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Abstract

In the theory of relaxation, a plasma reaches a state of minimum energy subject té

_ constan£ magnetic helicity. In this state thé plasma velocity is zero. Several authors
have attempted to extend the theory, by introducing a number of different helicity ’
invariants, so as to obtain relaxed states with plasma flow. It is shown here that these
generalized invariants are special cases of two basic self-helicities, one for electrons and
one for ions. The validity of the generalized invariants is discussed and contrasted with

that of the original magnetic helicity.
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I. Introduction

The theory of relaxation of turbulent plasma has been very successful in predicting and
interpreting the results of plasma experiments such as Reverse Field Pinch, Spheromak and
Multipinch.}? According to this theory the plasma relaxes to a configuration of minimum

energy subject to the constrajnt of constant total magnetic helicity
Ko= [ A-Bdr. (1)
In the resulting equilibria, the fluid velocity is zero and the magnetic field satisfies
VxB=)B (2)

where ) is a constant.

The success of this theory has led to several attempts to extend it to describe equilibria
with plasma flow.3%5 These extensions involve several different cqnstraints. The object of
this note is to show how these different constraints can be unified and to comment on their

validity in the light of the original theory.

IT. Invariants

If any vector field P satisfies

%—lt)—}—vx(VxP):VX (3)

and Vv is subject to arbitrary variations (e.g. representing a turbulent velocity), then the

variations of P are also arbitrary, except for the constraints that

oP |
b S dL=0 (4)

where C' is any closed field line of V x P. An equivalent expression of these constraints is
that the helicity
K,-:/C P.VxPdr (5)
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in any closed flux tube C; is constant.
The essential feature of relaxation theory is that in the presence of small dissipative
effects, such as resistivity, field lines cannot be identified (lines break and rejoin) so that.

only the total helicity defined by
KO/VO P.VxPdr (6)

(where Vp is the volume of the system) remains a good invariant. (Here and elsewhere we
assume appropriate boundary conditions, e.g. that v = 0.)

For a plasma of cold ions and electrons with negligible interaction we have, for both

species, : :
ov v? —e
i R = 7
8t+v(2) v-(V xv) m(E+v><B) | (7)
where '
E=-v'¢-%‘%, B=VxA. | (8)

These equations can be re-arranged to give

661? +ve x (V x P = VA, (92)
% + Vi X (V X Pz) =V (9b)
where _
P, = (”‘2"" +A> and P, = (m"e —A) (10)
€

with M and m the ion and electron mass. Consequently, for a cold plasma, there are two

self-helicities which are invariant;

/VPe-VXPe and [ P,V xP (11)
0

Yo

(in general there will be an invariant self-helicity for each independent specieé.)



When plasma pressure is not negligible, Eq. (7) contains an extra term Vp/p. This can
be incorporated into Eqgs. (9), leaving the invariants unaffected, if p = p(p). This assump-
tion covers i) uniform incompressible plasma (p = constant) — as considered by Turner,’
ii) isentropic plasma (pp” = constant) as considered by Sudan,? iii) uniform temperature
plasma (p = pT') as considered by Finn and Anderson.*

In the limit of small electron mass the electron invariant becomes the usual magnetic
helicity

Io=/A-BdT (12)

and —the ion invariant becomes
11=/<A—/IX+A>-V><(—A—4X+A> (13)
e e 4

where v is now the plasma velocity. Altema,tiv"ely,'we may subtract (12) from (13) to yield

an invariant

12=/v-(B+§46—va>dT. (14)

A further approximation, neglecting the ion mass, is equivalent to neglecting the Hall term
in the extended Ohms law
E+ (vxB)=(jxB)/ne - (19)

and yields the so-called ‘cross helicity’ invariant
L= /(v .B)dr . ~(16)

However the term ‘cross-helicity’ now seems inappropriate since the basic invariants (11) are
both self-helicities. We will refer to (I, I, I3) as generalized helicities and retain the term

magnetic helicity for the original quantity (Io).



ITI. Relaxation

Before the above invariants can be used to find relaxed states, one must consider the role
of density and pressure. We will continue to neglect pressure, again effectively 'consi.dering
a .cold‘ plasma, and we treat the density in the same manner as the helicity. That is; in an
ideal plasma the mass on each closed flux tube would be constant, but the loss of identity
among different flux tubes inherent in relaxation leaves only the total mass as an invariant
— just as it left only the total helicity invariant. Thus we are led to consider relaxation to

a minimum of the energy

v? B2 ‘
E_/<p?+—2—)d7 (17)
subject. to the constancy of |
M = /pdT | (18a)
Io =/A~Bdr | (18b)
I1=/<&+A>-VX(M+A>(1T (18¢)
e e
under variations §A,év and ép. -
The resulting equations are
VxB—/\B—I—%‘EVXV=O , | (19a)
£ w-uB+ M yv=0
Vi LB+ . Vxv=0 (19b)
v? = constant o : (19¢)

where A and p are Lagrange multiplieré.

Equations (19) are precisely the zero pressure limit of those used by Su‘da,n.3 (However,
his constant density solution does not exist at zero pressure.)
| If we assume that the Larmor radius is small compared to the equilibrium scale length,

then V x v may be neglected in (19b) (but not in (19a) as A/ is not yet determined). Then
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(& = pM]e)

VxB-)AB+pVxv=0 (20a)
pv— /B =0 (20Db)
v? = constant . (20c)

Equations (20) are the zero pressure limit of those used by Finn and Antonsen;* they repre-
sent small Larmor radius equilibria in which kinetic and magnetic energies are comparable
(nMv? ~ B?). Of course, if the kinetic energy is negligible the magnetic field reverts to the
usual form (2).
Finally, we note that since Turner® did not use a mass conservation constraint, but instead

assumed constant density, he had only two equations for equilibrium, corresponding to (20a)

and (20b).

IV. Discussion

We have seen that the different invariants invoked to obtain relaxed states with flow>*?

are special cases of the two basic self-helicity invariants
/P,--VXP,- and /P3~V><Pe (21)

We now consider the validity of these invariants compared to that of the original magnetic
helicity. In this context it is important to recall that relaxation theory is not a mathematical
variational principle (such as Hamilton’s principle) involving virtual displacements. It refers
to real displacements in a turbulent system. Then there are two complementary aspects to
be considered.

i) Given that the ideal system has an infinity of invariants, why are the two global
helicities singled out in a slightly dissipative system?

ii) Given that dissipation is present, why can the global helicities be regarded as constant?



Point i) has already been mentioned; the distinction between global helicities and other
invariants is that the latter are significant only when the field lines with which they are
associated can be identified. (They cannot, for example, be identified solely from knowledge
of thé field P). The global helicities require no such identification and can be computed from
the field P alone. Consequently they remain valid even when the field lines can no longer
be identified.

Point ii) requires that the global helicities should decay more slowly than the energy. One
aspect of this concerns the role of turbulent fluctuations at short wavelength. In a resistive

plasma the rate of change of the original mé,gnetic helicity Ip is

%"Ni/nk-BixB,’f O (22)

where B, are the fourier components of the fluctuating field, whereas the rate of change of
energy is )
9 [ (23)
Consequently energy dissipation remains finite at scale lengths such that nk? ~ O(1) whereas
helicity dissipation is only O(n'/?) at this scale. (The small scale fluctuations discussed here
may be related to field line reconnection through the condition B - VA = 0 for a stationary
plasma (i.e. A must be uniform along the field). When two field lines having different values
of A connect, the subsequent adjustment is brought about by short wavelength, Alfvén-
wave, motion. Alternatively, small scale fluctuations may arise as thin current sheets, either
regular, as in the model of sawtooth reconnection,® or random, as in spatially intermittent
turbulence. The fact that the argument is relevant to any small scale magnetic fluctuations
is presumably responsible for the robustness of the concept of relaxation.)
Now let us consider the situation for the generalized invariants I;, I3, I;. The argument
that it is impossible to identify flux tubes in the presence of dissipation, so that only the

global helicities are important, is still valid. However the argument for the constancy of the
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global helicities relative to energy is not. Firstly, the generalized helicities are not conserved
even in a perfectly conducting viscous plasma. Secondly, the effect of small scale fluctuations
on the generalized helicities is quite different to their effect on the magnetic helicity. For

example, the rate of change of the cross-helicity I3 is

dls

—=~ [(n+mk (vi-BE +viBy) (24)

while the rate of change of energy is

dE

=~ (k2B * + pk2plvil?) . (25)

Consequently, in so far as the turbulence involves fluctuations in both velocity and magnetic

field, the decay of cross-helicity and energy both remain finite at scales nk* ~ O(1).

V. Couslusions

The various generalized helicities, used to replace the magnetic helicity in relaxation theory.
are special cases of two self-helicities — one related to electrons and one to ions. The
assumption that the plasma tends to a state of minimum energy subject to invariance of these
generalized helicities, leads to states with plasma flow which have been derived earlier.>*?
However, while there are strong arguments for the unique invariance of the magnetic
helicity in a turbulent resistive plasma, these arguments do not appear to apply to the
invariance of the generalized helicities. Consequently, while we can expect, and experiment
confirms, that turbulent plasmas frequently relax to the stationary states derived using the
magnetic helicity, it is only in special circumstances (perhaps involving injection of high-
energy beams) that we could expect to observe relaxation to the states with plasma flow

that are derived using the generalized helicities.
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