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Abstract

A toroidal pinch configuration with safety factor ¢ < 0.5 decreasing from the center
to periphery without field reversal is proposed. This is capable of containing high
pressure plasma with only small toroidal external magnetic field. Sufficient conditions
for magnetohydrodynamic stability are fulfilled in this configuration. The stability is
studied by conStructing the Lyapunov functional and investigating its 'exti;e‘ma Both
analytically and numerically. Comparison of the Lyapunov stability conditions with the
conventional linear theory is carried out. Stable configurations are found with average

_ B near 15%, with magnetic field asséciated mainly with piasma current. The § value
calculated with the exfernal magnetic field can be over 100%. Fast chaliged particles
produced by fusion reactions are asymmetrically éonﬁned by the poloidal magnefsic

- field (and due to the lack of strong toroidal field). They thué g;ahera,te a current in the
noncentral part of plasma to reinforce the poloidal field. This current drive can sustain

the monotonic decrease of ¢ with radius.

9)Permanent address: Kurchatov Institute of Atomic Energy, Moscow 123182, U.S.S.R.
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I. Introduction

It is desirable to explore stable high beta plasma configurations. One approach is to explore
a high beta tokamak (¢ > 1) equilibrium, in particular, that of the second stability.! Another
approach? is to look for a reversed field pinch (RFP) (¢ < 1), spheromak, or field reversed
configuration with no toroidal field (FRC). The present investigation tries to explore a high
beta toroidal confinement configuration without field reversal with a very small ¢g. This
configuration can be supported by very small external toroidal fields and is ideal MHD
stable, satisfying sufficient conditions for stability. Such a configuration has many potential
strengths such as less stringent magnet conditions, charged fusion product driven current,
'possibility for adoption of advanced fuels, etc.

The stability of the stationary state of ordinary differential equations was investigated
by Lyapunov.® A sufficient condition for such stability is based upon the properties of the
extrema of a function, the so-called Lyapunov function, defined in the phase space of the
system. The idea of applying such a theory to partial differential evolution equations of
infinite-dimensional phase space began to evolve earlier, but they were extended to applica-
tions to the hydrodynamic equations only in the Seventies. At that time linear magnetohy-
drodynamic (MHD) theory, which studies the necessary conditions for stability, had already
been well developed (see, e.g., Ref. 4). In the case of ideal MHD the linear theory indicates
a set of equilibrium for which all frequencies of the linear oscillations are real. It is well
known that this is only a necessary, but not a sufficient condition for the stability of the
original nonlinear system. For instance, it does not take into account the possibility of a
thresholdless instability caused by the interaction of three or more linear waves in an inho-
mogeneous medium. Such a nonlinear instability is possibly observed in linearly stable flows
of water, for example. It is well known® that according to the linear theory the instabilities

of laminar flow must start with the Reynolds number Re larger than 5800. Experimentally,
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the instability starts with Re ~ 2000. This is apparently related to a nonlinear instability,’
which is not found in the linear theory.

We are interested in distinguishing a narrower class that satisfies the sufficient conditions
for stability among the set of linearly stable plasma states. The inain pbint of Lyapunov’s
theory is finding the appropriate Lyapunov function (functional). A functional series of
first integrals connected with helicity® is useful for this purpose. The stationary solutions
of the MHD equations which are checked for Lyapunov stability are obtained as extremals
i.e., as solutions of variational Euler’s equations for the appropriate Lyapunov functionals.
The class of equilibrium solutions is thereby restricted and we cannot select thé necessary
functional for any arbitrary solutions of the Grad-Shafranov equation.*

The next step consists in checking the positive-definiteness of the second variation of
the Lyapunov functional in the ViCinit}.f of the extremal. There appear difficulties connected
with the infinite-dimensionality of the phaée space. These are the possibility of a continuous
spectrum for the Jacobi equations (as discussed in Secs. III and IV) with coefficients which
have poles on resonance surfaces, and: the diverse definitions of positive definiteness and of
strict positive definiteness. We show that these problems are the same as are met in linear
theory. So the only difference in the»Lyapunov method with linear theoiy ié the restrictions
on the class of equilibrium sté,f;es: not évéry equilibrium is extremum of integral of motion.

Earlier, Taylor’ proposed to find stable states by minimizing the functional
/(32—kA-B)d3z , B=VxA , k= const. (1)

where A -B is the helicity density and A the vector potential of the magnetic field. Minimiza-
tion leads in this case to stable force-free (pressure p = const. ) configurations. Variations
in the pressure are neglected, which is valid provided there exists in the plasma a mech-

anism for a fast equilization of the pressure. At the extremals of (1), in a cylindrical or

toroidal geometry, the longitudinal magnetic field can reverse. Using the more general he-



licity integrals® makes it possible to construct a Lyapunov functional which has an extremal

with non-vanishing pressure gradients.

II. Helicity Integrals

The ideal MHD equations describe our system:
0B=Vx(vxB), V:-B=0,
dp+vpV-v=0, Gp+V-pv=0,
pdiv=—-Vp+ (V xB) x B/4r ,
(v is the adiabatic exponent, ¥ = 5/3), where §; is the Eulerian time derivative while d; the
Lagrangian. They possess the following first integrals (the components of the momentum,

the energy, the cross helicity, and the entropy series, respectively):

/pvdsm , W= /( +—+ 22)0533:,
/pV-BdS.'L' , A)pf(/‘%)da’x, (3)

where f is an arbitrary function, D is an arbitrary fluid volume; when the integration
domain is not specified, integration should be carried out over the whole volume V inside the
conducting sheath. On the boundary 0V we assume that the conditions of impenetrability

and infinite conductivity are satisfied:
n-vf =0 , n-B| =0, (4)

where n is the normal vector to the boundary.

From the first equation of (2) it follows that
0;A =v x B — Voy(x,t) (5)

where ¢ is an arbitrary function. It is shown in Ref. 8 that for any gauge, or any choice of

the function ¢, the functional / A -Bd®z is a first integral of the set (2).

4



To generalize this result, we put ¢ = v+ A and define the local helicity density » = A -B.

It satisfies a continuity equation:
0,:h+V-_hv=0.‘ (6)

Hence it follows that the quantity u = p'/7/h is conserved along the particle orbit:
Op+v-Vu=0.

For the enlarged set of Egs. (2) and (6) there exists a functional series of first integrals
Kp= [ hF(u)ds, | o

where F' is an arbitrary function.®

III. Lyapunov Functional

As fhe Lyapunov functional wé use a first integral in the form of the sum of the energy and
the helicity
L=W+ Kr. , (8)

Variations are carried out in terms of the independent variables A, p,v. It follows from (3)
that by first Qarying with respect to p one can eliminate p, §p algebraically and then reduce

the problem to one of studying the simplified functional Y, which depends on A alone:
Y = / [B2/2 4+ U(h)| &= . o 9)

Here U is the helicity function, which determines the structure of the équi]jbrium in accor-

dance with the formula 64 Y = 0; we thus have
VxB+2B+VIixA=0 , 6 =d,U . (10)
The pressure is expressed in terms of the integral
p=p(h) = f R U dh/dr . . (11)
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The Taylor states 7 can be obtained from Eq. (10) assuming § = d,U = const. and hence

drp = 0. The general equilibrium state (10) and (11) is stable® under the conditions
0<hdyp<vp , 63Y >0. (12)

For plasma inside a highly conducting metal chamber the following boundary conditions

apply
n-B=0,n-B=0,p=0, Vp=0,h=0, Vp=0. (13)

The first two of these conditions are a consequence of the conservation of the circulation
of A along contours on the boundary; the third is the condition that the plasma is thermally
insulated and the last three conditions follow from (10) and from the first inequality in (12).

Note also that (10) and (11) are equivalent to the system of equations
(VxB)xB=4rVp, A-VxB+20h=0. (14)
Let us examine the second variation of functional (9):
Y = / (6B%/2 + U'hy + U"R2/2)d*x (15)

where h; = A - 6B + B - §A, hy = 6A - 6B, 6B = V x §A. Here the prime denotes the
derivative with respect to the argument. Let us minimize (15) by a variational method.

Varying (15), we find the Jacobi equation

VXVXIA+U'V XA+ V XUSA+U"Bhi+V xU"ARy =0. (16)

IV. Lyapunov Stability and the Linear MHD
Analysis

The sufficient condition of stability is the positive definiteness of the second variation of

Lyapunov functional. This is always satisfied if there are no solutions to the Jacobi equation



(16). Any solution of Eq. (16) is also a solution to all equations which can be derived from
it, so that the absence of solutions to any one of such “derived” equations is sufficient for
stability. In this section we show that the system of linearized MHD equations does follow
from Eq. (16) and thus is able to describe sufficient conditions of stability.

The divergence operator applied to Eq. (16) yields
§B-VU'+B:-V(U"h)=0. | (17)

Noting that U”hy = 6U’, we find Eq. (17) to be the linearized form of equation which

describes plasma pressure as a function of magnetic field line
6(B-Vp)=0. : - (18)

The linearized MHD equation of balance between the Lorentz force and the pressure

gradient

§(JxB—-Vp) =8I xB+IxB~-Vép=0" : (19)

can also be obtained from Eq. (16). Indeed, let us substitute 6J = £ V x ('V x 6A) from

Eq. (16) into the combination S =6J x B +J x §B. This yields the chain of equalities:

§= 1= (BX [VU' x 6A]+ B x [V x (U"hA)]+ B x [VU' x A]) =

v

1 |
= (VU + hY(U"hs) ~ A (5B - VU + B - V(U"hy)) = 11; V(U"hhy) = Vép. (20)

This proves that the closed set of MHD équafcions (18) and (19) follows from (16) and thus
describes sufficient conditions of stability. Algebrzﬁc transformations in (20) are made using
condition (17) and the equilibrium equation (10).

Tlﬂs system was often studied in papers on linear MHD stability of magnetic confinement

® were obtained. These

systems and useful stability condition such as the Mercier criterion
conditions are usually only necessary but not sufficient for the stability of the system, since .

they describe the certain existence of some solution of system (18) and (19) and not the’
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absence of any one. Thus, in order to ensure the relevance of these criteria to our case,
we have to show that the class of solutions to Eq. (16) is not much narrower than that of
the MHD system, or that Eq. (16) follows from (18) and (19) with reasonable additional
constraints.

From the above derivation procedure it follows that the component of Eq. (16) perpen-
dicular to B can be reconstructed from Eq. (19), but the paralle] component is defined only

up to some arbitrary solution of equation B - VF = 0 so that
VXVXxSA+UV xA+V xU'SA+U"Bh+V xU"Ahy =BF . (21)

It is easy to see that the system (18) and (19) can be derived from (21) as well as from (16).
Fortunately, the class of nontrivial solutions of B - VF' = 0 is relatively narrow and consists
of the m = 0 perturbation F' = F(¢) and of a series of the é-functional spikes on rational
flux surfaces. Both types of resulting perturbations are related to resistive reconnection
or diffusion of magnetic fields and thus can be excluded from consideration by using ideal
MHD constraints on solutions of (18) and (19) around resonant flux surfaces. In this limit

the MHD system is equivalent to Jacobi equation (16).

V. Axisymmetric Toroidal Configurations

We now study extremals which depend on r and z but not on angle ¢. We express the
magnetic fleld and the current in the cylindrical system of coordinates (r, ¢, z) in terms of

the Stokes potential. We write ¢ = —rA - e4. Hence
TB=8¢XV’Q/}+€¢I y BV’(/)=0, (22)

where ey is the unit vector in the azimuthal direction, and ¢ and I are arbitrary functions.

It follows from (22) that

rV x B=—ey x VI+esA%p ' (23)
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A*=rd,r710, + 62 . S (24)

Substituting (22) and (23) into (14), we find that I, Ak, and p are locally singie—valued
functions of 9. It follows from (18) that the function 1 satisfies the Grad-Shafranov equation

which in our case has the form
.A*z/) = —drrip—II , 4rp=~Hho, (25)
and the easily integrable equation also follows:
I=20+46, (26)

where the dots henceforth denote the derivative with respect to . Thus in Eq. (25) there
is one grbitra,ry function, (1), rather than two as usual.*

In view of the axial symmetry of the problem, the boundary condition (4) is equivalent
to the condition |

P = const. . : - (27)

We determine the vector potential A. According to the Lyapunov conditions this must be
a single-valued vector ﬁeld, continuous in the region V, such that the current j is finite
everywhere in V.

We change to an orthogonal set of coordinates (¥, 9, ¢), Wheré ¥ and ¢ are the ﬁoloidal

and toroidal angles, respectively. The components of the metric tensor are
L=1/|V$|, b=1/|VI|, ls=r
and
| Bi=0, By=Vih/r, Bs=1I/r, As= —t/r .
It follows from (11) and (22) that » = h(%) and that by definition we have

h=A,Vb/r+ AsI/r (28)
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where V; = [7! §; is the ith component of the gradient in the (v,9, #) coordinate system.

The third component of the ma,gn'etic field is
B:_:, = I/'f‘ = (6112142 - 8211.141)/[1 12 . (29)
As A is single-valued, we have

} 83(I A1)39 = 0
and, in view of (29), we find
Oy (M, + IMy) = IM, , (30)
where
M, = ]{Hdﬂ . My = ]{Hr“zdﬂ . H=hiys. (31)

We note that 27 / M, dip =V is the volume inside the 1 = const. surface, ® = / M, dy
the toroidal magnetic flux, X = 2w the poloidal flux, and . the value of the function
on the magnetic axis; ¢ = IMy/27 = dy®. Equation (28) now gives a relation between the

helicity density ~ and the safety factor g¢:
h = [‘I)(’gb) - 27T¢q]M1_1 = &dy X — Xdy® . (32)

From (28), (29), and (32) we get a unique expression for the components of the vector

potential
Al = l;l /(;(allez - l]_lz.[/?')d’l? 5

A2 = ’l,b_[(l - 7”2M2/M1)l]_ -+ @llr/M]_ .

As we assume the current on the magnetic axis to be finite, it follows that the component
Az must be a differentiable function. As l; = 1/|V1| has a pole on the magnetic axis, while

M; is finite, we must have on the axis, where ¥ = 1,

®(spe) =0, (33)
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It also follows from (11) that v
p=p¥)= [ hodp. SNE

The above expressions Wﬂi be used to find the equilibrium defined by §Y = 0. The check
of stability of this equilibrium also includes condition 6éY > 0, which involves solving the
linearized MHD system. This can be done by standard methodsn only for simple equilibria,
such as the cylindrical pinch,® or by restricting the class of admissible perturbations. In the
examples described in the following section the study is restricted to localized modes, so
that the Mercier criterion® is used instead of the full system of partial differential equations.

Convenient form of Mercier criterion was published in Ref. 10:

21g)? ¢ Hd® .- v B? o vdd . vdd\?
@>[p ——Ml]]{—B?dﬂ—i-%'qua{——pI(f ) (35)

4p B? B3 B?

where v = I Hr~2,

V1. Nﬁmerical Examples

We first pick a set of the safety factor ¢ and 6 as a function of the poloidal flux ¢. This
generates an equilibrium so constructed to satisfy the Grad-Shafranov equation (25). How-
ever, the arbitrary choice of ¢ and 6 'does not guarantee the Lyap.'unov relation (26). We.
have to look for the set of ¢ and 6 that satisfy the condition. To accomplish this, we adapt
§ iteratively by minimizing the difference between a functional (called M) that is generated
from the Lyapunov satisfying Grad-Shafranov equation and a functional M, that is simply
from the Grad-Shafranov solution.

We solve the equilibrium equation (25) by the “inverse variable” technique, using the
code POLAR.! We use the normalized poloidai flux coordinate p that is determined by

equation:
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where 1, and 1, are poloidal fluxes on magnetic axis and boundary, respectively. We specify
the profiles j—f/’; (p) and ¢(p) as input parameters for the equilibrium problem. From the
solution of Grad-Shafranov equations we obtain the coordinates R(p,?) and z(p,?) of the
magnetic surfaces. Here we solve equilibrium problem with fixed plasma boundary. The
coordinates of plasma boundary are given by equations:
R = Ry + a(cos ¥ — gsin?¥) ,
{ z=-¢€asin? ,
where Ry is the geometrical plasma center, a is the minor radius, ¢ is ellipticity, ¢ is trian-

gularity, 9 is poloidal angle. We represent the profile of the safety factor ¢ by polynomial®

q=q+ gz, (37)

wherek =1,...,5, s = -, o= —F , @1 = .E (1 - T%)? and I and I, are the poloidal
current and the value of I on the magnetic axis. ¢; is a free parameter and the values of
g3, qa, and g5 are determined by the following conditions: ¢pg = 0, hsg = 0 where A is the
helicity density,
4 27
h=(/¢ch¢—¢q)-ﬁ—4;- (38)
Here the subscript bd denotes values on the plasma boundary.
The pressure is determined by Eq. (34). For given 6, I can be obtained from (26). When
derivatives are calculated numerically, it produces large numerical error and during iterations
the value of errors increases. To avoid these numerical errors, we use analytical expression

for 6 variable:

5
0=00+>, Cra*, (39)
k=2

where Cy = 0 from the Mercier condition at z = 0. From Eq. (26) we find

I=L+ ¥ (26 + yp)dy (40)

12
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and calculate My = 222, Then we find the minimum of functional F(My, My) = ; b(Mz -

M; )? z2dsp with respect to parameters Cy. Using the obtained parameters C, we recalculate
§ and substituting into eipression for pressure equation (40), We‘solve new equilibrium. All
this procedure is repeated until required- accuracy is obtained. |
We solve Egs. (25)-(26) in dimensionless units. ‘For unit lengﬂi we take x,, for unit
magnetic field B;. .They are to be chosen for convenience sake.
| Figure 1 shows an exa,mjele of the magnetic surfaces of our eonﬁgufatien. In this ;;articular
example we show several quantities of interest as a function of the radius r. The r = 0 is the
toroidal axis Position and r =5 (in arbitI;é,ry unit) is the magnetic axis (the center of the
poloidal radius or the poleidal axis). In the following curves are terminated at the plasma

edge. Figure 2 shows the profiles of toroidal and poloidal magnetic fields. -Note that the

- poloidal field is zero on the poloidal axis, as it should, and the toroidal field on théplasma

boundary is extremely low, about 4% of the maximum toroidal field at the magnetic axis. In
Fig. 3 we show the profiles of the toroidal current a,n-d‘poloida,l current in the plasma (and on
the surface). The profile of the safety factor is displayed in Fig. 4. The ¢ value varies from
~ 0.2 at the center to less than 0.1 (about 0.08) in the present example. Figure 5 shows the
profiles of the plaéma pressure and the helicity densityl Displayed in Fig. 6 is the profile of the
quantity M3, which is related to the toroidal magnetic flux, given by Eq. (31). This profile
is computed from given ¢(t) and 8(¢). After adapting these § functions numerically to the
condition of sufficient stability (26) iteratively, the two profiles of M, ultimately coincide
(convefge) for the solution. Figure 7 shows the functional dependence of U, U’, and P as e
function of the helicity density A. If the obtained (Liapunov-stable) equilibrium were the

Taylor state,” U(h) = const. x h and thus U’(h) = const. The Ta,ylof’ state corresponds

~ to a constant pressure equilibrium. In fact, our relaxed state has a pressure profile and in

particular U’(h) = const. + const. x h'/2, corresponding to U(h) o h + const. x A3/2. The
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second term in U’ and U represents the non-Taylor like profile. The physical reason why the
second term in U(h) goes like h%/? is unclear at this moment. However, it is noted that in
a separate investigation with a driven boundary condition!? we witnessed an approximate
equilibrium. In this equilibrium the global Beltrami condition V x B = oB with « being the
global condition constant is replaced by the local Beltrami condition V x B = a()B, where
« is a function of the flux function and approximately proportional to /2. It should also
be noted that in a numerical simulation’® the pressure profile tends to relax to be uniform.
Thus we need to investigate how long the pressure profile is maintained and if necessary
how the profile is maintained either by drive (or fueling) or by fusion products. To obtain
dimensional quantities from Figs. 1 to 6, the following transformations should be made

B+«~-BB; A+->z,BA

g+—q p—— Blp

h +— z,B2h and soon .

For instance it might be convenient to take z, = 1m, B, = 5 x 10* Gauss.

VII. Operation Considerations and Current Drive

For a confinement system it is crucial to operate it as a reactor mode. This means that
(i) the energy density is high enough to be attractive, (ii) the (near) steady-state operation
is possible, (iii) the energy conversion and fueling is efficient, (iv) the wall load of heat
and neutron fluence is low enough, and inexpensive enough, among other requirements.
These conditions point to our desire to achieve: (i) the highest possible plasma beta or
the lowest possible external magnetic fields required, (ii) possible advanced fuel to reduce
neutron fluence, (iii) a self-sustained current due to fusion products, (iv) simple wall/magnets
requirements, (v) possible direct energy conversion, etc.

Let us consider the current drive'*~'" by the charged fusion products such as energetic

alpha particles and protons. It is crucial that our configuration has relatively weak toroidal
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magnetic fields. In the absence of strong toroidal fields the changed fusion products can
have a large orbit, not far smaller than the system’s dimension. This leads to the possibility
of asymmetric (or momentum selective) confinement. For simplicity, for the moment, let us
ignore the toroidal fields entirely. Imagine a charged fusion product has a momentum into
the board. If the poloidal field at the location is upward, this particle (positively charged,
executes a Larmor motion toward the outside of the torus. Either by the enlarged Larmor
radius outside of the plasma or by some design to snare such particles, it is possible to lose
particles that come out of the plasma region. On the other hand, suppose that a charged
particle has a momentum out of the board. rIg'his particle executes a Larmor motion toward
the interior of the torus and thus keeps confined. The net result is the overall toroidal
momentum out of the board. As has been discussed in Ref. 14, this net mpmentlim gives
rise to a drag of electrons that yields. a radial spinout of electrons., and thus é, radial electric
field. This radial electric field is responsible for the toroidal E x B rotation of the plasma.
With the Ohkawa effect!® due to the different atorﬁic numbers per charge, however, this net

momentum flow accompanies the toroidal current: The toroidal (¢) Ohkawa current is given

by

Jo = Zsnselvsg) (1 - ZZe;) ; | (41)
where Z; and Z.g are the charge of fusion products and the background plasma ions, ny
and vy are the density and the toroidal flow velocity of the fusion products. This current, if
(1 = Z¢/Zeg) > 0, is in the direction to reinforce the poloidal magnetic field.'® Thus it can
be said that the charged fusion products can self-sustain (or enhance) the poloidal fields by
the selective conﬁnerﬁent. | |

Consider the Fokker-Planck equation

v.

= = O() + 880 —wo) , (42)

9 Of
+mcva v
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where the collision term is

v
ol

O = v |1+ | (43

with vg the initial speed of the fusion product and v; being the threshold speed below which
the scattering collisionless begin to become important relative to slow down collisions and

the source term is the fusion product source

S =nyng (ov) . ' (44)

If the constants of motion are p; and v (3 mv? = energy) during the period shorter than
the slow-down time v but longer than the bounce time, then we have f = f(vpy), but f
not dependent on v,.

As treated in Ref. 14, we can integrate Eq. (43) along the characteristics. The resultant

solution of the distribution function is

£(0,p0) = LD LN G, — )] ) 24l (45)
where
N g 2
Bl py0) = S Bia)s (46)

and the caret quantities mean, for example,

. /drdz Q(r, z)
Q(p¢,v)= 2 /d 7 ’
rdz

where the s refers to the curve that bounds the accessible phase space region with given py

(47)

and v at the present time (as permitted by the maximum and minimum possible toroidal
momenta Pymax and Pymin). Here the subscript 0 refers to the initial (at-birth) value and ©
is the Heavyside step function.

The current due to the fusion product is calculated as

Jo(r2) = ap [ & fos . (48)
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We can show that the current (Jy)e, induced by the energetic particles in comparison with
the background plasma current (Jy), that had produced the equilibrium poloidal fields is

given'* as
Jn _ E v B
Jp T, v, 10

where E is the energetic particle energy, T;, the plasma temperature, 8 the core plasma beta,

al(a) , (49)

vi = n(ov) the fusion reaction rate, and « the ratio of the minor radius to the energetic
particle Larmor radius. Here the dimensionless function I () is shown for cases where
is relatively small (5), and relatively large (20) in Fig. 7. It is clear in this case that a
substantial amount of current can be generated by the fusion charged particles.

If we revive weak toroidal magnetic fields, we expect that the above result holds in an
essential way. For example, the asymmetric confinement should remain opera.tive.“_"I“his is.
particularly the case toward the outside of the minor radial direction. We thus expect that
our reactor configuration can, on the order of magnitude, sustain the poloidal magnetic fields
by the charged fusion products.

" In short, the current profile genera.ted by the charged fusion pfbducts of the system tends
to be hollow. In addition, the parallel or antiparallelism of the toroidal current and the
toroidal magnetic fields makes a significant difference in the induced current. We, however,
need more thorough work with the toroidal field effects. If the Larmor radius of energetic
particles is substantially smaller than the poloidal radius of the plasma, the particle dynamics
is approximately that of drift kinetic. In this case energetic particles execute the vertical drift
motion due to the toroidal ;‘ield gradient, transporting interior energetic particles toward the
periphery. Thereby they can then be asymmetrically lost. In this case the net amount of
toroidal flow should be reduced. It should be noted that the generated current near the
surface can be transported toward interior by resistive or anomalous relaxation. Additional
external current drive may be needed for support of the ¢ profile while heating the plasma

without loss of stability until fusion conditions are achieved.
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Certain comments are in order. First, in order to maintain the equilibrium discussed, we
need to make the boundary conditions with a metallic wall. A solid wall may be problematic,
as energetic particles tend to sputter the surface of such a metal. Perhaps we may employ
a net of metallic mesh that is essentially conducting and can be given a definite electric
potential, yet is permeable for particles. Once charged particles come out of this boundary,
it is important to capture them. This is for the purpose of the current drive described above

as well as for that of the efficient and direct energy conversion of charged particles.

VIII. Discussion

Fusion energy through magnetic confinement has progressed by a large stride recently, cul-
minating to reach a nearly “scientific breakeven” within a factor two or so in the world’s
largest tokamak experiments, as reported in the latest IAEA meeting in Baltimore, U.S.A,,
this year (1990). Among fusion concepts the tokamak concept has come furthest. Neverthe-
less, there exists a criticism that a tokamak reactor has some undesirable features.’® It points
out that the capital cost of constructing a tokamak fusion reactor is much higher than that
of a typical fission reactor, based on the low reactor power density, high system complexity,
and other factors. Therefore, it is desirable to explore fusion concepts to circumvent these
characteristics. One of the major motivations of the present paper has been to squarely
address how to ameliorate the technical complexity of the external magnetic system.

In magnetic fusion there are two fundamental reactor requirements. One is the ignition
condition and the other is the ignited energy gain. We assume here that an attractive
magnetic fusion reactor should be ignited. The ignition condition may be expressed as the

ratio of the fusion power to the energy loss rate being greater than unity:

_— Pfus _ n? <av>8fusfa
r= PE = ’nT/TE >1 ’ (50)

where €5 is the fusion energy (e.g. 14.7 MeV for the DT process), f, is the fraction of alpha
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- particle containment before slowdown, n and T' are the plasma density and temperature, and
75 the energy confinement time. Here we assumed the radiative loss time Traq is sufficiently
long enough to be ignored (but could be important for high temperature advanced fuel
reactor). As (ov) o« T? in typical fusion operatioﬁ regimes, the quantity r is proportional
to nT 75 fa. Of course, ali the phyéics is in determination of 7. The condition (50) is a

| function of n, T, Tg, fa, and Traq, all basically the properties of the fusion plasma ifself. The
condition of ignited energy gain may 'be stated that the auxiliary power usage corhpared

with the available fusion power is sufficiently small:

Pa.ux
nPfus—Paux

. .
<5 (51)

where P,,y is the power necessary to sustain the auxiliary processes of the reactor such as

the plasma heating, the magnet current power supply, and the vacuum and coola{{? power

supply, n is the overall energy conversion efficiency n = n4. f. + n: M f, with f;“»al'ld I
being the fraction of charged particles and neutrons out of fusion products, 74, and' n4h the

energy conversion efficiency by the direct convertor and the thermal converter, M b‘é‘ing the

multicative factor for fissile materials through neutron breeding. The number v is the figure

of merit df the reactor power utilization and the larger it is, the more power is available for

use and typically taken to be in the neighborhood of 7. It can be shown that the condition

(51) depends on n, T, the plasma volume V,, the magnet volume V,, among others. |

- The neutron fluence I', = €n ¢, Where &, is the neutron energy and ¢ the neutron flux,

is related to the fusion power by
I, En

B =R 2
'Pfus gfusa, (5)

where a is an appropriate (linear) dimension of the fuel (plasma). For a DT tokamak reactor
a is of the order of 1m, while for a light water fission reactor (LWR) and a fast breeding

reactor (FBR) typically a on the ordér of lcm. The fusion power goes like
Prs xn?T? ~ g2 BY, (53)
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and for a tokamak this becomes

Pr < (/0)? B? , (54

where B is the (strongest or toroidal B;) magnetic field, € and ¢ are the inverse aspect ratio
and the safety factor and are approximately fixed constant for a tokamak.

A schematic reactor is shown in Fig. 9. In a DT reactor the first wall (FW) has to
withstand the high neutron fluence. Perhaps the maximum it can stand is ~ 20 MWyr/m?,
from which the average lifetime should be determined. The blanket (either liquid or solid) has
to transport heat and act as breeding, if necessary. The shield (S) and the superconducting
magnets (SC) have to sit outside of all these. The shield has to be sufficiently thick (enough
for the stopping power of neutrons). The superconducting system has to withstand the
neutron penetration and heat to keep the superconductor from heating, stress, and material
deterioration. The current J, and magnetic field B, on the surface of superconductors should
be less than the critical current J, and magnetic field B., and yet the magnetic field in the
plasma, say, nearly 2m away from the surface of superconductors has to be sufficiently strong
toroidal field. These are formidable technical requirements.

In light of these technical demands, the present machine has several (potential) benefits as
a reactor. First, the toroidal magnetic field, which is the only external field, near the surface
of the plasma and thus near the surface of magnets is much smaller than the typical poloidal
field. Therefore, the magnetic field in Eq. (53) is the poloidal field and the coil magnetic
field condition is a couple of magnitude less severe than that of an equivalent tokamak. This
will relax the severity of Eq. (51), as well, because the auxiliary power needed for magnets
reduces accordingly. Secondly, the lack of strong toroidal field and thus the fairly large value
of overall plasma beta mean that the synchrotron radiation power loss is not as severe as in

a tokamak even for very high temperature, as the synchrotron loss goes like
Pyn xnT,.B? ~BB*, (55)
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where B is the total magnetic field. As we already pointed out in Sec. VII, the relative
smallness of the toroidal field allows one to yield the fusion product sustained current drive
of the poloidal field, opening the possiBility fox“ a steady-state reactor.

The reduced energy loss due to synchrotron radiation permits us to operate at a much
higher temperature, thus permits us to adopt an advanced fuel such as D3He instead of the
DT fuel. The advanced fuel operation pertains to a number of reactor benefits. First, it
reduces the neutron fluence I', by two orders of .ma,gnitude, thus enhancing the effective
enei‘gy density according to Eq. (52) This further lessens :t‘he load on the magnet. Since a
major portion of orbits of charged fﬁsion products have a large Larmor rddius, there exists
an option of direct energy conversion of these energetic charged particle energy.

One intriguing magnetic configuration more extreme than the present ultra-low q con-
figuration is the isolated magnetic configuration.!®?® This configuration is spheromak-like,
except that it does not have an external field outside the separatrix, thus allowing a con-
figuration without external magnets. However, either a swirl of flows should be pré;ent or
the pressure proﬁlé is concave (its interior is lower than the exterior) to reconcile tﬁé virial
theorem. The swirl of plasma flows might be maintained by theliswirl of liquid metal flows
as a part of the blanket/shield system. If the interior temperature is higher than the exte-
rior, such a pressure profile may be thermodynamically unstable, although radia,t:ive plasmas
often satisfy such a profile. Such a configuration is, however, absoluteiy stable in terms of
MHD. The investigation of isolated magnetless magnetic configurations, however, is left for
future research. | ,

The work was supported by the U.S. Department of Energy DE-FG05-80ET-53088. We
are grateful for discussions with Prof. J.B. Taylor and Prof. T. Sato.
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Figure Captions

1.

Sequence of magnetic surfaces from, ¢ = 0.2 at magnetic axis (r = 5.8;2z = 0) till

% = 0.8 at the conducting wall. Units of normalization are given in Sec. V1.

. Profiles of toroidal (1) and poloidal (2) magnetic fields at z = 0.

. Profiles of (V x B); (1) and (V x B), (2) at z = 0. To obtain current densities in

(ampere/cm?) multiply value on Fig. 3 by B,/z, (B, in gauss, z, in c.

Profile of safety factor ¢ at z = 0. Note high value of shear Vq/q except the central

and boundary regions.

Profiles of plasma pressure (1) and 0.1 of helicity density (2). At the plasma boundary
p=Vp= V2p=h = Vh = 0 (force-free state).

. Profiles of M, calculated at given ¢(¥) and 8(¢). After adapting these functions

numerically to additional condition on equilibrium (26), the two profiles coincide.

The functional dependence of quantities U,U’, and P as a function of the helicity
density A.
The normalized toroidal current induced by the fusion product (B, = 0 assumed).

(a) For @ =5 (b) For o = 20.

. Schematic reactor configuration: P, the plasma; FW, the first wall; B, the blanket,

and S and SC are the neutron shield and the superconductor.
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