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Abstract

We describe an accurate and efficient model for studying the evolution of tokamak
plasmas. The equilibrium problem for a plasma with a free boundary is solved using
the “inverse variable” technique. The one-dimensional (averaged on magnetic surfaces).
system of transport equations are solved together with the circuit equations for the
vacuum vessel and the passive and active coils. As an example of the application of
this method, we simulate the discharge in the T-38M Tokamak as it transiently evolves ‘

to a separatrix configuration.

)Permanent address: 1.V. Kurchatov Institute of Atomic Energy, Moscow, U.S.S.R.

L






I. Introduction

A vertically elongated plasma cross-section is considered to be advantageous for achieving
high-beta and high-current plasmas in tokamak devices. Tokamaks with divertor configura-
tioﬁs and shaped, noncircular plasma cross-sections play an increasingly more important role
in fusion research than conventional circular cross-section tokamaks. Present-day tokamaks
like JET, JT-60, and DIII-D operate in divertor regimes. The next generation of tokamaks,
like ITER, are being designed as devices with high elongation.

These tokamaks are more complicated than those with circular cross-section. There are

a number of problems associated with these devices. The currents in the poloidal field coils

must be carefully programmed to obtain the desired plasma current and configuration. Po-
sitional control problems have to be solved. An elongated plasma is generally unstable to
an a.xisyrmﬁetric vertical displacement. Vacuum vessel and passive conductors are used to
stabilize fast plasma motion; an active control system is necessary to keep plasma at the
equilibrium position during the discharge. To gain a good understanding of these phenom-
ena in tokamaks and to design devices with optimal characteristics, it is necessary to have
appropriate tools for the numerical simulation of tokamak operation and behavior. Several
codes exist to simulate axisymmetric tokamak plasmas in two-dimensional geometry [1-5).
'One of the most complicated and extensive of these codes is the TSC code [6]. This code
uses a considerable amount of computer time.

The present paper describes an accurate and efficient model to study toroidal plasma
evolution in two-dimensional geometry. In this code (named DINA), the equilibrium problem
of a plasma with a free boundary in an externally applied magnetic field is solved together
with the oﬁe-dimensional (averaged on magnetic surfaces) system of transpdrt equations.
For the vacuum vessel and the passive and active coils, the circuit equations are solved. The

code includes such effects as fuelling by pellet injection and heating by neutral beams and o-






part.;icles. The cold, neutral particles are modelled in the plane approximation. The effects of
bootstrap and beam-driven currents are taken into account. The main difference between this
model and others is the method that is employed for the solution of the equilibrium problem.
The “inverse variable” technique [7] is used in the code DINA to find the coordinates of the
equilibrium magnetic surfaces. This method permits the flux coordinates to be determined

very quickly and accurately.

II. Equilibrium and Transport Equations

The plasma equilibrium in a magnetic field is described by the following simple system of

vector equations:

1.
Vp=1[jxB], (1)
curlB:ézj , (2)
c
divB =0, (3)

where p is the plasma pressure, B is the magnetic field, j is the current density, and c is the
speed of light. In an axisymmetric configuration, the magnetic field B can be expressed in

terms of the poloidal flux function ¥ and the poloidal current F' as
B= -1 [VUxe,]+-2re (@)
© 27y et TP '

where e, is the unit vector in the toroidal direction, and (r, z,¢) are cylindrical coordinates

centered on the axis of toroidal symmetry. The first term in Eq. (4) is the poloidal field B,,

which lies in the cross-sectional plane (r, z), whereas the second term is the toroidal field B,.

Substituting B from Eq. (4) into Eq. (1), we have

Vp = (th _ %FVF) , (5)






where j; is the toroidal component of the currént density. Using ¥ as a variable to describe
the flux surfaces, we can write p and F as functions of ¥: viz., p = p(¥), F = F(0),
Vp = p'VV¥, VF = F'VU¥, where the prime denotes a derivative with respect to ¥. From

Eq. (5), the toroidal component of the current density, j;, can be written as
. 1 |
Jr = 7'.27rcp' + E (FZ)’ . (6)

Using simple mathematical relations we obtain from Egs. (1)-(6):

0 (10¥ o*v 472
AYW=r = (== |4+—=-"T—7j
"or (r 61') 072 ¢ Ut
or
2
A*Y = s r <r27rcp' + = (Fz)'> ) (7)
¢ re .

which is called the Grad-Shafranov equilibrium equation. Using the notation % = ¥ /27 and

f=2F/c, Eq. (7) can be written in a more compact and convenient form:

1 %, dp 1 df?
;A 1/)——(47!’?‘%4-%%) . (8)

To solve this equation, it is necessary to specify the functions p = p(¥) and f = f(3), which
can be found from the transport equations and the magnetic field diffusion equation. We
introduce the flux coordinate system (p, 9, ) shown in Fig. 1, where p = \/®, with ® the
toroidal flux, ®(¥) = [ [, , Bt drdz, and where 6 and ¢ are the poloidal and toroidal angles,

and where Sy is the area enclosed by the magnetic contour ¢ = const. in the (r,z) plane.

III. Averaging Technique

Since in tokamaks, the energy and particle transport along the magnetic surfaces is much
greater than the transport across the magnetic surfaces, we can assume that densities and

temperatures are constant on each magnetic surface.







Let p be the label for the magnetic surface S; we define the average over S of an arbitrary |

quantity A by

9 1 ds
(A)_W/S AdV_—V—,/S AT

Whére
ov ds-
V, = — = —,
dp Js |Vp

and V is the volume enclosed inside the magnetic surface S. This average has the following

properties:
(divH):%(H-VV) , VH, (9)
d 1 1/ A d .
=V (A))=V<A>+E—p—(Au,,-VV) , VA, (10)

where A is the time derivative at a fixed point (7, z), with d/d¢ being the time derivative at

fixed p. The vector u, is the velocity of the constant p surface, defined by
p+u, Vp=0. | (11)

From Eq. (9), it can be deduced that

ov'  d

Applying this averaging technique to the Braginskii transport equations [8], we obtain a
system of one-dimensional transport equations with the respect to the “radial” coordinate

p.
IV. Averaged Transport Equations
A. Magnetic field diffusion equation

The projection of Ohm’s law on the magnetié field is

i-B

0-//

E-B=






Applying the averaging technique to Eq. (13) we obtain:
dd. d¥ . dr [ _dF aJ|
TG ["E;‘F%] ’

where J(p) = [ [5, j:drdz is the toroidal current inside the S, surface and o is the Spitzer

(14)

conductivity:

J(P)=—#0<g—-\/2§>92—\f ; F(P)=#o<%>ej—f,

_c _5r2 8z\° g
N0—4ﬂ_ y g2 = 50 + 30 y g3 =T",

and /g = —0(r,z,9)/0(p,8,9) is the Jacobian for the transformation from cylindrical

coordinates to flux coordinates. The angle-average of the quantity A is

(), = [ ADL

Dénoting Cy = <g22/\/§>9, Cs=1/ <\/§/933>9', and using d®/dt = 0, we can write Eq. (14)

as
. Arw d Cy dUY\
f4 2T 22,4 (G dYY o 15
+ o /‘6003./) dp ( CBP dp) 0 | ( )

B. Density equation

The variation of the density of the j** ion species with time is described by the equation
n; + div (njuj) = Sj , (16)
where S; is the source term, n; is the density, and u; is the flow velocity of the ion species.

By averaging Eq. (16) over a magnetic surface, multiplying by V’, and using Egs. (9) and
(10), we obtain V

GOV ) V=)V )

Denoting the particle flux relative to a constant p surface by I'; = (n;(u; —u,) - Vp), we

compute Eq. (17) as:
| d ! d N _ jan!
5 (V) + d—p(PjV) ={5HVv'. (18)







C. Energy equations

If the viscosity terms are neglected, the energy balance equation for the electrons can be
written as

3. . 5 .

gPetdiv (q+2pau.) =B - Qu— uVpi+ Q. (19
where p, and p; are the electron and ion pressure, respectively; q. is the electron heat flux;
Qe is the electron-ion heat exchange; u, and u; are the electron and ion flow velocity,
respectively; and @), is the source term. Due to plasma ambipolarity, we have u, = u;. From
Ohm’s law, namely,

| a”(E+%xB)=j,

it can be deduced that

. u, . 2 |
JB=—(ixB)+5 =u Vp+Qu, (20)

where Qg4, = j2/0".

Using Eq. (20) and averaging Eq. (19), we obtain

3 1 d n5/3 d [( 5 ) ,] r._,d _
VI <_Qei + ng + Qe> ’ (21)
where ¢. = (q. - Vp).
The energy balance equation for the ions is
3. . 5
g bi + div (CL' + §Piui> =Qei+ui-Vpi+Q; . (22)
Averaging Eq. (22) over a magnetic surface leads to
3 1 d n/3 dK 5 ),} I, ., d ,
5 - |pi —— [\ & + 7 TiT; ——V =)=V (Qa +Q:) , (23

where ¢; = (qi - Vp).






We will use simplified expressions for T;, ¢.,"and ¢; that correspond to. the so-called

“diagonal” model. In the diagonal model, we assume that
q = —X;n; VT, and qe = —Xen VT, ,

where X; and X, are the electron and ion thermal conductivities, respectively. The particle

flux of ion species j can be written as
T; = n;(u; —u,) = =DVn; +n;V, , (24)

where D is the diffusion coefficient and V, is the inward pinch velocity. The averaged fluxes

are given by

¢ = —X;n; (Vp?) (Z} ;
T (25)
% = —Xene (Vp?) — pe :
and
dn;
T; = ~D(Vp*) =, ti (Vo V) . (26)

The coefficients D, X;, X, and V,, are functions of the plasma parameters and their gradients;

here, j denotes either deuterium, tritium, hydrogen; and @.; is given by

meE(Te _ 11) ’

m; Te

Qei=3

where 7, is the collision time for electrons [8]. The energy sources are Q. = Qoo —Qer+ Qe aux
and @; = Qo + Qi aux, where Qe and Q. are the « particle heating power to electrons and
ions, respectively; Q.r is the radiation power (bremsstrahlung and cyclotron); Q. aux and
Qi aux are the auxiliary heating power to the electrons and ions, respectively. The source

terms S; takes into consideration fuelling (for example, by pellet injection). The energy

source term profile is calculated with the help of a neutral beam injection model in the

thin beam approximation, with the two-dimensional magnetic surface geometry taken into

account. The other heating methods are modelled parametrically in the energy source terms.
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The toroidal flux in the plasma varies with time, and thus ppay is not constant. The p
variable is constrained to the interval [0, Pmax)- We define the normalized variable P = p/ Pmax-

Then the time derivative can be written as

The Jacobian becomes V9= \/E(ﬁ) / Praax, and

V(p) = V'(7)prmax »

02(10) = 02(p)pma.x )

03(10) = CB(?)/’max )
(Vo) = p2ux (VF?)
(Vo) = prmax (IVAI)

£(p) = Cs(P)pmaxP/ - (27)
D. Summary of transport equations

Using Eqs. (14), (17), (20), (22), (24), (25), and (26), we obtain the following system of
transport equations:

Magnetic field diffusion:

dv P dPmax d¥ 41 , . d Cy, d¥ :
—— __F OPmax 2T T S (=28 g 9
& pmx dt dp TP \TCp ) =0 (28)
Balance of j particles:
d (n;V’ P dPmax d y d ., ,
— - —(n; — (V'T;) =V"(S;) . 29
pre gy (2] = B s 2 4 L) =1 )







Energy balance for electrons:

3 pfr(fx d neTeV/S/B 3 P dpmax d 7153 5d '
CRILENT P BEE 4 -CE (neTeV ) + B -d—ﬁ (V I‘eTe)_
TV d d [, AT | o
n, % (neTe) - d_ﬁ- (V Xene <VP > dﬁ) - (ng + Qe - Qez’) V . (30)
Energy balance for ions :
3 p2 d (nT,V5/3 3 7 dpmax d sz L O &
2 V2/3 &t Pmax T oy2/3 Pmax A E/—; (nTGV™%) + 9 'gﬁ (V'ILT) -
r.v' d d , o\ dT; ,
—= (niT) — —= [ V' Xin; =(Qi+ Qi) V',
2 ) - 5 (v () ) = (e Q) 1)

where I';(p) = —D (Vp?) dnj/dp +n; (V,|VD]), Te = T; T}, ne = £ MjZj + NoZa, Ng 1s the

density of a particles, and z; is the charge of the j** particle species.

V. Numerical Solution of the Model

Equations (28)-(31) form a system of second-order, quasilinear, parabolic equations. In
solving these eq;ua,tions we use an implicit scheme with iteration in the nonlinearities. The
equilibrium, Eq. (8), is solved by the inverse variable technique with the use of the POLAR
code [7] The profiles of dp(p)/dp, d¥(p)/dp, and ¢(p), which are used in the equilibrium
problem, are obtained from the solution of the transport equations.

From the solution of the equilibrium equation we obtain the coordinates r(p,6) and
z(p,0) of the magnetic surfaces. By averaging over the magnetic surfaces, we obtain the
metric coefficients Cq(p), C3(p), (VP?), (|Vp|), and V'. The value pmay is calculated with
Eq. (27). Then the transport equations are solved with these coefficients. We obtain the
profiles dp/dp, d¥/dp, and‘q(ﬁ) for the next time step. With these parameters, a new
equilibrium is calculated. Since the metric coefficients depend.on time, several iterations are

carried out, so that more exact profiles of dp/dp, dv /dp, and ¢(p) and the magnetic surface
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coordinates are obtained. A schematic flow-diagram of the various calculations is shown in
the Appendix.

For the case of an external magnetic field with a free boundary plasma, the principle of
“Virtual Casing” [9] is used to find the flux and the magnetic field produced by the plasma

current.

A. Boundary conditions

For the densities and energies, it is appropriate to use either mixed boundary conditions

d¢§

b +ba=al (32

where «, f, and v are coefficients and ¢ successively denotes n;, T;, and T¢; or Dirichlet
boundary conditions, where the values nd, T, and T, are specified on the plasma boundary.

The boundary condition for the magnetic field diffusion equation is _

1d¥,  1d¥, 14y

c dt ~ ¢ dt ¢ dt ’ (33)

where Uy is ¥ on the plasma boundary; ¥, is the plasma current flux; and U** denotes the
total poloidal flux produced by the poloidal field currents and by the eddy currents induced
in the vacuum vessel and in the axisymmetric conductors.

We define the plasma self-inductance by the equation L, = ¥,/ I, where I, is the total

plasma current. We can write Eq. (33) as

dv duext )
d —+ E (LPIN) . ' (34)

| R
Using an implicit scheme for the discretization of Eq. (34), we obtain
Uy — ‘jb _ gext — ext + (LpIpl - f’p];l)

T T T

; (35)

where the caret denotes values from the previous time-step. Using the relation I, =-

—poCrd¥ /dp|  we can write:

p=1

4T . . e n
#002-‘5 b+ Uy =Ty + U=t —Fext _F T (36)
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Equation (36) constitutes the mixed boundary condition for the ¥ equation.

B. Transport coefficients

Since the radial dependence of the electron thermal conductivity is not presently known, we

use the following simple form for X.:
Xe = B(1+6p°),

where # and § are adjustable coefficients. The value of § is chosen to define a wide or narrow
temperature profile, and the value of 8 is 'calcqlated at each time-step so that we obtain
a global energy confinement time identical to the assumed scaling law (e.g., Kay-Goldston,
Alcator, etc.).

The thermal conductivity X; of the ions is either assumed to be neoclassical [10] or
considered fo be equal to the electron thermal conductivity. We assume that the particle
diffusion coefficient is proportional to the electron thermal conductivity D =~ 0.2X, and that
the inward pinch velocity is given by V, = k,Dp/a, where a is the plasma minor radius and
k, is chosen to obtain the required density profile.

A fusion reactor that operates in a continuous regime is supposed to use non-inductive
methods for maintaining the plasma current to be constant. In a high temperature plasma,
the value of the bootstrap current can be significant. Therefore we include in our model the
neoclassical bootstrap current and beam-driven current effects. After inclusion of driven and

bootstrap currents, the magnetic diffusion equation is modified as follows:

dd . d¥ . 4r dF dJ . Vie

N

where 0 = 0" — a0”; « is the neoclassical trapping term [10]; and (j - B) = (G Blpoos +

(3 B)peam> Where (j-B), ., and (j-B) are the bootstrap and beam-driven terms, re-

beam

spectively.
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C. The circuit equations

In a solid conductor, we can write Ohm’s law in the simple form
jt = O'Et ’

where F; is the toroidal component of the electric field. In the 1** element of a conductor,
i.e., with coordinates (ry, ), we have Ef = —W; + V;/2nr;, where V; is the voltage applied

to the 1t circuit. From Ohm’s law we obt@in

2mrig;

~¥+Vi= (38)

o;
If we assume that the current density j; is homogeneous in the area S; of the conductor,

then Eq. (38) can be re-expressed as
—U;+Vi=Rl; (39)

where R; = 27r;/0;S5; is the resistivity of the element ;.
The poloidal flux ¥; on each i* element is determined by the sum
U; = L;I; + Z Mi;1; + ‘I’;z ) (40)
J#
where M;; is the mutual inductance between the 1% and j** elements (proportional to the
Green’s function for the elliptic operator A*); L; is the self-inductance of the 5** element;
and U}, is the flux created by the plasma current in the i** element. Using Eq. (39) and

Eq. (38), we obtain the circuit equation

% (Li-[i + > ML+ ‘I’.;I) +RL=V;. (41)
J#i

Note that in the case of a vacuum vessel and passive coils, the value V; is equal to zero.

In conventional tokamaks, four types of poloidal field coils exist:
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o Current ramp-up and Ohmic heating coils,
o Vertical field coils,
e Shaping coils, and

e Plasma position control coils.

VI. Application"tO the T-3M Tokamak

As an illustration of the application of this numerical scheme, we present here a simulation

of the operation in the T-3M tokamak. In this machine the plasma evolves from the limiter -

regime to the divertor regime. The plasma configuration has two X-points inside the vacuum
vessel.

The T-3M poloidal field coil system is shown in Fig. 2 Coils 1, 2, and 4 are inductor
coils, and coils 3 and 5 are vertical field coils. In the flat-top regime the plasma current is
I, = 200kA and the current in the inductor is I,q = —0.17,; = —20 KA.

We present the results of two operational scenarios. In the first scenario, the plasma cur-
rent remains approximately constant. In the second scenario, the plasma current decreases
from Ip; = 200 kA to 95 kA. The time for the transition to the divertor configuration is 10 ms.
The initial plasma shape and magnetic surface contours when the plasma is limited by the
{ressel are presented in Fig. 2. To create the divertor configuration, the current in coil 4
is changed from negative to positive. The plasma current I,; decreases during this process
(second scenario). To compensate the poloidal flux change at the plasma boundary and to
maintain the plasma .cu'rrent consta,nt,l we induce a negative current in coil 9. This leads to
the first scenario. In the first scenario the temperature, current, and density profiles remain
monotonic. In coil 4 the current changes from —20 to +30kA, and in coil 9 we have to induce
a current of —30kA. The time evolution of the currents and the flux-surface contours in the

final state are shown in Figs. 4 and 5, respectively. In the second scenario, the density and

14






temperature profiles remain monotonic, but the current becomes peaked during the plasma
current delay. The current profiles at three different times are plotted in Fig. 6. The current
evolution in the coils and the behaviour of the safety factor, ¢,, at the plasma edge are
illustrated in Figs. 7 and 8, respectively. It is seen that when the plasma detaches from the
vessel, the value of g, increases; however, when plasma becomes limited by the separatrix,
the value of ¢, decreases. The plasma shape at the final state is shown in Fig. 9. The initial
and final plasma parameters are shown in Table 1.

The numerical simulation of a single scenario requires about 30 minutes on a VAX com-
- puter. The time step used here was 0.1 ms. The plasma mesh contained 24 radial and 66

angle points.

VII. Summary

- We have described a 1 -2 D code (DINA) for the simulation of the evolution of free-boundary
toroidal plasmas in time-dependent external magnetic fields. Using this code we are able to
simulate plasma motion, including the effects of eddy currents in the vacuum vessel, poloidal
field coils, and axisymmetric conductors. We can study the behaviour of the plasma, which
is unstable in the vertical and horizontal directions, and simulate the control of the plasma,
position using active feedback control system. This code is faster and simpler than other
1 - %D codes, and it permits the simulation of all the main characteristics of tokamak

plasmas.
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Table I. Plasma Parameters

parameter initial first scenario second scenario
plasma current, kA 200 195. 95.
plasma elongation 14 2.1 1.8
minor radius, cm 20. 12. 10.
major radius, cm 106. 106. 106.
safety factor on plasma axis 1.1 1.2 1.3

¢ at the plasma edge 4.5 2.9 3.5
current density on axis, kA/cm? 0.35 0.42 0.36
electron temperature on axis, eV 580. 730. 650.
ion temperature on axis, eV 500. 550. 530.
average plasma density, 10!3/cm? 4.5 6.1 6.8
toroidal field on axis, T 3. 3. ' 3.
internal inductance 1.06 - 061 0.95
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Appendix

Scheme of Calculations

p(p

initial values :

), ¥(5), 4(p), ;(P), T.(5), Ts(p), - - -

Equilibrium :
obtain coordinates

r(p, ), 2(p, 0)

pmaxa 02) 03, (Vﬁ2) I <|Vﬁ,> ) V,(_p-)

obtain metric coefficients :

p(p)a H(ﬁ)a Q(ﬁ)’ 7 (p)a Te,i(ﬁ)’ dp/dﬁ, dlI}/dp

transport :
internal iterations
obtain profiles of

No:
external
iterations

E the required accuracy satisfied?

Yes: | New time step:
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. Figure Captions

1. Flux coordinate system: poloidal angle 6, toroidal angle ¢, and surface coordinate p.

2. Poloidal field coil system of the T3-M Tokamak. Coils 1, 2 and 4 are inductor coils,
coil 6 is the vertical field coil, coils 3 and 5 are control coils, and coils 7 and 8 are fast

control coils.
3. Initial state of the plasma magnetic surfaces.
4. Time evolution of the coil currents in the first scenario.
5. Final state of the plasma magnetic surfaces (first scenario).

6. Plasma current profiles at various times (second scenario).

(1) t=0, I, = 200kA
(2) t=5ms, I,=135kA
(3) t=10ms, I, =95kA

7. Time evolution of the coil currents in the second scenario.
8. Evolution of the safety factor at the plasma edge.

9. Final state of the plasma magnetic surfaces (second scenario).
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