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Abstract

It is shown that when the mean electromotive force in a plasma is evaluated in-
terms of the two-point correlation of driven magnetic field fluctuations (as would be
appropriate for problems related to current drive.by waves), there is no [ effect; i.e.,
the terms associated with gradients of the mean field vanish. The relevance of this -

“result to the problem of current drive is discussed.
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I. Dynamo Effect due to Magnetic Fluctuations in
Sheared Field

The possibility of generating the mean electromotive force (EMF) in a conducting fluid by
random velocity fields is well recognized in the context of geo-dynamo and astrophysical
problems.?? The idea is to specify some average spectral property of the field (e.g. the two-
- point correlation) and then use the quasilinear induction equation to study the evolution of

the mean magnetic field in terms of these properties. This approach seems to be appropriate

for geo-dynamo problems where it has been argued that various processes in the earth’s.

maﬁtie and core can set up such a random velocity field. If the scale length L of the mean
magnetic field B is much larger than the scalelength £ of the velocity field, then the mean

EMF & can be expanded in a rapidly convergent series® as

BBj asz )
= s e IOV BTN 1
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- where «;j, Bij, etc., aré pseudo-tensors which depend upon the spectral properties of the

v—ﬁold. In Eq. (1) the first term is dominant; however, the second term is also important -

as it is of the same order as the diffusion term in the induction equation. The subsequent

terms can be neglected if L is sufficiently larger than £. It has been shown that if the velocity

field lacks reflection symnietry, as is the case when it carries finite helicity, then a;; # 0 and

the first term in Eq.‘(l) is finite. This is usuolly called the “c-effect”.!? However, if the
v-field is reflectionally symmetric (and also isotropic and homogeneous), then ay; = 0 and
~ the dominant term is the one a,ssociatod with Bjk. This is ca.lled the B-effect.®> As can be
easily seen, the ﬂ-effect modifies the resistivity of the fluid. It has been found that usually
in all cases where B can be calculated explicitljf, ‘it increases the fluid resistivity.

Recently, the problem of non-resonant current drive in fusion plasmas has rekindled the
interest in calculating the mean EMF due to externally injected waves.*>® However, as

these waves are injected by antennas, thereby “stirring” the plasma electromagnetically (as
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oppdsed to “mechanical stirring” in geo-dynamo problems), it is more natural to take the
; spectral proberties of the magnetic fluctuations b as given. One then might argue that, if
the 3-ﬁé1d carries a ﬁnite‘ helicity, then an analogous a-effect may be generated which can
then drive currents in the plasma. This is precisely the principle behind driving currents
- in' the plasma by polarii_ed waves. ‘Now, since fusion plasmas .are sheared (because they
carry a ﬁnité vcur‘re_‘nt), it. is of ihterest to investiga,te-whether there is an anglbgous ﬂ-effecf.- '
This question is of importance because in a realistic sitﬁation, one woﬁld expect an a-effect
from the asymmetric part of the b-field and a f-effect ffom thé vsymmetric part..‘ The 8-
effect may reduce the efficiency of .f;he current drive that one may infer by considering the |
a-effect alone. In this letter wé have investigated this éroblem and found t\.ha,t the B—éffect is
identiéally zero. That is, Whén the mean EMF is evaluated in terms of two-point correlations -‘
of the raﬁdom magnetic field ﬂuctuétions with the use of the linearized equation of motion, -
the terms ‘proportionalv to the gradients of magnetic field mutually cancel.

To‘show“br‘ieﬂy (details ;inll be given" elsewhere) this 'We_consider_'anvincompressible‘con-.

ducting fluid g'o'vér'ned by the follQWing equations _ B

B _vxvxB+vB (@
ov ' o 2 ’ |

p—a—?‘——}-p(v'V)V:(B-V)B—{-z/VV—-VP ‘ (3)
V.v=V.B=0 - | (4)

where v is the fluid velocity, B is the magnetic field, 7 and v are the resistivity and viscosity,

respectively, and P is the total pres_'sure; Next we separate the variables into a mean and a

[

ﬁuétuating part as

v=t+v,B=B+b, P=P+p (5)

with =






Using Eq. (4) in Egs. (1) and (2) we have three equations for B,v and b:
| 9B |

W=sz+nv¢§ ) - (7).
gi} (B-V)v—(v- V)F—r—- V x ‘Gl,—*— nV2b (8)
%+G2 —VP+(P-V)b+(b-V)P+G3+u’v_2u . (9)
" where | |
E=(xb), o)
Gi=(vxb) - <UXb)A _' S vv.(ll)'_
Gr= (0 Vo~ ((0- V) BT
szv% (b-V)b— ((b'-‘V)b‘) _— | | . (13)

Neie the appearahce of the mean EMF & asa.'source term in the equation for Fi 'Within the._ :
approx1mat10n of ﬁrst order smoothmg ; l.e., voto / kL1 (where Vg 18 the root mean square ,
value of v and to 1s some characterlstlc tlme of the ﬁeld) the terms GI, Gg, and G3 can be -

neglected To 1ntroduce the inhomogeneity - of the mean rnagnetlc field, we take”

*R@o-ugB - :"j" (14)

Tk

B

Where ‘9 8B: i5 yniform. ThlS permrts takmg the Four1er transform of the fluctuations in the

presence ,of 1nhomogene1ty accordmg to

; —i(k-z—-wt) )

where b; is the Fourier transform of b;, and w and k are real Fourier tra.nsforming the

variables in Egs. (8) and (9) according to Eq. (15), we have

i k)G = i, 00 OB; _ 5 0B 16
( nk*)b; : | (16)
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- ok, aﬁ ~ 8B,
2 k; 98¢
p—iw + vk = kD — ki g 5o+ b 5 - an

Now we show the usual f-effect’; i.e., when the th-point correlation of the velocity field v
is given. Since the $-effect depends upon the reflectionally symmetric pé,rf of the spectrum,

the two4p6int correlation function is givén by

‘(v,-(a:,.‘t)vj(;z', ) = ¢ (k,w)6(k — K)8(w —) o as)
where ' v . _
i = E_l%;l(k”ﬁ —kk) . “ (19)

We can now calculate &£ in terms of E”(k,w) according to
& = Re<€;jk vj(:z:, t)b:(m',t’)> . V : - (20)
Clearly, since (v,-,v)) is again, we can only use the induction equation to eliminate b terms of
v in Eq. (20) (i.e;,‘ we cannot use the equation of motion) to give :
o 1 8, .. . .]0E S
= Re ey [ e |2 (k) — | k(21
8 | ee_Jk ‘ (_Zw+nk2)[akq(90]k) v »SOJq k :I 8 z, W: | ( )

Where.'Eq.: (18;) has been used to.'perform the integrations over k' and w’.. Only the second

‘term in Eq. (21) makes a nonzero contribution. Using Eq. ( 19) for @3, we have

o +oo Evkw ik . 8B,
g=_e,Jk L[ 7 [5jq | dkde gt (@)

Using k; = k cos 0 and dk = k*dksin 0d9dcp, the i‘ntegral‘ih Eq. (22) can be simplified as

too E2EY(k,w) L '
= —= B): . 23)
& n/ I T ) dhdes (V x B); (23)

This coincides with Moffat’s expréssion for the B-effect.” Since E¥(k,w) > 0, therefore &; < 0,

and hence the (-effect enhances the resistivity.






Now let us consider the case when the fluid is “stirred” electromagnetically. In this case
we regard the properties of the magnetic field fluctuations as given. In particular we take

the two-point correlation of the magnetic fluctuations to be given according to

(b=, k)BE(e, 1)) = o6(k + K)6(w + ') (24)
where
Eb(k,w)
ol = okt (k2685 — kiky) : - (25)

The mean EMF is still given by Eq. (18). However, since (b;b;) is given, we now cannot use
- the induction equation. Rather, we must use the equation of motion to eliminate ¥ in terms

of b to express & in terms of (b;b;). Thus we have

)

' €ijk [ [T° 1 P 0 b b v 8Fn
= Re St kB — 2 (kadh) + @, k| dkd . (26)
& =Re = /0 / oo | — g, (bahi) + o O | dcdwo o (26)

Note the extra contribution to &; when fluctuations in the total pressure beat with the
magnetic fluctuations Bk. As stated earlier, the sécond term doeé not contribﬁte to &. The
contribution from the third term is similar to the contribution from the secbnd term in
Eq. (21), but with 7 replaced by v and with the oppbsite sign. Hence, the c§ntribution from |
the third termb i.s |

o szb k,w)
w2 F U2k

Third term = +-- / / FE(kw) 1bao(v x B, e

Since E® > 0, it appears that in this case the ,B-eﬁ"ect decr_eaées_the plasma resistivity.
" However, we still have to evaluate the term due to the total pressure fluctuations; i.e., the

first term. Using k;9; = 0, from Eq. (l7)’v\'¢ve have

= i2k; 9B; 3, - - (28)
Oz,
where we have used
0k;b; ob; : ’
= =k — b . o 2






Using Eq.-(28) in Eq. (26), we can write the contribution from the first-term as

_ _ €ijk kjky, E Eb(k,w) ek B—B
First term = 47rp/ /oo k* ok k? + 3:1:2 (30)

The contribution from the k.kx/k* term in Eq. (30) is zero because, along with k;k,, it

comprises the ith component of (k x k). The remaining integral is finite only when j = n

and £ = k. Again using k; = kcosf and dk = k*dk sin 8dfdp we can show that

o) 2 b
Third term = ———// i (k) F 2L dkde (V% B 31

u2k4

This cancels with the third term, giving
&=0. (32)

The physical reason for this cancellation is clear. Externally driven magnetic fluctuations
cause fluctuations of the total pressure. This gives rise to an additional EMF which is in
the opposite direction to the EMF due to the B-effect. When the velocity field is perturbed,
there are no such contributions.

It should be noted that these results are quite general and independent of dny particular
geometry. These l;ésults are relevant to current drive since they imply that thc?re is no
increase of the plaérna resistivitj;r and hence no degradation of current drive efficiency due to

externally driven magnetic fluctuations .
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