearly demonstrated.
The numerically observed slope of —~0.383 is within 12% of the theoretically expected value
of —(p}/14)(k{}/¥2.) = —0.435, where we used k| = —1.87 and v, = 3.03 x 1072, Fig. 4
shows the typical eigenfunctions in the semi-collisional regime. For comparison, both Ji
(Fig. 4(a)) and & = ¢ — (z/244i)Petect (Fig. 4(b)) are plotted. The figures show a region
centered around the rational surface, indicated with r,, with a width of 5% of the minor
radius. Approximate locations of vy + 4%, s + pi, and rs + , are also shown in Fig. 4(b).
It is clear that the current channel is localized within |r —r,| S z; (z7 ~ 2.3 x 10™* here),
while & extends over a much wider region. Note also that & exhibits variations on length
scales z;, p;, and z,, which, as it was indicated earlier, makes a variational treatment of the
problem quite difficult.

In the derivation of the dispersion relations above, we assumed that the Alfvén layer
width is less than the ion Larmor radius, z4% < p;. Zhang®® has pointed out that this
inequality will hold for modes with w ~ ws;. However, for the modes under consideration
here with w ~ 7,. > wx, we have to provide an a posteriori justification. Using v =~ v,., we

can show that

7
zax) 1 7
() =5 (Ge. VR %)
Thus, z4%/p; < 1 for
T\ 2 :
1< (5) ke (53)

which seems to hold for all large tokamaks. For reference, we list below values of various
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length scales for p =1.0 x 107°, #=1.0 x 1072,§ = 2.0 x 10~

7=38.02x107% K =-187,
zy~233 x107% =z, ~5.75x107%
Tax 2162 x107°, z,1.62 x 1072,

We = (Ty,z4%) 2 22 9.65 X 1074, p; = 4.0 x 1072,

Although we have z 4% < p;, it is clear that T ok is not much less than p;- Therefore, the
accuracy of the matching analysis is somewhat surprising. It should probably be attributed
to the fact that lowest order terms in the expansion of the left-hand-side of (43) are second

order in (u —1/2), thus fourth order in (za%/p;)-

C. Collisionless Regime.

For ve;/w < 1, we can obtain a dispersion relation for a collisionless m = 1 mode using
the results of the previous sections on collisional or semi-collisional modes. Sta,rting"With
the collisional results in Egs. (24) and (25), and ignoring diamagnetic and sound effects by
letting Ac — 1, z4% — 24, and ¢, — 0,- we obtain the well-known dispersion relation for the

resistive m = 1 mode3

g4 = —iz?, (54)

which immediately leads to the purely growing mode vz = kl'l2 / *pl/3, If we now assume
Vei/w < 1, we can replace z? by —i6? in Eq. (54) to obtain a dispersion relation for a purely

growing “inertial mode”®2°

T= kﬁésa (55)

where 6, is the collisionless skin depth. However, in the context of the four-field model, this
is an inconsistent result; in order to obtain (54), we assumed Ty > 26 (Ves/w > 2m;/m,), but
Eq. (55) requires z, < 6, (vei/w < 1). Therefore, we conclude that (55) is not a physically

relevant result.
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Fortunately, using our results on the semi-collisional modes, we can easily find a dispersion
relation for a collisionless m = 1 mode that is consistent with all our assumptions. In the
collisionless regime, we have from (13) z2 = 2 — 16? ~ —i62. Then substituting for z,, in
Eq. (44) we obtain

(w — wie)(w — wii)® = (I1ess)°G(a)?, (56)

where the collisionless growth rate 4., is

N3 i\ 1/3
Yiess = (") (‘——) k|,] 53 63/37 (57)

T Me

and G(a) is given by Eq. (45). Using the definitions in Eq. (7), Jiess can be rewritten as

Te T'z + 1 173 H 2/3
VYiess = {/_} klll 63 (ﬂ'> . (58)

T s

Once again, we believe we have obtained quite a remarkable result. Written in this form,
Yiess differs from the collisionless growth rate found by Porcelli,’* and also contained in Berk,
Mahajan, and Zhang,!* only by a factor of 21/3, (k|| appearing in our expression is absorbed
into Porcelli’s definition of wys.) Porcelli’s analysis uses a fluid description for the electrons,
with appropriate modifications of the Ohm’s law, and a kinetic treatment of the ions valid
for arbitrary value of the ion Larmor radius. Thus, the nearly exact agreement between our
results and Porcelli’s is one more example of how well the four-field model seems to describe
the essential physics, despite its simplicity.

As in the previous section on the semi-collisional modes, the effects of ion sound waves
in the collisionless regime can be found by asymptotically expanding G(a) for large a =

1A.z,/46c, ~ z,/p;. Then the ion-sound-modified dispersion relation becomes

(0 — o4 — omi)® = (iYiens)® {1 +(8) (B4) _—’“L-} O 9)

Ti (w - w*e)z

A perturbative solution of (59) for w =~ e, > wx yields

Wke + W . 1 Te Czkﬁz
w=—2-—+2’)’1333{1—ﬂ<fi+1>pgg . (60)

Again, the sound waves are found to be weakly stabilizing.
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V. Discussion and Conclusions

We have analyzed the resistive branch (A" — o0) "df the m = 1 mode in collisional, semi-
collisional, and collisionless regimes with a simplified four-field model of tokamak dynamics.
The model includes some finite-Larmor radius effects (in the small FLR limit), parallel
and perpéndicula,r compressibility ( we have used only the parallel compressibility feature
here), and the electron and ion diamagnetic drift effects, with an isothermal equation of
state. We showed that it reproduces very accurately a number of results obtained with
more sophisticated kinetic treatments, e.g. the semi-collisional dispersion relation for m =1
introduced by long-mean-free-path electron dynamics, and a related collisionless m = 1 mode
made possible by finite electron inertia terms in the parallel Ohm’s law.

We have also examined the effects of ion sound waves on the m = 1 mode and showed
that the sound waves are weakly destabilizing in the collisional regime and stabilizing in the
semi-collisional and collisionless regimes. Héwever, for the modes that we have concentrated
on with w ~ iy > @*, the effect is weaker than it is for the m > 2 drift-tearing mode; with
W N Wike. |

This work considers only linear modes in order to demonstrate the versatility and ac-
curacy of the four-field model for high-temperature, low-collisionality regimes. The main
usefulness of the model lies in nonlinear applications, where some of the modes discussed
here will be studied nonlinearly, thus extending the previously performed purely resistive
MHD calculations to regimes relevant for today’s large tokamaks. Since both the semi-
collisional and collisionless modes disccussed above are more robust and have larger growth
rates than their purely resistive counterpart, the resistive m = 1 kink mode, a study of
their nonlinear evolution may clarify some of the puzzling features of the tokamak sawtooth
oscillations. Nonlinear numerical calculations with the four-field model will be the subject

of a future publication.
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Figures

FIG. 1. Real frequency and the growth rate of the ion-sound-modified collisional m = 1
mode, calculated with an eigenvalue code that solves the linearized versions of Eqs. (1-4).
a) The real frequency as a function of the square of the sound speed, c? = 8. The solid
line, the equation for which is given in the bottom of the figure, represents a best fit
to the numerical data. b) The change in the growth rate, normalized to the resistive .
m = 1 growth rate, as a function of ¢ = . Again, the solid line represents a best
fit to the numerical data. The theory [Eq. (27)] predicts w,/yr = —3.33 x 10~28, and

(v —vr)/7r = 3.33 x 1073(=1 + B).

FIG. 2. The scaling of the growth rate of the semi-collisional m = 1 mode with resistivity
n. The solid line, a best fit to the numerical data, gives ¥ ~ 7%1%4, which should be

compared with the theoretically expected n1/7 scaling.

FIG. 3. The change in the growth rate of the semi-collisional m = 1 mode with cﬁ = p,

normalized to v,,, the semi-collisional growth rate without the ion-sound modifications.

FIG. 4. Eigenfunctions for the semi-collisional mode. a) Jj, b) &|. Locations of 7, + z 4%,
rs + pi, and Ts + T;, where 7, is the radius of the ¢ = 1 surface, 4% is the Alfvén
layer-width, p; is the ion Larmor radius, and z, is the ion-sound layer width, are also

shown.
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