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The theory bfvweakly'nénlineér waves in a homogeneous,
conservative medium cén often be developed in terms of a
Hamiltonian which retains only cubic ndnlinearities. This
approach has beeﬁ stressed by Keh Watson in studies of the
interagtiqns amo_ng"internal'wavesl’2 and between surface
and internal waves3 in the ocean. .

The process of relaxation of a single wave mode in a
bath of ambient modes can be described by a model of this

type: The test wave Hamiltonian. This model was proposed

by Watson3 for the study of the interaction between a single

internal wave ‘and a spectrum of surface waves--and thus as
a mechanism for the transfer of energy from the ocean

surface to its interior.

In this model the wave actions are represented by

4{JT;Ji,J£; i=1,2,... M} where J; represents the test

* Presented at the "Mathematical Methods in Hydrodynamics"
Workshop in La Jolla, December 7-9, 1981.




wave and the M pairs (Ji’Ji) are ambient waves which
form M interacting triads with T The subscripts refer

to wavenumbers and interactions are allowed only when

ke =k k[ (1)

~

We refer to the two possible triads in Eqg. (1) as sum and
difference interactions.

The test wave Hamiltonian may be written

M
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Here the 68's .represent wave phasés, and the ¢'s are
coupliﬁg coefficients which are generally functions of the
three wavénumbers. To linea: Qrder (¢ = 0) the phases
evolve as the linear frequency: - 6 =@ +.0(e) , where w of
course depends upon k. |

Numerical integration of the equations of motion for
the Hamiltoniah (2) indicates that it is completely int_egfrable.4
The evidence is threefold. First, two orbits initially close
together separate only linearly in time (Lyapunov exponents
are zero). In a>nonintegrable system the sepafation is.
typically exponential. Second, the Poincaré surface of section
for the two triad (M=2) systém.(whiCh is, ©in this case, two-
dimensional) apparently consists of smooth level curves

indicating the existence of an additional integral. Finally,

a quantitative test of the smoothness of the curves (the




residue method of J. Greene) shows that to double precision
accuracy they are indeed smooth. A.discussion of these
issues is given in greater detaii in Ref. 4 and in my
dissertationsf(see, however, ‘Ref. 8).

The numerical evidence presented above seems insensitive
to tha parameters of the Hamiltonian. I am.therefore lead
to the conjecture that Eq. (2) is integrable far arbitrary
w's and E's }..I,should note, however, that Ref. 4 deals
only with the difference interactions in Eg. (2). As we
will see below, the Hamiltonian with only sum interactions
also appears integrable; however, when there ié a miXture
of sum and aifferénce_inténactions:the’behavior is unknown.

Integrability in the sense of LiouVille6 means the
existence of N=2M+1l integrals--that is, one integral for

each degree of freedom. I use the term integrals for a set

of functions on phase space which are functionally independent .

and in involution (all Poisson brackets zero). Constants of
motion are merelyatime‘independent .({F,ﬂ? = 0) functidns.
Liouville's theorem on integrability'shows that oncé the

N integrals areakndwn the equations of motion can be
integrated by quadrature. Essentiaily, the'integfals can be
used as canonical nomenta, and the‘Hamiltonian-expresséd in
terms of these momenta is independent of the conjugate

variables.




For the test wave Hamiltonian, we can immediately
find M+2 of the integrals. The first is the Hamiltonian

itself and the others are

I, = I, - S;ﬂ ’ Q»='l,2,...M,
M

IT=J+an. (3)
n=1

Here, s = +l(—l) for sum (difference) triads. These
integrals are related. to symmetries of #.: Each of the

I, is obtained by noting that the transformation

env —-> en + P,

- - »._'
en en sy ,
leaves ¥ invariant. The remaining integral results from

the symmetry

6, > Op + V.,

Sn 9‘-6n + v , forn=1,2,...M

To make further progress it is convenient to introduce
the action-amplitude variables (see Watson's discussion in

Ref. 1)

6 ~ig”
ar bn = vUn exp

(4)
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These variables are not guite canonical, obeying the Poisson

bracket relations

B R T L o R e A

(5)
with all other brackets zero. If the Hamiltonian, Eq. (2),

is written in terms of Eg. (4)

H = * . i ks - 21 % —
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+ complex ¢onjugate | (6)

then the equations of motion become
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Here we have allowed cémplexg'valued coupling éeeffiCients, €.




L

coefflclents are equal

The integrals for Eg. (6) can be obtained for a special

7

set of parameter values by.generalizing a result of Hald.

Hald found constants of motion in addition to those in
Eq. (3) for a system which is eguivalent to our M=2 case

if all the frequencies are zero and 1if the coupling

For Hald's _system these constants
are quadratlc in the amplitudes (an’bn) .

When the frequencies are nonzero, it turns out that the

magnitudes of Hald's constants are time independent.5 Special

values of the parameters are required for this result:
‘ 2 2 B

= w, fow - w,; = A . (8)

Here € is any complex constant and A is a real constant
representing the resonance mismatch.’
For the Hamiltonian, Eq. (6), with Eqg. (8), the new

constants are

+ 2
g.a.a* - ¢ b*b ’
i7iT] jTi7)
|Iij| = 2 , 1,3 = 1,2,...M .
€. a a* + e.b.b*%
J i3

(9)
Here we require the triads labeled i and 'j to be either
both sum or both difference interactions. From now on we

consider only the cases where the triads are either all sum

or all difference triads. The mixed case requires

additional constants for integrability. Since [2 = | |2
2 PR _
l =_If there are XxM(M - 1) new constants in

T35 Ty

and |I..
ii

Eg. (9).
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-These constants are not integrals, however, since

they are not in involution. It is easy to see that the Poisson
' el 2 el Z '
brackets {175l %) ana dl141 %z ) ave sero. mhe bracket

of two of the new conétants is

[k
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+ 8
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* ey, 3 (TaiTikTxe - IzkaiIiz)}

(Lo)
It follows from Eg. (10) that if none of the four iﬁdices,
i, 3.,%, 2 are equal, ‘the bracket is zero. Furthermore,
it is easy to see that
12+ eyl |

{e.II + €

2] _

k'7kj
The integrals can be constructed from linear combinations.

like that in Eg. (ll) and we obtain

n

. . |
“n T 253 gj'Ijn+1‘, , no=1,2,...,M-1. (12)
j=1

These integrals are involutive

{cn,cm} = 0 .




Furthermore, it is éaSy to see that these integréls
are all independent. Each of the I depends‘qn'a'new
variable J;, making them independent from I, and T.r
and similarly each of the C is a functioniof a new
phase en+l' |

A complete set of 2M+1 inﬁegrals for the test wave
Hamiltonian, Eq. (6), given'thé parameters of Eg. (8), and
either all-sum or all-difference'interactions:is given by
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As the simplest example, when ‘M = 2, thé new integral is

2
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While these integrals prove integrability for the equal
¢oupling coefficient, equal resonance mismatch model,
numerical evidence indicates integrability more'generally.

As an example, I present a surface of section When"Al% Az,
si #* €§  with difference'ipteractions (Fig. 1). There is
no visible evidence of stdchasticity. It remains a chalienge

to discover the integrals for thi%%paée, if indeed they exist.




Finally we note that additional interactions will
typically destroy the integrability of the test wave system.
17 91

~added, the orbits become obviouéﬁy stOchastic.9

For example, when a triad involving§ J and J2 is

'chnowledgémentg
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Figure Captions

'1l. Surface of section for the two triad (M=2) difference

Hamiltonian. The four known integrals have the values

Il

H=-0.1, IT = 2.01, Il = 1.1, 12

parameters are €y = =0.37, €, = -1.0 and Al = 0.2{ A2 =

The variables P, Q are.defined by v2a = P + iQ. The

1.6. The coupling

surface shown. is given by Q2 = 0.

0.13.




O'l-

o'l




