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Abstract

The passive advection in time-dependent 2D and 3D flows is considered. The ve-
locity field v(r,t) is assumed to have power spectra of both scales and frequencies in
respectively wide inertial ranges. The quasi-linear limit of passive transport is intro-
duced and studied analytically using the method of the virtual separation of scales.
The fractal dimension of particle trajectories and the propagation rates of an impurity

are calculated.
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The scaling nature of fluid and plasma turbulence results in a self-similar behavior of
Lagrangian trajectories and interfaces. Being a concise characteristic of self-similarity, the
concept of fractal dimension (1] is widely used in the description of fluid turbulence [2, 3, 4, 5,
6] and begins entering the plasma physics [7]. In the present paper we shall focus on fractal
description of passive tracers in incompressible time-dependent random flows. A variety of

important problems can be cast into the form of a passive advection,
dr/dt = v(r,1), (1)

where v(r,t) = V x 9(r,t) is a prescribed velocity field featuring one or another kind of
randomness, (r, ) is the vector potential, and r denotes the position of fluid (or passive pol-
lutant) particle. In the case of plasma transport of particular interest is the two-dimensional
Hamiltonian turbulence with %(r,t) = ¥(z,y,¢)Z. Here the particle motion is governed by
the Hamiltonian (stream function) ¥(z,y,t). The strong confining magnetic field B = Bz
makes the cross-field plasma transport effectively two-dimensional, even for a 3D plasma tur-
bulence. In general case of electromagnetic perturbations, % is a combination of the electric
potential and the parallel component of the magnetic vector potential [9]. No special remarks
are necessary to confirm the appropriateness of the 2D approximation for the description of
the chaotic transport in geophysical fluid dynamics.

We study time-dependent flows with the vector potential 1(z,y,t) being a random func-
tion with a power Kolmogorov-like spectrum [1(k,w)|* o« k™7 and the model dispersion
relation w(k) o k°. We use the previously introduced method of the virtual separation
of scales [10] to calculate the rate of the propagation of a passive impurity, as well as the
fractal dimension of the fluid particle orbits. In general, the fractal dimension can serve
as a measure of the Lagrangian chaos and it is shown to take different values for different
regimes of chaotic advection. In two dimensions, the problem considered here is similar to

the one studied in Ref. [6] (where the authors put § = 1). Our results agree with the scalings



found in [6] numerically, however, our analytical arguments are quite different from those
of Ref. [6]. We also discuss the interconnection of our results with those obtained using a
continuum nonlocal advection-diffusion theory [8].

It is convenient to rewrite the Fourier spectrum of 7/ in terms of the A-components,

YeD =T, vt =[ etk )

Here 9, (r,t) is the A-component of the vector potential and the sum in Eq. (2) is taken over

the geometrical progression of scales
/\t =./\0uu/\'071u2)‘0a"73’/\ma (3)

where the multiplier ¢ = 2 and [Ag, A,] is the inertial range (Ao € Am), beyond which ¢, is
assumed to be negligible. The A-component %),(r,t) possesses a single characteristic spatial
scale A. If the complex phases of 4(k,t) are random, as one expects for turbulent flows [4],

then the Fourier spectrum |4(k,?)|* o k77 yields the A-spectrum

$r = [ (r Dlems = YoM A0)T, H = (7 = 2)/2. @

One can analogously write the A-spectrum of the velocity: vy = vo(A/ AO)H -1

General ideas of turbulent cascade imply the existence of a single characteristic fre-
quency wy of the time dependence of ,(r,t). Suppose the power scaling of the férm
wy = wo(A/Ao)™%. Unlike the dispersion relation w(k), the characteristic frequency wy, is
more universalnsince it naturally accounts for the nonlinear resonance broadening.

Let us first consider the two-dimensional case 'cb(r,t) = Y(z,y,t)Z. In fhe hypothetical
case of a stationary (integrable) Hamiltonian (or approximately for wy < vy/A), the (z,y)-
trajectories of fluid particles coincide with the contours of 1(z,y). Any contour of a random
function is almost surely (i.e. with the probability one) closed [11], hence for wy - 0 there is

no turbulent diffusion. If, however, one deals with a contour of the size a > )¢ then on the



scales A € [Ag,a] the trajectory behaves very sinuously, and is indeed a fractal curve with

the Hausdorff dimension [10]
dn = (10 —3H)/7, -3/4< H<1. (5)

It is pointed out that the fractal dimension (5) cannot be calculated using the Mandelbrot
formula for a cross-section [1] dp; = d' — 1, where d' = 3 — H is the fractal dimension of the
3D graph of ¥(z,y). (Note that at 0 < H < 1 the square of the A-component of ¥(z,y) is
essentially the same as the delta-variance [1], hence in the scaling range [Ag, Am] ¥(z,y) is
a fractional Brownian plane-to-line function.) The horizontal cross-section ¥ (z,y) = h is a
multi-connected fractal set with the self-similar range [Ao, ar], where ay is the maximum size
of the isolines [10]. A separate contour of ¥(z,y) (the particle orbit) is a subset of this set
and hence has a smaller fractal dimension. One can see that at H <1 dp < dpy =2 — H.
The most general approach to studying the statistics of isosets of a random function is the
continuum percolation theory [12, 11, 10].

Consider now the essentially nonstationary limit wy > vwy/A. Suppose for simplicity
wo = vo/Ao and § < 2 — H, so that on every scale A the flow is changed not slower than
particles pass the distance A. Analogously to the plasma transport notations [7], the limit
wy > va/A can be referred to as the quasi-linear limit, since, to a first approximation,
one can neglect the dependence of the RHS of Eq. (1) on r, and the equation of motion
becomes trivially linear (but not as trivially tractable). In the quasi-linear limit, the particle
trajectories have nothing to do with the level lines of ¢. In particular, the 2D-orbits exhibit
multiple self-intersections (z(t) and y(t) behave independently) and, as shown below, have
larger fractal dimension than (5). The following analysis is valid for both two- and three-
dimensional turbulence.

The technique of the virtual separation of scales [10] means considering the flow of the

form (2)—(3), however with the parameter y > 1 in place of p = 2. The final results are



obtained as the marginal applicability (z = 2) of the artificial approxiﬁiation of the strongly
separated scales \;. Solet us take y >> 1 and follow the particle motion with progressive time.
Let H be less than one. Then on the time scales 0 < ¢ < wj' the displacement is a linear
function of time dominated by the short-scale velocity: r(t) & vot. At wy' <t < wy, the
Ao-component of the velocity undergoes fast oscillations, hence leading to the diffusive motion
ra(t) & (Dyt)}?, Dy, = v¥/wo. This diffusion is accompanied by the linear convective

transfer r.(t) & vy,t. The ratio of these two displacements by the time ¢ = w,;"ll is

ra(t)/re(t) ~ (Dyy/ D3 )2, Dy = v2/w;.

If Dy oc A*2H-2 i5 decreased with increasing ), viz. § < 2(1 — H), then the diffusion D),
predominates the convection vy,. This argument can be repeated for longer scales. The
conclusion (which is also valid in the limit 4 — 2) is that in this case the particle motion is
dominated by the shortest scale flow component; the manner of transport is diffusive with
the coefficient of the order of D),. Thus the fractal dimension of particle orbits d = 2
meaning an ultirﬁate degree of Lagrangian chaos. | |

In the opposite case § > 2(1 — H), for w,'\'ol Lt K w;ll the convection due to v, is more
important than the diffusion D,,, hence on this time interval one can negléct the contribution
of v, (r,t) to the particle motion. Generally, for Wil €t < wi' the displacement r(t)
behaves as though the A-components of the flow with A < \,_; were “switched off” (see
Fig. 1). As a result, in the limit of a smooth spectrum (z = 2), which corresponds to “the
rounding of the corners” in Fig. 1, we obtain the power dependence r(t) = vyyt, wiyt =1,
or |
b+ H—-1 vy (-

, —<r<2m - (6)

T(t) ~ Wo (W()t) I é._ 5 wo w)\m

Under the assumed conditions, 2 —2H < § < 2 — H, we have 1/2 < ¢ < 1, so that the
Lagrangian motion is superdiffusive. In the considered regime, the Cartesian coordinates

of the fluid particle r,(t) behave similarly to the displacement (6) and can be shown to be
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independent fractional (persistent) Brownian functions. Hence the fractal dimension of the

trajectory {r(¢)} equals [1]
d=1/¢(=6/(6+H-1), 21 -H)<é<2~H, 0<H<I. (7

It is easy to see that the fractal dimension (7) is greater than the dimension (5) for the
stationary 2D flow thus assuming a “more chaotic” motion. Note also that d < 2 and the
equality is achieved fc.)r 6 = 2(1 — H), which corresponds to the standard Brownian motion.
For the case 6 =1, H = (v —2)/2, Eq. (7) yields d = 2/(y — 2), in accord with the results
of Ref. [6] obtained from the numerical calculation of the Fourier spectra of z(t), y(t) for
different v (3 < v < 4).

One can also be interested in the manner of motion beyond the scaling range (6). Note
that for § < 2— H the average particle displacement r(w; ) & rm = Va,, /Wh,, is still much less
than A, the upper turbulent scale, which is typically defined by fluid boundaries. Bearing
in mind the above argument of separated scales, the answer is simple: at ¢ >> w;nll one has a
usual Brownian motion with the diffusion coefficient Dj,,. Thus in the second scaling range
[Tm, Am] (and also for A > A, if there are no boundaries), the Lagrangian orbits have the
fractal dimension d = 2.

Our next remark concerns the extension of the above results to the stationary 3D flow.
Koch and Brady [8] reported the displacement scaling, r(t) o t#(?+7), for the propagation of
a passive tracer in a random steady flow with the velocity covariance U(r) = (v(r)v(0)) o
r=7'. This result is intriguingly similar to Eq. (6) if we would formally put § = 2 — H
and notice that at 1/2 < H < 1 the correlation function U(r) has a power scaling with
7" = 2(1 — H). The coincidence of the exponents, however different are the time-dependent
and the stationary problem, is not accidental. Indeed, unlike the 2D situation, the steadiness
of the flow in three dimensions does not generally imply the existence of any new integral

of motion. So one can reasonably assume that in a generic case the stochastic walk of



time-independent stream lines (“Lagrangian turbulence”) is not subject to any topological
restrictions. In particular, this means that the fractal dimension of a stream line in a single-
scale flow, say v,(r), shall equal two. From the v1ewpo1nt of a tracer exploring the stream
line, this implies the diffusion coefficient D) ~ Avy, which is mathematically identical to the
introduced above if we formally put wy = v/ Ao .and 6 = 2 — H. Hence with this ansatz, the
previous (time-dependent) arguments apply to steady 3D flows as well. In two dimensions,
the low-frequency hlmt wy < vy/A, is much more complicated due to the approximate
conservation of ¥ (z,y,t) [11, 13].

The conclusions can be drawn as follows.

1. For a power spectrum of turbulence with § > 2(1 — H), 0< H< 1, the propaga-
.tion rate of a passive scalar is sﬁperdiﬁ‘usive on intermediate scales, with the fractal
“dimension of particle orbits (7) lying in the range 1 < }d < 2. There is a second scal-
ing range, which is associated with the long-wavelength cut-off Am of the turbulence

spectrum, where standard Brownian turbulent diffusion (D ~ D,,) is set-up. For

§ < 2(1 — H),there is no superdiffusive scaling range and on all the scales A > \q a

diffusive transport takes place with D ~ Dj,.

2. In 2D geometry, the details of relevant scaling laws depend crucially on the ratio .

Awy /vy, with the quasi-linear regime Awy /vy > 1 discussed above and the opposite limit
requiring a percolation approach. In three dimensions, the quasi-linear approximation
appears to be universally applicable to the investigation of passive transport, meaning

the formal ansatz wy — max(wy,vr/A).
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Figure 1. The dependence of fluid particle displacement on time.
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