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Abstract

The propagation of a passive tracer in a vorticous incompressible fluid with a small
background molecular diffusivity Dy is usually asymptotically diffusional with an effec-
tive diffusivity D.g, which is much greater than Dg. The convective-diffusive transport
in a two-dimensional steady flow v = V(z,y) x Z admits an approach, based on
the statistical geometry of stream-lines (= isolines of the stream-function ¥(z,y)).
This kind of analysis was completed previously [1,2] for a zero-mean, random flow
with a single characteristic space scale g u'sing the percolation théory. The result
Deg ~ d)éo/ls Dg/13’ for o = (|#|) > Do, was expressed in terms of 2D pércolation
exponents. In the present paper, this approach is extended to a random multiscale flow
with spectral components ¥y « A¥ in a wide scaling range Ao < A < Ap. Using the

stream-lines analysis based on the method of the virtual separation of scales, which is
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introduced in a companion paper [3], the expressions for the effective diffusivity Des

and the corresponding mixing length for various flow spectra are obtained.



I. Introduction
The convective-diffusive transport problem of a passive scalar, described by the equation
On/dt +vVn = DoV’n , (1)

has numerous applications in hydrodynamics, plasma, and solid state physics [1,2,4-10]. Here
n denotes the density of an impurity, v(r,t) = V x 9(r, ) is an incompressible velocity field,
and Dy represents the background (molecular) diffusion coefficient. The frame of reference
is chosen so that on the average the fluid rests: (v(r,?)) = 0. According to the Taylor
postulate [4], for a turbulent flow, the asymptotic behavior of the impurity propagation is
assumed to be diffusional. This means that one can average Eq. (1) over space and time to

obtain

0 (n) [0t = Deg v? (n) , ' (2)

with (n) 'beiﬁg the space-time averaged admixture density. In the presence of ‘the back-
ground diffusion Dy, a random or turbulent nature of the velocity field is not necessary for -
the effective diffusion Deg to be established. There exists a proof [11] that a sufficient con-
dition for an asymptotically diffusional walk is the boundedness of the flow vector potential:
[(r,t)| < Pmax- In this case one has [5,11] Do < Deg < Do + ¥2,./Do. The condition
of the boundedness of ¥ does not seem too stringent. For example, Refs. [9,10] reported
- a superdiffusional propagation of an acimixture, for 2D flows with (v(z,y)) = 0 but with
unbounded stream-functions ¥(z,y) (in a 2D-geometry, ¥(r) = ¥(z,y)2).

It sﬂould be emphasized that, if valid, Eq. (2) describes. the passive scalar behavior
only asymptotically, when (n) varies sufficiently slowly both in space and time. Thus, we
introduce the diffusive mixing, or correlation length ¢,, and mixing time 7,,: the averaging
in (2) is to be made over such a spatial scale a that ¢, < a < R, R being the characteristic

scale for (n). A similar restriction is imposed on the time-average.



Along with the general space-time averaging of Eq. (1) with the assumed result (2),
the problem of the passive transport may also be stated in .two particular ways. The first,
spatial statement describes a boundary value problem for the admixture density n. In two
dimensions, one may consider the time-average admixture flux Jy2 between two opposite
(longer) sides of a rectangle a x A (a < A), when the constant values of the density, n; and
ng, are maintained on these sides (see Fig. 1). Due to the linearity of Eq. (1), the flux Jy; is

directly proportional to the density difference and the distance A, so that the ratio
D(a) = ale/A('n]_ - nz) (3)

depends only on the size a. To emphasize this dependence, in what follows, we will refer
to the transport between the opposite sides of the box as the boz diffusion, with a similar
terminology for the quantity (3). If there exists such a size, or mixing length, {, that for
a > &, the box diffusion coefficient D(a) tends to a constant, then the constant is the
effective diffusion D.g. The spatial problem was studies in Refs. [7,8] where the mixing
length was simply equal to the period of the flow pattern.

The second, temporal statement of the problem considers the evolution of the initial
condition n(r,0) = 8(r — ro) due to equation (1). Here, the average square displacement is

calculated to define the quantity
D(t) = (1/4t) / (r — ro)?n(r, t)d?r . (4)

If there exists such a time 7, that for ¢ > 7, D(t) saturates to a constant, then the
constant is the effective diffusion D.g and 7, is the mixing time. The temporal problem can

be equivalently formulated in terms of particle orbits described by
dr/dt = v(r,t) + vp(t) , (5)

where the term vp(¢) corresponds to non-correlated random kicks, which produce the back-



ground diffusion Dg. The correlation function of vp(t) is given by
(vo(t)vo(t)) = 4Deb(t — ) . (6

The representation of Eq. (5) emphasizes the‘intrinsic nonlinearity of the problem in-
volved. For a random velocity field, one may speak about “a random nonlinearity”, since
the function v(r) is a random nonlinear function. As generic tools of linear analysis prove
helpless for the calculation of the effective transport, the basic equation (1) may be regarded
as “f@lse linear”. |

The temporal statement in the form of Eq. (5) is usﬁally used in computer simulations.
[7,1] where the square particle displacement is averaged over the ensemble of random kicks
vp(t) or, equivalently, the ensemble of particles. In Ref. [11] a mixed analytical approach
was taken: The authors considered the temporal pfoblém with the initial condition n(r,0) =
8(r —ro) and spatially averaged the qué,ntity (4) over ry.

In the absence of a flow, v = 0, the sﬁa.tial_ and the temporal problems are known to
be equivalent, with Deg = Do ana the mixing parameters ¢, = 0, 7, = 0, which is simply
due to the absence of any characteristic leﬁgth and time. When a convection is preser;t, and
both D(a) and D(t) do saturate, it is widely adopted that the two saturated values are the
same: |

Deg = lim D(a) = lim D(t) . (7
The authors of this paper, however, are not aware about a rigorous proof of this hypothesis.

The assumption of the passive transport meaning the v-field in (1) to be independeﬁt of
the distribution of n, is actually not always valid. Particularly, for anomalous heat conduction
in a high-temperature plasma, the convection itself may be caused by temperature or density
gradient driven instabilities. Nevertheless, besides its fundamental value, the approximation

of a passive impurity is an unescapable step in the understanding of the active scalar problem.



Another remark concerns the evolution equation of a vector
0B/8t — V x (v x B) = 1 V?B. 8)

modeling, for example, the magnetic dynamo in a conducting medium [12-14] with B de-
noting the magnetic field, or the evolution of the vorticity B = V x v in a liquid [6] with
n being the magnetic or kinematic viscosity, respectively. While the former case admits the
approximation of a passive vector unless the magnetic energy B?/8w is comparable with
kinetic one, the latter is principally of the active type (this reflects the nonlinearity being
inherent for fluid dynamics). Not intending to elaborate this issue in detail, let us only noticé
that the techniques developed in the present paper could be also applied to the 2D passive
vector problem.

As showed Zeldovich [5] (see also Ref. [1]), an arbitrary convection of an incompressible
fluid (V - v = 0) increases the admixture transport, hence always Deg > Do. The most
interesting is the case of a strong convection ¥ma.e > Do. Then, obviously, Deg > Do;
this is the scope of our further interest. Most likely, the assessment Deg & %max would be
valid for a generic 3D flow. It could be argued by the possibility of a stochastic behavior of
incompressible streamlines in three dimensions, even for steady flows [15,16].

In the case of a two-dimensinal time-independent flow, v = V(z, y) X2, the stream-lines
coincide with the isolines of ¥(z,y). Since almost any such line is closed [2,3], a diffusive
character of the contaminant propagation will arise only for the nonzero molecular diffusion
Do. So the asymptotic Deg & %226 DS, thmax > Do, 0 < ¢ < 1 has been suggested [17]. One
of the first results in this scope, with { = 1/2, was been obta.ined independently in papers

[7] and [8]. The authors examined the regular cellular system of vortices
p(x,y) = tosin(ksz) sin(kyy) (9)

and found



DeﬂzA\/DO¢O 7-D0<<'¢)0’7‘ ’ (10)

with the numerical coefficient A of the order of unity.

In Refs. [1,2] it was pointed out that the flow (9) is structurally unstable: a vanishing
pertui‘bation will destroy the regular system of elementary convective cells and gather them
into several conglomerates, so that the isolines of ¥(z,y) of an arbitrary length will be
present. This circumstance explains the importance of studying in [1,2] the structurally
stable generic stream-function +(z,y), which is assumed to be random and to have a single
space scale A (“the A-flow”, for its definition and properties see Part I [3]). The analysis
of fractal and percolation properties of monoscale isolines in papers [1,2] led to the result
¢ = 3/13 expressed through percolation exponents. The effective diffusivity in the A-flow

was estimated as
1/(v+3
Dag = (Doy+?) "™ = piogrons | py <4, (11)

where v = 4/3 is the correlation length exponent of the 2D percolation: problem. The
effective diffusion (11) sets up on space and time scales above the mixing length and mixing
time

bm = AW/ Do)/ 7 =NDy, (12)

respectively.
The objective of the present work is to extend our earlier approach [1,2] and to calculate
the effective diffusivity in a multiscale flow. The latter is assumed to have a power spectrum

inside a wide range of wavelengths Ao < A < Ay, /\0 < At
¥ = Yo(A/ Ao)7 | (13

where 1) denotes the root-mean-square amplitude of the stream-function A-component

Pa(r) = / ' b(r)e® Pk .

1/2<k[a<1
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The spectrum (13) corresponds to the Fourier spectrum [(k)| o e~ (LHH),

To study the transport properties of the monoscale flow, we employ the technique of the
virtual scale separation introduced in [3]. A central point in our analysis is the introducing
of “the partial diffusion” D, (Egs. (24)—(26)) that describes a cross-stream passive transport
on an intermediate scale A\. The effective diffusion D.g and the mixing length &, are then
calculated as the intersection of the box diffusion D(a) and the partial diffusion Dy: Deg =
D(ém) = De,.

The paper is organized in the following manner. In Sec. II, we discuss the box diffusion
in the absence of the background diffusivity Do and show that Deg — 0 for Do — 0. In
Sec. II1, an auxiliary problem is concerned about the passive transport in a A-flow perturbed
by a weak homogeneous stream. In Sec. IV, we discuss the spatial problem of diffusion in
a multiscale flow. Here, the result of Sec. III is used to calculate the partial diffusion D),
and hence the effective diffusion D.g and the mixing length £,,. In Sec. V we summarize the

results and follow the transition between various regimes of the effective diffusion.

II. Box Diffusion

Let us neglect the background diffusion Dy and study the transport properties of the mul-
tiscale flow with the spectrum (13). According to the definition of the box diffusion (3),
consider a squal.'e a X a, on whose opposite sides AB and CD the specified boundary values
ny and ny of the admixture density are maintained (Fig. 1). The flux Ji; between AB and
CD is then produced by stream-lines with the size of the order of a. Since a multiscale flow
may be represented as a superposition of monoscale flows, and the flux is a linear functional
of the velocity field!, we may argue in terms of flux contributions of various monoscale com-
ponents. Suppose A\g < @ < M,. Then the flux is primarily due to the stream-function

component ¥y with A\ & a, which gives rise to stream-lines like (a) and (b) shown in Fig. 1.

In the absence of a background diffusion.



On the other hand, shorter scales (A < a) produce stream-lines like as (c) and (d) and
clearly do not contribute to the flux Jy2. As for longer scales, A > a, there may be at all no

one such stream-line intersecting the box. Thus we estimate the box diffusion coefficient as
D(a) = Jiz/(m1 —n2) ® sy, Ao < a< A, (14)

Considering the case a > M, let us recall the geometry of large convection cells in a

monoscale A-flow [2,3]. Such a cell has the width
h(a) = Ma/N)M, a> A,
hence the resulting A-scale contribution to the box diffusion is
D™ (a) » vyh(a) m pr(Ma)

where 1y o A\¥. In the interesting case of a nontrivial interaction of scales, —1/v < H < 1

N

[3], the biggest contribution to D(a) is done by the longest scale, A = A,,, hence

D(a) ~ ¥, (i)_m L a> A | (15)

So in the purely convective transport (Do = 0), the box diffusion (14)-(15) tends to zero
on large scales. For the effective diffusion (7) to be different from zero, we must take into
account the finite background diffusion Dy. Then the mixing length ¢, is defined as the box
size such as particles in the convection time between AB and CD diffuse across the stream-
~ lines to a distance of the order of the width of the flow channels connecting the sides AB
and CD. To study this cross-stream diffusion, we shall implement the program of separated

scales.



III. Transport in Random Monoscale Flow with a
Weak Homogeneous Component |

Analogously to the calculation of the fractal dimension of a coastline [3], we begin with the

consideration of a flow, being the superposition of a A-flow and a very weak uniform stream:
V=V0+uavo=v¢0($ay)xa7 (16)

u=uxX, u < v .

Here ¥o(z,y) is a Ao-flow, and u is the small homogeneous component.
In Part I we showed that the percolating flux caused by the homogeneous component of

the flow is concentrated in channels with the characteristic width
b = AotV (17)
averagely oriented in the X-direction and wandering in the §-direction over the distance
Ao & A~/ | . (18)

where € = u/vg is the small parameter of the problem.

In the considered frame of reference, the transport in the X-direction is clearly not dif-
fusional, since a mean velocity is present. Consider the diffusion in the §-direction. Unless
one is interested in transport on scales greater than A., the flow pattern looks qualitatively
the same as in the absence of the mean flux. Consequently, for A, exceeding the mixing
length &,, of the Ao-flow, the effective diffusion remains the same as in the absence of the

mean flow. Using Eqgs. (12) and (18) we infer that for A, > &n, or € < €x, where
ex = (Do/tho) N+ <« 1, (19)

the mean flux is too weak to have an essential influence on the transport along ¥, and the

expression (11) for the effective diffusivity remains valid. In the opposite case, ¢ > €%, the
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=

distance between the channels A, becomes shorter than the mixing length ¢, of Eq. (12). As
a reasult, the stream-lines with the diameter a greater than A., including the most effective
for the transport (a = ¢,,), will be destroyed by the average stream u. Here, one can conclude
that the effective diffusivity Dy, across the mean flux (in the §-direction) will be diminished.

The most “active” particles, giving the greatest contribution to the transport, lie in the

* channels. In this regime, the value of D,, may be estimated imagining these particles to

jump over y on the distance A, in random direction every trapping time 7. & §2/ Do,' '

S L(A) A
Dy, =~ I

with the first factor on the right-hand side correspondiné to the fraction of the “active”
particles, and &, A, determined by the formulas (17) and (18), respectively. The length of
the channel L(a) is expreséed through the displacement a with the help of the stream-line
fractal dimension‘ 2,3] dpo = 14+ 1/v as L(a) ~ Ao(a/Ao)?. So we obtain the average

cross-stream diffusivity
Dy, ~ Doe~ D/ | gy << 1. (20)

In this regime, the mixing length for the effective diffusion (20) is equal to A..

Ther result (20) may also be derived in another way using the analogy between diffusion
and conduction. The average diffusivity Dy, may be calculated as the'co‘nductivi‘_ty (Ry +
R;)™1 of two “diffusive resistances” connected in series, one of them being the chaﬁnels (Ry)
and the other the flow between the channels (Rz). We can evidently restrict ourselves to the

mixing length area A, X A, where only one channel is present with the transverse diffusive

resistance
1 6 1 w42

Notice that, for € = ex , Ry(e) = Ra(e) = D3}, where Deg is given by Eq. (11). For & > ex,

R;(¢) is increased. On the other hand, the transport coefficient R;"(e) is, by definition, the

11



box diffusion and can be calculated using Eq. (15) with @ = A, and A, = Ao. Hence, for
€ > ex, Ry(e) is decreased, so that the transverse diffusive resistance R;(g) of the channels

becomes a bottleneck for the transport. Thus we come again to the result (20).

IV. Diffusion of Passive Scalar in 2D Multiscale
Flow

In order to obtain the expression for the diffusivity in the multiscale flow, it is suitable to
make use of the method of separated scales introduced in Part I. In this way we replace the

continuous spectrum flow,
V(x,y) =v,\0(:c,y)—{—v,\1(a:,y)+...+v,\m(:z:,y) ’ (21)

V) = V225 Y)]ms = (M 20)T 7T
with Ajp1/A; = p = 2, by another flow givén by the same Eq. (21), but with z > 1. The
“correct” value u = 2 will be considered as marginal for the “incorrect” approximation of
separated scales. Actually, the continuous spectrum limit simply means the omitting of the
subscripts near A and is implied not only in the end of our calculations but also throughout
further arguments.

For H > 1, the longest scale of the velocity field dominates, and the effective diffusion
is determined by Eq. (11) with ¢ = %,,,. For H < 1, the velocity field vy, (z,y) may be
regarded as being slightly and quasi-homogeneously perturbed by the rest of the terms on
RHS of Eq. (21). The result of the interaction of scales A\g and A; is the opening of some
stream-lines of vy, (z,y) and their collection in channels following the lines of vy, (z,y) and

wondering around those lines in the stripes with the width (18):
AO,l = /\O(U,\I/U,\o)—"/(uﬂ) = /\0(/\1//\0)(1_}])”/(”1) . (22)

In what follows, we will refer to these channels as “the (0,1)-channels”, with an evident

extension for longer scales. Suppose Do < %3y, Yam- I Ao1 < Ap (i.e., H > —1/v), we may

12



average the transverse diffusion over the space scale Ag;, as we did in the previous section,
to obtain a result similar to (20). Having averaged, we find ourselves in the situation with

the anisotropic (i.e., basically perpendicular to the convection vy, (z,y)) diffusivity
DM = Do(vz\l /vko)—(uq-z)/(u-{-l) ’ , (23)

and the flow given by Eq. (21) without the first term v),, whose contribution is taken into
account via the renormalization'of the “background” diffusivity (23). To be more accurate,
the last equation derived from Eq. (20) is valid provided that the velocity perturbation is
not too small: & = Uxn [Vr, > Ex, where s*- is determined by Eq. (19). In any event, this is
the case for the implied continuous spectrum limit (¢ = 27-1), which will be addressed as a
final result.

On the second step, we average the passive transport in the same manner over the space

-~

scale Ap 5. This results in?
Diy = Dy (130 ) #1649 = Do )49/

Generally, we obtain the partial diffusion, which describes the particle motion across the

stream-lines of ¥y (z, y) and incorporates the collective effect of the shorter scales of the flow:

(1-H)(v+2)

_.:_'LZ. v+1 ’
Dy = Do (ﬂ) * Z Dy ( A ) . (24)

v ) -
Equation (24) is written for the limit of continuous spectrum (y = 2)

Formula (24) is valid until D) reaches the value of the stream-function amplitude ;.
If this happens with decreasing 1, at A = Ax € [Mo, Am] (H < 0; see Fig. 2(a)), then the

partial diffusion is no longer changed for A > Ax, since small components of the stream-

functon produce only insignificant (positive) corrections to the diffusion coefficient [5]. The

2Here the circumstance, that the longitudinal (with respect to the convection vy,) diffusivity is different
from, viz., much less than, D), , is not important, since along the stream-lines the impurity distribution will .
be quickly smoothed due to the strong convection, regardless of the longitudinal diffusion. The trapping
time in the (1,2)-channels is determined solely by the transverse diffusivity Da,.

13



saturated value of D, is clearly the effective diffusion Deg and the intersection point Ax is
the mixing length ¢,,.

If D, intersects 1y at H > 0 (Fig. 2(b)), then we note that the implied inequality € > e
breaks and, instead of Eq. (20), we must calculate D),,, according to Eq. (11) substituting
Dy — Dy, ¥ — ty,. This leads to the result

Dy=1y, H>0, dM<Ix<A<A,. (25)

Evidently, upon reaching the upper flow scale A, we obtain the effective diffusion Deg ~ ¥
and the mixing length &, = Ap,.

In the case Dy, < ¥, (Fig. 2(c,d)), we come to the familiar monoscale problem with
the A,-flow and the “background” diffusivity D, . Here, the result may be obtained with
the help of Egs. (11), (12). It is pointed out that this limit may be equivalently reduced to
the intersection of D) and %, if we formally extexid the spectrum of the flow to the scales
A> At s =y, (A Am)~Y?. As discussed earlier (3], this continuation corresponding to
the spectral exponent H = —1/v does not change the flow pattern and the resulting transport
produced by smaller scales (A < An). Notice that this extended stream-function spectrum

yields exactly the box diffusion (14)-(15). So we can also extend the partial diffusion D) to

longer scales. From Eq. (24) with H = —1/v we infer

vz -
A

DA=D,\M<:\—)V sy Am <A< Ak (26)

Now we can formulate a general recipe of the calculation of the effective diffusion and
the mixing length in a multiscale 2D flow: Th‘e mixing length &, is the scale A, at which
the partial diffusion D, given by Eqgs. (24)-(26) intersects and trends to exceed the box
diffusion D()) (14)—(15). For A > &, both D) and D(])) saturate at their common value at

A = &, yielding the effective diffusion D.g. Figure 2 shows different regimes of the variation

14



of Dy, D(}), and, correspondingly, Deg. A simple calculation leads to the following results:

H(v+1 v+1
Deg ~ ¢0 (%%) VFZ—H(2v+3 , fm = e = Ao (}g_z) TT=H(2073) ’
(27)
0 Pr, < Deg <ty , =1/v <H <O ; '
0 Deﬂ'z@br\ma é.m:)‘m,
v+2—H§2u+3! . (28)
Dox =t (32) ™ <Do<tr,, 0<H<$E;
Deg & 1y, | 22 e (ﬁ)%—%—ml SO €= A (ﬂn.) e ‘
eff =~ ¥ Pag o A sy Sm = Am D, B (29)

\Dg<ty,, -1/lv<H<O0,orDgg<tp, 0<H<LI.

The results (27), (28), and (29) correspond to the regimes (a); (b),.and (c,d) of Fig. 2,
respectively. ’ }

For the completeness of the pieture we shall study the case 0< H<1,¥n < Do <y,
Here, we can neglect the small-scale components of the flow, i.e., those with ) <A p, Where
Yrp = Do, since their (':ontribution to the transport is less than the background diffusion
Dy. Replacing in Eq. (29) Ao by Ap we obtain
,\m) Sty

?

or, equivalently,

H(2v43)—(v+2
_D & N'K,b)\ (Q'L) H(v+1)(vF3) é- — /\
€! m ¢Am b m m
(30)
o< Do <ty,, (v+2)/2v+3)<HK<L.
V. Summary and Discussion
0 Let us rewrite all the expressions for the effective diffusion once more, with the percolation

exponent v being substituted by its numerical value 4/3. For convenience, here we use the

15



same equation numbers as in Secs. I and IV.

If

then

If

then

If

then

If
or

then

If

then

If

then

H < -3/4 and Do <o,
D.g ~ ¢0(Do/¢o)3/13 ;

—3/4 < H <0 and Dg* = ¢0(A0/Am)(10—17H)/7 < .Do < 't,bo y
Deff P ¢0(D0/¢0)—7H/(10—17H) :

0 < H <10/17 and Dox < Do < %3, ,

Deg = a3

—3/4 < H<10/17 and Do < Dox ,
10/1T<H<1 and Do < %o ,
Deg =~ 1/’0(Do/¢o)3/13(Am/)\o)(40H+30)/91 ;

10/1T< H<1 and o< Do <y, ,
Deﬁ' ~ "/’Am(DO/QA\m)(SIH_SO)/QIH ;

H>1 and Do <y, ,
Degt & Pr,(Do/¥rm)¥™ .

(11)

(30)

(11)

In Figure 3, we plot the dependence Deg(Do) for various regimes of the effective diffusion.

We see that, for the power spectrum characterized by the exponent H, the whole space of

H may be divided into five intervals with distinct behaviors of the effective diffusion. Two

of these regimes, namely, H < —3/4 and H > 1, simply correspond to the monoscale Ao-

and \,- flow, respectively, and are given by the monoscale expression (11). Note that for

16



very small background diffusivity Do, the expression (29) is universal: it holds for the entire
interval of the nontrivial interaction of scales, —3/4 < H < 1. So the class of universality
of the monoscale effective diffusion scaling, Deg o Dg/ 3 turns out to be quite wide for
sufficiently sﬁla,ll Dy.

Our consideration supports the conclusion of Ref. [11] that the stream-function % of the
flow determines the effective diffusioh. Given a spectrum of ¢, and the relevant range of
wavelengths, one can specify the mixing length ¢, that distinguishes between the diffusive
and nondiffusive regimes of the propagation of passive scalar. For &, to be finite, the stream
function should be bounded. |

A natural development of this theory will be the consideration of time-dependent turbu-

lent flows [19, 20].
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Figure Captions

[1] Box diffusion in purely convective system. The flux to the right is proportional to the
left-side density ny, while the flux to the left is proportional to n;. Therefore, the net

flux Jy, is proportional to the difference in the boundary densities.

[2] The double-logarithmic scale-dependence of the stream-function component %, (thin

line), the box diffusion D()), and the partial diffusion Dy (thick lines),
(a): —=1/v < H <0, Dox < Do < %o;
(b): 0<H< (v+2)/(2v+3), Dox < Do < tho;
(¢): (v+2)/(2v+3)<H<I1, Dgy< tho;
(d): =1/v <H <0, Dg< Doyx.
[3] The schematic of the dependence Deg(Do) in different intervals of the spectral exponent
H,
(a): —3/4 < H < 0;
(b): 0 < H < 10/1T7,;

(c): 10/17 < H < 1.

In the brackets the equation numbers for D.g are indicated.
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Figure 3.
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