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Abstract

A theoretical interpretation of the linear dependence of magnetoresistance of metal-
lic samples R(B) ox B on the strong external magnetic field B is pll'esented. This _-
behavior was discovered by Ka.pitza 1, 2] aﬁd, to thé best of our knowledge, has not
previously been explained. It is shown that Kapitza’s law can be a;scribed to the cur-
renf redistribution in the samplé produced by the Hall effect. As a result, the main
Ohmic dissipa.tion takes place in two types thin layer. The first type reside in the
vicinity of electrodes. The second type, which is due to three-dimensional geometry
of the sample., lies on a surface inlvthe interior of the sample. It is concluded that the
linear behavior of R(B) observed in [1, 2] can be directly related to the (inappropriate) |
two-terminal scheme of Kapitza’s magnetoresistance measurements. In this case the
voltage drop is proportional to the Hall component pzy of the microscopic resistivity
tensor. The sioWIy varying linear magnetoresistance of simple metals is also briefly

discussed. This may be attributed to the distortion introduced by potential leads.




Accdrding to contemporary microscopic theory [3], the dependence of electron orbits on
the topology of the Fermi surface implies two alternative descriptions of the magnetoresis-
tance behavior in a strong external magnetic field B = B2. The dissipative components

Pzzy Pyy Of the resistivity tensor p either saturate,
pzz(B) & pg = Const, B =Qr > 1, (1)

or increase quadratically with the magnetic field,
pzz(B) = poB? o< B2 (2)

Here Q = eB/(m.c) is cyclotron frequency, 7 is collision time, and m, the effective mass.
The saturation (1) takes place for the case of a closed Fermi surface, while the quadratic
dependence (2) is characteristic of an open Fermi surface, but in the latter case the saturation
of p,, is also possible at special crystal orientations.

This behavior is in striking contrast to the experimental results by Kapitza [1, 2], who
was the first to perform systematic measurements of magnetoresistance of metals in strong
magnetic fields. In these pioneering experiments pulsed magnetic fields up to 320 kG were
created, and at nitrogen temperatures the increase in transverse resistance R was observed to
vary from several percent (Hg, Pd, Pt) to several hundred (Sb, As) and thousand (Bi) times
the resistance at B = 0. In the case of a strong effect, viz. R(B) > R(0), Kapitza found,
and emphasized, the linear scaling of the transverse (with respect to B) magnetoresistance

as a function of magnetic field strength:
R(B) « B. (3)

It has been long believed (cf. Ref. [4]) that the polycrystalline structure of samples
can lead to the Kapitza’s law (3) or a similar dependence. Dreizin and Dykhne [5] have

calculated the average transverse resistivity of a polycrystal and found it to scale as po82/3



for a noncompensated metal with a “goffered-cylinder” type Fermi surface, and as po3%/° for
a compensated metal (i.e. with equal densities of electrons and holes: n, = nh)‘ with the
same Fermi surface topology. For “space-mesh” type open, and closed Fermi surfaces, the
authors found polycrystalline magnetoresistance scalings as a combination of Egs. (1) and
(2). |

On the other hand, the first work by‘Kapitza, [1] dealt with monocrystals of bismuth,
which is a compensated semimetal with closed Fermi surface. Antimony and arsenic, whose
polycrystals were studied in [2], possesé a similar electronic structure. Hence the contradic-
tion between the theory and the experimental scaling (3) has not been eliminated but rather
ignored, especially since later experiments did not reproduce the Kapitza’s law [7].

In this létter We propose an explana,tion of the Kapitza’s result. Qur suggestion is that in
a two-terminal scheme of resistance measurements — the one used by Kapitza — the sample
resistance R is not proportional to any of the transverse dissipative components of the
resistivity tensor p, because of a strong current contraction in narrow layers caused by the
Hall effect and the boundary conditions. We find that this geometric redistribution of current
flow depends on B in such a way that the linear scaling (3) emerges, yielding an excess

| resistance R, which exceeds, by orders of magnitude, the “naive” microscopic estimate givén
by Eq. (1). Later experiments used more acéurate multiple contact schemes of measurements
that avoided these complexities, thus making Kapitza’s results “irreproducible”.

In a wider sense, “Kapitza’s law” refers to any linear dependence of small to moderate
magnetoresistance of simple metals like potassium, AR/R = (R(B) — R(0))/R(0) < 1 [6],
which also remains somewhat mysterious [7]. As discussed below, the Hall effect coupled to
electrode geometry can give rise to such a linear corﬁponent of the magnetoresistance.

We begin our analysis with the boundary problem of current flow in the presence of Hall
effect. The Ohm’s law

E=pj, VXxE=0, V-j=0, (4)



where E is the electric field and j is the current density, will be considered with the plasma-

180\
ﬁ=p0 (_610)7 (5)

type resistivity tensor

001

which models a noncompensated metal with closed Fermi surface. In the limit of a strong

magnetic field, 8 = Q7 > 1, the Hall component of the tensor (5) is

pay = pof = B/[ec(n, —n.)]. (6)

First, consider the two-dimensional (z,y) geometry shown in Fig. 1. Let AB and CD be
ideally conducting electrodes. Then the tangential electric field E; should be zero on these
lines. According to Eq. (5), this implies that the current lines encounter electrodes at a
nearly tangential angle, so that j;/j, = 8 > 1. This means a strongly nonuniform current
distribution (see Fig. 1) and, consequently, anomalously high resistance between AB and CD.
To calculate the resistance, let us introduce the streamfunction 4 of the plane incompressible
flow j = V(z,y) X 2, and the electric potential ¢: E = —Vé(z,y). If we neglect small
diagonal components of 5 in comparison with the Hall component Pzy = pof, then the
-approxima,te Ohm’s law

E = pg,j X 2 (7)

yields
¢ = pxy"b- (8)

Eq. (8) should be supplemented with the boundary conditions

Plap =0, dlep=V, Ylap=0, ¥|gc =1, (9)

where V' and I are the net voltage and current between the electrodes. The current I is
referred to the unit length of the sample in z direction, hence the 2-D resistance R has the

dimension of 5. One can see that Egs. (8) and (9) contradict to each other. In order to
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remove the contradiction, note that the current density at the points B and D diverges,
thus making the small diagonal components of (5) also important [8]. So Eq. (8) is valid
everywhere except in the vicinity of the points B and D. Writing Eqs. (8)-(9) for A and C

we find the universal 2-D result
R=V/[I= psy=poB, B> 1, (10)

which is well known in the’ (intrinsically two-dimensional) quantized Hall effect where the
ratio pgy/pae is especially large [8]. The resistance (10) does not depend on the shape of the
2-D sample and is directly proportional to the external magnetic field.

The universality of (10) is due to the strong localization of dissipation in narrow current
layers of width 6§ ~ |AB|/f8 near electrodesj For a sufficiently long sample, the volume
resistance po|BC|/|AB| may exceed the surface resistance (10). Generally, Eq. (10) holds if
the sample aspect ratio { = |BC|/|AB| lies in the range

Br<Egp. | (11)

Notice that to obtain the resistance we need not calculate the detailed current distribution,
which can in principle be done with the conformal mappingfechnique [9, 8, 10].

| The universal result (10) can be readily extended to three-dimensional geometry. Let a

3-D sample be bounded in z-direction by arbitrary surfaces: z(z,y) < z < zo(z, y). Again,

we write the approximate Ohm’s law (7). Then t}}e requirement V x E = 0 yields
0j/0z =0, V-j, =0. ' (12)

Hence the current distribution in the limit f — oo bécomes two-dimensional, as pointed out
by Herring [11]. This implies t.ha,t 3-D effects are in«troducea solely by bo{ndary conditions.
On the free surfaces z = z; 5(z,y) of the sample, the normal component of the current density
Jn = 0, so that |

J: =i1Va(z,y) = jLVa(z,y). (13)
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Since j does not depend on z, Egs. (13) are valid everywhere in the sample except for the
regions, which are projected along Z onto electrodes or external current layers (see below).

From Egs. (13) it follows that the family of streamlines is given by the system
Z(z,y) = C1, z — 20(z,y) = Cs, (14)

where

Z(z,y) = =22(2,y) — z1(z,9), 20(z,y) = [21(2,9) + 22(z,v)]/2, (15)
and the constants C; and C; enumerate the lines of the electric current. (Note that one can
equivalently choose z(z,y) = pz(z,y) + (1 — p)z(z,y), at any constant x.) The current
lines (14) are defined solely by the shape of free surfaces of the sample. If the current
electrodes do not match this shape, viz. are not completely projected to each other along
the lines (14), then additional external current layers must form near free surfaces [10], as
well as those near electrodes. In the particular case of a cylindrical sample with its axis along
Z and the electrodes on its ends, this is not the case. Here we obtain zy(z,y) = 0, j, = 0,
and the current flows strictly parallel to the cylinder’s axis, because Z = Z(y). Furthermore,
it can be seen that in the 3-D case there is an even stronger constraint for current flow than
those given by Egs. (14). Let us imagine the sample to be cut by the family of surfaces
z = zo(z,y) + Cs into equally thin slices (for the cylindrical sample the slices are parallel
to the (z,y) plane). According to Eq. (10), every slice has the same 2-D resistance. Since
the voltage is also the same, the net currents in the slices should be equal. This complies
with Eq. (12) and with a generic shape of the sample only if all the current flows in the
region of zero volume (for f# — o0), corresponding to the isoline of maximum Z(z,y). This
is the second - internal — type of current layer. In the special case of a cylinder, the current
flows in the maximum cross-section parallel to the (z,z) plane and the resistance between

the bases of the cylindrical sample equals

Rcyl = pOﬁ/d’ :B_l <<€ < IB’ (16)
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where tl;te aspect ratio ¢ = L/d, L is the length, and d the diameter of t;he cylinder. A more
detailed analysis [10] predicts the internal current layer thickness § ~ (Ld%/B)*/3. Thus the
internal current contraction in a generic 3-D sample produces much weaker dissipation (at
¢ < ) than the external one (where the layer thickness § ~ d/f). In any évent, both
types of current layer imply a highly nonuniform current distribution in the limit of a strong
magnetic field ﬁ > 1. This behavior can result in a stroﬁg dependence of measured voltagé
on the position of potential leads with respect to the volume current layer in a matchstick-
like sample. Another consequence of the current contraction is that local sample heating can
be much more important than one would expect from a quasi-uniform current distribution.

Let us now return back to the Kapitza experiments. It is interesting to note that he
rejected a multi-terminal measurement scheme in favour of a two-pole one. In paper [1] on

page 395 he states

...we took advantage of the fact that the specific resistaﬁce of bismuth ig
normal cénditions is about 75 times that of silver, and, as in our experiments we
limit oursélves to an accuracy of 1 per cent., it is not necessary to make proper

~ potential leads. It is sufficient to solder on the end of the bismuth rod two silver
discs, 1/4 mm. thick, and to bring the power and potential leads from these

discs.

The work in Ref. [2] used the same experimental apparatus. If the Bi crystals used in 1]
were exactly compensated, viz. n. = ny, then their resistance would grow as the square of
magnetic field. The geometric effects described above clearly cannot diminish the resistance.
The only way to explain the linear behavior R(B) « B is to assume the preseﬁce of impurities,
especially since the number of intrinsic charge carriers in Bi is very small — of order of 105
per atom [12], and small impurities can make bismuth strongly noncompensated. This would

give rise to a linear regime and, due to the smallness of n. and ns, the Hall component (6)



becomes large at moderate B, making it possible to observe a strong magnetoresiétance
R(B) > R(0) in Bi [1], Sb and As [2] at the temperature of liquid nitrogen. Kapitza
used éylindrical samples with the aspect ratio { = L/d = 3 + 5, and the Hall parameter
B reached thousands for Bi and hundreds for Sb and As. This implies that formula (16)
should be applicable, in accordance with the linear magnetoresistance observed in [1, 2]. We
thus conclude that the original “linear Kapitza’s law” is an artifact due to an inappropriate
measurement of the voltage on power leads.

For potential leads separate from power contacts, the geometrical effects are not so es-
sential, especially for samples of sufficiently long wire (¢ > ). Yet, even in this case the
potential contacts provide a similar boundary condition and distort current flow in their
vicinity. This effect is proportional to the current in the voltage measuring circuit. Hence
one can expect a small linear component of magnetoresistance with the slope of order of the
ratio of the “saturated” sample resistance and the inner resistance of the voltage measuring
circuit. Since this parameter changes from experiment to experiment, the irreprodicibility of
observed Kohler’s slopes [6] looks natural. However, the possibility of explaining the linear
magnetoresistance with the help of voids and other samples’ inhomogeneities still exists [7].

The effect of anomalous resistance in the presence of strong Hall effect is not quite
new. It has been discussed both for a uniform bounded medium [8, 13] and for a randomly
inhomogeneous case [11, 5, 14], in respect of semiconductors, inversion layers, and plasmas.
In the present letter we have linked these effects to the magnetoresistance of metals, and

demonstrated how the Hall effect played a joke on the Kapitza law.
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Figure Caption

Figure 1. Scheme of a two-dimensional sample. Arrows indicate current lines.
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