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Abstract

We discuss two distinct regimes of cross-field test particle diffusion due to electro-
static turbulence. In the guasi-linear regime, which takes place for small amplitude ¢g
of the potential perturbation, the local turbulent diffusion coefficient scales as Dy o< ¢3.
For the turbulence amplitude approaching or exceeding the mixing length leifel, the
E x B drift Aof particles becomes sensitive to the topology of contours of constant poten-
tial ¢(r,t) due to the longer correlations of drift orbits. In this regime, the percolation
théofy is used to describe the long flights of particles along the critical level contours.

- For a éingle—scale, random distribution of the electric potential, the percolation scaling

for the diffusivity Dy ¢c7)/10 is derived and applied to edge tokamak transport.

To be submitted to Physical Review Letters






Short-scale drift plasma turbulence is considered as a primary candidate responsible for
the anomalous electron transport [1] There have been undertaken substantial efforts to study
the turbulent E x B transport both self-consistently [2, 3] and for a specified turbulence
spectrum [4, 5]. Recently, a basic test particle diffusion experiment by McWilliams [6]
reported the scaling of diffusion Dr as a linear function of the amplitude of oscillations ¢,
which is different form the quadratic quasi-linear dependence. In this letter we take the
non-self-consistent approach, which is an unavoidable part of the complete self-consistent
problem. In the frame of this approach, using test particle motipn arguments, we show
that for electrostatic turbulence, at the level of oscillations well above the threshold of the
bfea.king of quasi-linear theory, electron transport can be described analytically with the
help of percolation theory [7]. This theory gives the scaling law for the turbulent diffusion
D « ¢(7,/ 19 that differs from previously reported nonlinear regime of the two-wave stochastic
Hamiltonian model [5].

Our assertion is based on the recent work [7] that has discussed turbulent diffusion in a

two-dimentional inéompres’sible chaotic flow
v(r,t) = Vi(z,y,t) X 2. (1)

The stream-function ¢ is assumed to be a delocalized, bounded random function possessing
a single characteristic spatial scale A and a characteristic evolution frequency w considered
as a free parameter.

In the case lof plasma, the drift motion of a guiding center can be written as
dr/dt = vz + (¢/B)z X V¢(ry,z,t) , ‘ (2)

where z,y,z are local coordinates, B = B7Z is the magnetic field, ¢ the random electric
potential (E = —V¢), and v the particle velocity along the magnetic field. Let us assume

the time scale being much shorter than the electron collision time, so that vy is constant. The
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effect associated with toroidal geometry such as the bounce motion in v)(t) are considered
in Ref. [3] but are neglected here. Then the cross-field motion of the electron guiding center

is described by Eq. (1) with the stream-function

Y(z,y,t) = —(c/B)é(z,y, 2 + o|t, t), (3)

where zp stands for the initial cordinate of the particle. The effective frequency for the P
variation is then

weff(v”) ~ max(w*, k“v”), (4)

which is either the fluctuation frequency, lw* A wy, or plainly a frame-of-reference effect
from the para;ilel pérticle motion, with k”_ ! being the longitudinal inhomogeneity scale of ¢
typically determined by the confinement geometry as ky ~ 1/qR for passing perticles. In
the simple case of a single, travelling wave, weg = wi — kjv), but in general case of muitiple
waves the relevant time scale of the coherent motion is 1/ max(Aw, Akjvy). For example,
for electrons in the trapped particle mode [8], kll ~ 1/qR, for passing electrons, and k) = 0,
for trapped electrons with fractional density (r/R)'/2. The spectrum width is assumed to be
of the order of the wavenumber, viz. Ak ~ ky, AkL =~ k,, implying the correla.tioﬁ lengths
of the order of the wavelengths so that the problem is specified by a single, dominant scale
lerigth. |

In the simplest terms, the turbulent diffusion is determined by the widely adopted as-
sumption that, for a random, zero-mean velocity field v, the chaotic particle motion governed

by

dr/dt = v(r,t) (5)
leads to the asymptotic diffusivity
Dr = lim ([r(t) — x(0)?) /4t , | (6)

where the angular brackets in Eq. (6) denote the averaging over the inital conditions r(0).
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The manne| of chaotic advection described by Eq. (5) depends strongly on the dimen-

sionless paramsfter

R, = vo/(Aw), (7)

where vg repres'!(vnts the characteristic amplitude of the velocity field. Expression (7) is the
ratio of particle rotation frequency (2, & vp/) and the frequency of the flow non-stationarity
w. At R, < 1 {3mall amplitude, or high frequency limit) one can neglect the dependence of

RHS of Eq. (5) on r, hence getting the well known quasi-linear result
DT=’U§/w , Ry, 1. ' (8)

In the opposite, strong amplitude limit R, 3> 1 the flow v(r, ) evolves much slower than
particles rotate ixround the contours ¢ = const. , which represent stream-lines. It means
that some tes » rticle lying on anomalously long contours of ¢ with diameter a >> X can
contribute to *|. diffusion strongly, due to the coherent manner of their motion on the
distance a, e- ; ough the probability to find such contours is relatively small. To describe
this process , tively, one needs to know the distribution of random contours P(z,y) =h
over their siz« ',; is distribution can be calculated with the help of percolation theory which
describes the - ,L stics of clusters, viz. connected aggregates, of randomly occupied sites [9].
The lattice st ¢ nent of the percolation theory is widely used in the phase transition theory.
For the isolines ‘.saa,tistics, the continuous percolation theory is relevant, with the “occupancy
of a site” meaning a prescribed (say, positive) sign of the expression ¥ (z,y) — A. Then the

contours of consuant ¢ can be considered as perimeters of the clusters. The application of

this theory to the 2D turbulent diffusion [7] yields the result

Dy ~ AR R, > 1, : 9)

where the ex >onent 7/10 = (v + 1)/(v + 2) is expressed through the percolation exponent

v = 4/3 that governs‘ the divergence of the maximum size a of “islands”, a < |h = k|7,
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‘near the critical “sea” level h = h.. The diffusion coefficient (9) is basically produced by a

small fraction of stream-lines with diameter of the order of
am = AR*®, R, > 1. | (10)

The transport correlation length (10) represents the maximum size of “isl;cmds” near the
critical level a test particle has time to pass around before the contour is destructed due
to the non-stationarity of the flow. A similar effect of transport constraining in narrow
boundary layers near separarices has been described earlier for steady flows in the presence
of a small collisional diffusion in the limit of large Peclet number [10, 11]. In our analysis,
the parameter R, plays a role analogous to the Peclet number.

The nondimensional parameter (7) governing the regimes of E x B stochastic transport,

according to Eqgs. (3), (4), can be written as

_ ck? o | :
R = Bmax(on, ko) 4y

where w,, kj, v are the absolute values. Combining Eqgs. (8), (9), .(11) we obtain the

following cross-field turbulent diffusion:

KA

B? max(w,, kjy)) ’ s <1, (122)
DT(’U ) ~
| max(wn, ko) | (ego) " Rp>1 (12b)
=) (7)o mer

Exp;ession (12a) corresponds to the quasi-liﬁea.r limit with the well known scaling law
Dr o ¢% (used extensively in the analysis of fusion experiments (1-5]). In the opposite case
(12b), which can be refered to as the percolation limit, one reveals the scaling Dy o ¢§/ 19,
This dependence differs from the previously reported scaling Dr o ¢o [5] based on the
renormalized propagator (w — kv + k% D)=L

A similar classification applies to the regimes of anomalous transport in a stochastic mag-

netic field B + 6B [12], because the equation of perturbed magnetic field line is mathemati-
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cally similar to Eq. (5) when the electric potential ¢ is replaced by the iaerturbed vector po-
tential A,, and the time ¢ is replaced by the coordinate 2. The quasi-linear regime yields the
magnetic line diffusion Dy,  (6B/B)?, while in the percolation regime D,, o (§B/B)7/1°,

The mixing length level of turbulence often envoked in theoretical and experimental stud-
ies of turbulence is (by definition) the transition point amplitude Rg = 1, where rotation
around the fluctuation of size 1/k; occurs in the correlation time wzi. If this regime is
maintained by the turbulence then the distinction between the quasi-linear and strong tur-
bulence is not possible and the fluctuation’s scale completely defines the turbulent diffusion
as Dr = max(ws, kjv)/ k%, which is commonly used to estimate Dr. However, there is
evidence from the 3D fluid turbulence simulation of drift waves [13] that the turbulence
saturates in the vortex structures with Rg > 1, so that the percolation theory, or strong
turbulence regime, applies.

In the TEXT tokamak [14], electrostatic fluctuations with ¢ g 10+-20 Vand k; ~1-3
cm™?! are measﬁred by probes in the exterior region (r/a > 0.9) and are known to account
for the measured particle losses. Typical parameters are L, =1 —4cm, T, = 20 — 40
eV, with kjve < wie = ky(cTe/eBL,). For this regime we find that Rg = ck? ¢o/ B|w..| z
kiLn(edo/T.) =1 — 4, suggesting the applicability of the strong turbulence limit. .
~ The Constant Current Tokamak [15] also has large amplitude potential fluctuations (¢o =
12 ;25 V) with e¢o/T, = 0.3 —0.6 > 7i./n. suggesting that the passive convection of plasma
may be a valid first approvximvation. From the direct measurements of the fluctuation power
spectrum oné finds that k; = 1 cm™, f =~ 100 kHz, ¢y ~ 20 V leading to the estimate
that Rg ~ 1. However, if we take into account the large Doppler shift from the rotation,
which accounts for the most of the frequency f, by using wie = kyvq4. in the calculation
for Rg instead of the laboratory frequency 27 f, then we may arrive to the estimate for
Rg = kiLn(e¢o/T.) = (Lem™ 5cm)(0.3 to 0.6) = 1 to 3, which is sufficient to produce

the vortex-like convective flights of the fluid elements that are not trapped in the potential






maxima and minima.

For the kinetic description of plasma, the percolation scaling of D7 can be more rel-
eva,nt‘;. Let us discués the dependence of the turbulent diffusivity Dz on the longitudinal -
electron velocity v. Due to this dependence, it is in principle possible that fast electrons
undergo quasi-linear diffuéion, while slow electrons or trapped electrons diffuse percolation-
ally. Generally, the turbulent diffusion can be calculated upon averaging expression (12)
over the electron distribution function. Suppose the thermal electrons have the parameter
Rg(v; = vre) > 1. Then runaway electrons with V|| > wvre can have Rp(vy)) < 1 and,
according to Eq. (12a), will be confined better than thermal electrons. In this case one
would have Dr(v)) on ! that implies the confinement time would scale as the square root
of the electron energy. On the other hand, for a stochastic magnetic field, it is known [16]
Dy = Dy, and runaway electrons diffuse faster. This suggests the idea [17] that in the
experiments with good runaway confinement, anomalous transport is caused by electrostatic
turbulence, rather than by magnetic perturbations.

The strict applicability of the above results is restricted to the assumptions made. One
can extend the theory to account for multiple scale p’erturbétions, which is a problem under
investigation [18]. Another important effect, which affects electron transport in tokamaks, is
the radial electric field E,. Theoretical [5,19] and experimental [14,15] evidence shows that
sheared flow from E, modifies drift orbits in such way that suppresses the radial transport.
In this ca,se‘of a strong E,, or sheared flow vy = —cFE, /B from E,, the scaling laws for Dy
can be different. Also strong magnetic shear [3,8,13] can reduce the transport. |
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