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Effective Plasma Heat Conductivity in
“Braided” Magnetic Field.
Part I. Quasi-Linear Limit

M.B. Isichenko %
Institute for Fusion Studies

The University of Texas at Austin
Austin, Texas 78712

Abstract

Anomalous cross-field electron transport in a specified mégnetic field with weakly
destroyed flux surfaces is discussed. Following the approach developed by Rechester and |
Rosenbluth (1978), and by Krommes, Oberman and Kleva (1983), in the present paper
the regimes of effective transverse plasma transport are studied systematically, both in
collisional and collisionless limits. The present analysis incorporates non-stationarity of
magnetic perturbations, WhiChIWa.S not included in the previous works. Part I of this
study deals with quasi-linear approximation, which may be written as bgLg/6 < 1,
where by = 6B, /By represents the relative magnitude of the transverse magnetic
perturbation, while Ly and § represent the longitudinal and transverse correlation
lengths, respectively. It is found that some of previously described transport regimes
cannot be considered as anomalous (in the sense that effective heat conduction Xeg >
X, ) for time-independent magnetic perturbations. However, these regimes can exist in
the presence a finite-frequency magnetic flutter. A unified classification of quasi-linear

regimes of anomalous transport is introduced in order to further extend the analysis
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to the strong magnetic turbulence limit boLo/6 3> 1 (see Part II), which is considered

as a companion paper (Isichenko 1990).



I. Introduction

Anomalous transport in magnetic confinement systems is a central issue in fusion studies
(cf. Rechester & Rosenbluth 1978, Stix 1978, Kadomtsev & Pogutse 1978, Krommes 1978,
Krommes, Oberman & Kleva 1983, Galeev and Zelenyi 1981, Horton 1983, Haas & Thya-
garaja 1986). Up to the present time, no widely adopted self-consistent anomalous transport
theory exists. Such a theory would require the knowledge of plasma turbulence parameters
whose analytical evaluation in terms of density and temperature gradients or other plasma
parameters is scaresly reliable, if possible at all. In most theoretical papers devoted to this
problem average transport characteristics, such as heat conductivity, diffusion coefficients,
etc. are expressed in terms of electromagnetic fluctuations that are treated as given, or
taken from an experiment (cf. revie\.zv Liewer 1985). This approach is an integral part bf a
self-consistent transport theory, which still remains to be developed.

In the present paper a similar approach is taken. We consider transport in a specified

“braided” magnetic field of the form
B = Bo(2 + a(z)7) + 6B(z,y, 2,1) 1)

where. z,y, z represent Cartesian coordinates with the corresponding unit vectors 7,7, 2, .
da(z)/dz is the background shear, and B represents a ;hort-scale random magnetic per-
turbation.

Since in the majority of applicable cases electrons are strongly magnetized, ie. X)/XL =
(wBeTe)? > 1 (X“ and X, are the longitudinal and transverse eiectron heat conductivities,
respectively, wp, is gyrofrequency and 7. Coulomb collision time), a weak destruction of
magnetic flux surfaces with § B <« By can lead to a significant increase in transverse heat
transport.

Magnetic stochasticity is characterized by a random, diffusion-like walk of a magnetic line

with respect to the unperturbed magnetic surface (Rosenbluth et al.1966, Stix 1973), and
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the exponential scattering of close magnetic lines (Krommes 1978, Rechester, Rosenbluth &
White 1979, Krommes, Oberman & Kleva 1983). The magnetic line diffusivity D,, and the
length of exponentiation [, which influence the effective heat conductivity X.g, are defined
in the most simple way in the so-called quasi-linear approximation with the small parameter

introduced by Kadomtsev and Pogutse (1978) (see also Krommes 1978):
R=(6BL/Bo)Lo/6 =boLo/6 < 1, (2)

where Ly and § are the characteristic inhomogeneity scales of the perturbation §B(z,y, 2) in
longitudinal and transverse directions, respectively. The present article deals with this limit
only. The opposite case is discussed in a companion paper Isichenko (1990).

In this article the problem of stochastic magnetic transport is treated systematically,
proceeding ffom the most simple and clear arguments of test particle motion. Results of this
approach are presented in a convenient form, that includes additional effects, such as the
non-stationarity of magnetic perturbations.

Our consideration of this problem has been motivated by the desire to examine the limit of
strong magnetic perturbations R > 1 (Part II), which is the opposite of the quasi-linear limit.
However, the present paper reports some new results concerning the quasi-linear limit R < 1.
We follow the smooth transition between the week and strong shear regimes, described in
Kadomtsev & Pogutse (1978) and Krommes, Oberman & Kleva (1983), respectively, and
estimate the related critical shear length /;. It is found that some of previously introduced
magnetic transport regimes, namely, the “fluid limit”, “double st}eaming” and “Kadomtsev-
Pogutse”vregimes (with nomenclature adopted in Krommes, Oberman & Kleva 1983) are
not literally anomalous (understood as Xeg > X, ) in the limit of a stationary magnetic
flutter. A consideration of non-stationary magnetic perturbations reveals that those regimes
can be recovered. Also, it shown that one can follow the transition between all the transport

regimes, as the characterictic frequency of magnetic turbulence w is changed.



When ¢B is sufficiently small, it gives rise to the formatioﬁ of a set of magnetic islands
separated by regions of “good” flux surfaces (Rosenbluth et al. 1966, Stix 1978). As éB
increases, the islands coalesce, resulting in the formation of stochastic regions. One should
emphasize that according to the KAM theory (cf. Sagdeev, Usikov & Zaslavsky 1988) at
sufficiently small perturbation, 6 B < By, the regions of globally stochastic magnetic lines
must occupy a very small fraction of the plasma volume (Cook, Thyagaraja & Haas 1982).
On the other hand, the Kadomtsev & Pogutse (1978) “braided” model, which ignores toroidal
effects, as well as shear, predicts a stochastic behavior of every field line, at arbitrarily small
6B. These limiting cases of KAM theory and the Kadomtsev-Pogutse model, although
different, do not contradict each other. Indeed, a microturbulent magnetic flutter with
correlation scales much less than both minor and major radii of tokamak make magnetic
lines behave locally as in the “braided” model. At the same time, according to KAM ‘theory,
most of the short-range disordered flux surfaces are long-range topologically ordered, i.e.
exactly closed, due to the KAM theorem. To more clearly understand this point, one should
bear in mind that locally, any solenoidal field possesses invariant flux surfa’ces whose choice
is quite arbitrary (see, for example, Fig.1). Also, the global nested topology of magnetic
surfaces does not prevent a local stochastic behavior of field lines. If we consider a finite
decorrelation length 24, over which a test particle can be considered to move along a given
magnetic line, and if this length is much smaller than a global topology scale (say, the
minor fadius), then we come to the conclusion that in this case the KAM-backed long-range
magnetic order is irrelevant and the local stochastic features of the magnetic field govern
anomalous transport.

Another remark concerns the assumed arbitrariness of the magnetic perturbation. In the
limiting case of éB being produced by a short scale ideal MHD activity, 6B = V x (€ xBo),
not only every flux surface is preserved, but also local topological restraints are imposed on

field lines, confining their transverse walk within the range of the displacement &(r,¢). This

AY
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limit requires a separate examination. Let us only'note that at sufficiently small scales (for
instance, c¢/wp. and less) the magnetic field is no longer “frozen” to plasma and thus can
change its topology (Kadomtsev & Pogutse 1978).

The paper is organized in the following way. In Sec. II we briefly discuss the geometric
properties of the “braided” magnetic field. The exponentiation rate of close magnetic lines
is evaluated, with an emphasis on shear dependence. In Sec. III we discuss the test particle
approach to the heat transport and express the effective diffusivity X.g through the test
particle decorrelation time 4. Section IV is devoted to the evaluation of ¢; in the case of
stationary magnetic perturbations. Here, we also analyze stationary anomalous transport
regimes both for collisional and collisionless limits. Results of our analysis are compared
to those of others. In Sec. V the effect of non-stationary magnetic fluctuations is studied.
In Sec. VI we summarize and discuss the results and demonstrate the transition between

various regimes of anomalous transport.



<

II. Geometry of Stochastic Magnetic Field

In this section, we discuss the behavior of a separate :magnetic line, of two close lines and of
a magnetic flux tube in the “braided” magnetic field (1).

Let us take the shear parameter a(z) in the formula (1) to be less than or of order of
unity and the amplitude of the fluctuations to be small: by = 6B, /By < 1. Thg mean value
of magnetic perturbation is taken to be zero, (6B(z,y,z)) = 0. Under these constraints,

the equation of a magnetic line takes the form
dry/dz =b(r.,z) + a(z)7 , (3)
bE&BL/BO ’ rl=(m,y) >

which describes a well known diffusional walk of magnetic lines in the z-direction ('choss
the non-perturbed flux surfaces). Depending on the longitudinal coordinate z, the average

transverse displacement of field lines is governed by

(=) - {

with D, denoting the magnetic line diffusivity (Rosenbluth et al. 1966, Stix 1973, Kadomtsev

bg P , z < Ly,
(4)
2sz ) z> LO )

& Pogutse 1978).

The calculation of D,, depends significantly on the amplitude of mégnetic perturbations,
which is convenient to describe in terms of the dimensionless parameter (2). The quantity
R can be expressed as the ratio of the original longitudinal correlation length Ly and the
distance Ls = 6/by. The parameter Ls is an effective longitudinal correlation length in
the frame of a given magnetic line, due to the finite transverse inhomogeneity scale 6, in
the formal limit Ly — co. The weak turbulence, or, equivalently, quasi-linear case R <

1 outlines the predominance of longitudinal magnetic inhomogeneities, thus making the



magnetic diffusion insensitive to the transverse correlation scale é:
Dy, = (1/2) / (bo(r1, 2)ba(rL,0)) dz ~ B2L . (5)
)

However, as shown subsequently, 6 does enter expressions for the exponentiation length .

In this section we assume the magnetic field to be stationary, with angular brackets in
Egs. (4),(5) implying the averaging over magnetic lines.

It is emphasized that r, in the integral expression in (5) depends on z according to Eq. (3).
Nevertheless, the estimate of D,, assumes that one may neglect the implicit dependence of b
on z through r, (z), in comparison with the explicit one. In fact, this assumption defines the
quasi-linear approximation. (Indeed, if one neglects the dependence b on r;, the magnetic
line equation (3) becomes linear.) In the absence of shear this requirement is equivalent to
the inequality (2). However, when shear is taken into consideration, additional restrictions
arise. Equation (3) yields dz/dz = by, dy/dz ~ z/l,, and the increment of y, as z passes
the longitudinal correlation length Ly, is of the order of y ~ Loz /I, = Liby/l;. The quasi-
linear approximation holds provided that this increment is much smaller than the transverse

correlation length 8, i.e. the shear length /, should not be too small:
ls > LOR . ' (6)

This inequality, in addition to (2), provides a necessary condition for the quasi-linear geom-
etry of a “braided” magnetic field. . ,

In fact, the problem of a globally stochastic magnetic field with shgar is further compli-
cated by that any displacement of a magnetic line in z-direction gives rise to a zeroth order
dependence y(z). At the very least, this implies tha connection between correlation lengths
Lo, 6 and the shear length /,, as discussed in Krommes, Oberman & Kleva (1983). However,
as can be seen from Eq. (3), the shear term, however small, will asymptotically result in

an accelerating dependence y(z) and the subsequent accelerating frequency modulation of



by(ri(2),2) thr'ough its first argument. These oscillations might result in a non-diffusional
(namely, sub-diffusional) dependence of z(z). Yet, this behavior can be unimportant if a
test particle decorrelates from the magnetic line before the line manifests this behavior. Fur-
thermore, a diffusional walk of magnetic lines in z-direction could, and probably should, be
recovered when formulating the problem in more suitable coordinates, instead of (z,y, 2).

This issue remains beyond the scope of the present paper.

Along with the tangled walk of a line, the stochastic feature of the magnetic field leads

to an exponential scattering of a pair of close lines:
(6r(2)) = ér(0) exp(|z|/1) , (7)

where ér = (dz, 6y) is the distance between close (i.e. 6r < §) magnetic lines. This effect
is known as stochastic instability (Lichtenberg & Lieberman 1983). It is ’described:‘-:iby-'the
linearized equation (3):

déz/dz = byp(2)6 + byy(2)dy '

dby/dz = byg(2)83 + byy(2)6y + 83/, , » f(s)
where byg(2) = 0by/Orp, and the shear slab approximation is used: 1/I, = da/dz = const. .

For the calculation of the Kolmogorov entropy (average growth rate of stochastic insta-

bility)' let us take advantage of the technique developed by Krommes, Oberman & Kleva
(1983). Mp.ltiplying the equations (8) by éz, 8y, and adding them, one obtains the following
system for pT = {((6z)?), ((6y)?), (6zby)}:

4/l 2/l 0
dpfdz = Ap, A= |2/l 4/l 1/ |, . (9)
' ‘ 1/, 0 1/1.,

Here we have assumed the following correlation properties:

bos(oss)) = Eobpsfuslz =), (10)



where o, 8,7,6 = ,Y, 2, 645 is the Kronneker symbol, b, means the longitudinal perturba-
tion 6B,/ By. The correlation functions f,s(z) decay on the correlation length Lo, and are

normalized as.

*® 1 b%L0/52 ) a,f=zy, (11)
(1/2) / Fop(2)dz = 2} 11
~oo * 7\ /L, a=f=z.
The average exponentiation rates of magnetic lines 1/ (see Eq. (7)) are now defined as the

eigenvalues of the matrix A. When the shear is absent [, = co) we obtain

h=lulys= 2/ [l;zl +iy £ \/(Z;g - ly_yl)z + 1z 'ly—xl] - (12)

Usually, the longitudinal component of magnetic perturbation is much smaller than the
transverse one: b, < bp. Besides, if b, < R = boLo/6, then the scattering lengths lo3 ~ o

become much smaller than [/, thus yielding the fastest mode of the stochastic instability:
Ixly=62)(Lobd) = Lo/RE |, 1,>1p. (13)
The effect of shear is significant at I, < lo; in that case we have
I (LY, <. (14)

Formula (13) agrees with results of Kadomtsev & Pogutse (1978), while (14) is exactly
the same as the exponentiation length reported in papers Krommes (1978) and Krommes,
Oberman & Kleva (1983). The above results (13),(14) show how these limits match each
other and when the effect of shear becomes significant.

Let us note that at any I, the both inequalities (2) and (6), specifying the quasi-linear
approximation, can be rewritten in the form ! 3> Lo, as pointed out in Krommes, Oberman
& Kleva (1983).

Let us now imagine what a flux tube of the magnetic field looks like. Owing to the

magnetic flux conservation, (divB = 0), the cross-section area of the tube is nearly constant.
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Further, the boundary of this cross-section, being composed of close points, rises in length
exponentially, according to (7).} This leads to a growing convolution of the side surface of

the tube (see Fig. 1), and the exponential decrease of its width:
h(z) ~ hexp(—|2I/1) | (15)

where h is the initial diameter of the magnetic tube. This observation (Rechester & Rosen-

bluth 1978) is of great importance and we shall return to it later on.

!In fact, the elongation of a contour by the map (3) is defined not by the mean but rather by the maximum
exponentiation rate. However, in the quasi-linear limit every magnetic line behaves qualitatively in the same
manner; hence, the mean and the maximum stochastic growth rates are of the same order of magnitude.

11



III. Effective Heat Conductivity as Diffusivity of
Test Particles

In this section we express test particle transport in terms of the time of decorrelation, and
introduce the regime of quick decorrelation and the regime of magnetic line diffusion.

The test particle arguments are commonly used for the evaluation of particle and heat
transport. However, one must remember that under plasma quasi-neutrality restraints, elec-
trons cannot diffuse as free test particles. Nevertheless, due to the thermal spread of energies
of electrons the energy can be transferred while the center of charge is motionless. That is,
heat transport can be treated as the diffusion of test particles that are not actually particles
but, rather, quasi-particles that describe the elementary excitations of the thermal state
of the plasma. For example, in the hydrodynamic limit one can solve the heat transport

equation
oT /ot = div(X V)T + X, V. T) (16)
by the path integration method. The latter is a mathematical technique corresponding to
the physical analogy, when (16) is treated as the diffusion equation with T standing for the
density of a “substance”. So, in this case our test particle is a particle of this “substance”.
Thus, the effective heat conductivity can be estimated as the average radial diffusivity of
a test particle. To the first approximation, the test particle moves along the magnetic line

according to
Xt)?, wt>1, (17a)
vt vet <1, (17b)
which correspond to hydrodynamic (collisional) and kinetic (collisionless) limits, respectively.

In Eq. (17) v, means the average thermal velocity of electrons, v, = 7,! is the collision

frequency. In fact, the test particle moves along a specified magnetic line only during a finite
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time of decorrelation td. (Krommes, Oberman & Kleva 1983), distinguishing the reversible

‘and irreversible processes.

The cross-field diffusivity of a test particle can now be obtained from (4) as

baz2/ty 24> Lo (QD) (18a)
Xeﬁ' ~ zz(z((:d)) %
szd/td , 24> Ly (MD) (18b)

where zg = 2(t;) is defined from Eq. (17). In the expression (18) we distinguish between
two distinct regimes: the regime of quick decorrelation (QD) and the magnetic line diffusion

(MD) regime. Hence, in the hydrodynamic limit (v.ts > 1) we have:

X, . ta<Iix  (QD) (192)
Xeﬁ' ~
l)m(XH/trl)l/2 y ta > L(ZJ/XH ) (MD) (19b)

and the kinetics (v tq > 1) leads to

bavity ,  ta < Lo/ve, (QD) | (20a)
Xeff = '

D, , tq > Lo/ve . (MD) (20b)

Krommes, Oberman & Kleva (1983) describe the hydrodynamic regimes (19a) as “fluid”
and (19b) as “double diffusion” (emphasizing that at t; — oo z o t*/* and thus Xeg — 0).
To the kinetic regimes (20a) and (20b) they are referred to as “double streaming” and “colli-
sionless”, respectively. Although these terms are widely accepted in the literature, I believe
that some of theﬁl are physically misleading. For instance, “fluid” (i.e. collisional) descrip-
tion not only applies to to the regime (19a), but to (19b) as well. (However, the “double
diffusion” notation for the collisional MD regime still remains quite sensible.) Analogously,

the “collisionless” limit is actually the case for both regimes (20a) and (20b), not only for

* the latter. To avoid this ambiguity, the above classification has been introduced, based on
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whether a test particle decorrelates before (Quick Decorrelation) or after (Magnetic Diffu-
sion) the magnetic line exgibits the diffusional walk. The advantage of this nomenclature
will be further seen in the strong turbulence limit (Part II) where the number of transport
regimes is greater.

Now, to obtain the result, we must evaluate the decorrelation time ¢,.

14



IV. Decorrelation in Stationary Stochastic Magnetic
Field

In this section we derive expressions for ¢4 which yield transport different from the results by
Rechester & Rosenbluth (1978) only by notations, here bging more universal and convenient
for further arguments.

One can define t4 as the time it takes the test particle to get to another magnetic line
which is separated from the first one by the distance of order of 6. Or, speaking more
accurately, ¢y is the time in which the test particle leaves the magnetic flux tube whose
cross-section z = 0 is the circle of radius §, when the particle starts from its center. Due
to the diffusivity and the stochastic instability of magnetic lines, the appearance of this flux
tube is rather complicated (see Fig. 1).

First, let us examine the collisional limit ».¢; > 1. The transverse decorrelation 'time is
evidently not to exceed the quantity ¢, = 62/X ., which, having been substituted into (19a),
would yield‘ a result less than X, Which would be not interesting. Had we put ¢ = ¢,
and used double-diffusion expression (19b), then we would obtain the Kadomtsev & Pogutse
(1978) result Xeg ~ (X XL)Y?*Dn /8. Yet, owing to the special behavior of the magnetic flux
tube (Fig. 1) the decorrelation becomes earlier. ‘At very small X, the easiest way for the test
particle to leave the flux tube is to move along the magnetic line several scattering lengths /
and then to diffuse transversely through the short distance A(z). Using the expression (15)

!
we can now solve the equation

§exp(—2(ta)/1) = (Xota)? (21)

for t4 to obtain

ta ~ (X)) In?((X)/ X )(6/D7] (22)

15



Substituting (22) into (19b), one gets the Rechester-Rosenbluth formula
Xer 2 X[ (Do /1) In ™2 (X)) /X L) (/1)%] - (23)

When the characteristic correlation lengths along z and y directions are different, § should
be understood as the shorter of them.

The expression (23) is valid provided that the quantity under the logarithm is large.
Otherwise we arrive formally at the Kadomtsev-Pogutse regime (i.e. (19b) at tg = t.).
However, any physically interesting regime of anomalous heat conduction should assume
Xeg > Xi. If we demand that in the marginal point between Kadomtsev-Pogutse and
Rechester-Rosenbluth regimes (X /X = 62/1%) Xeg > X, then we come to the inequality
D,,l > 62 which, as a consequence of Egs. (5), (13), and (14), holds neither in strong nor
in weak shear limits. This point was overlooked by Krommes, Oberman & Kleva (1983),
possibly because those authors did not consider the case of very weak shear.

In sum, transport contributions given by both the QD regime (19a) and the “Kadomtsev-
Pogutse” regime Xeg ~ (XX 1)'/?D,,/é are small compared to X and thus uninteresting in
the stationary magnetic field. So, the Rechester-Rosenbluth (MD) regime (23) exhausts the
hydrodynamic anomalous transport in the quasi-linear approximation.

In the kinetic limit vty < 1 the decorrelation occurs faster than a collision, and the
background cross-field diffusivity X; no longer makes sense. Here, one must replace the test
particle transverse “uncertainty” (X, ¢)!/? by some other quantity, for example, the gyro-
radius r,. It can be argued that when such scales are taken into account, the essentially
three-dimensional particle motion may have its own stochasticity and give a real decorre-
lation, even in a stationary magnetic field in the absence of collisions. This uncertainty
enters the expression for #; only logarithmically (Eq. (24)) while the expression for X.g is
independent of ¢; (Eq. (20b)).

Having introduced this change into the previous arguments and using (17b) instead of

16
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(17a), we can obtain the collisionless decorrelation time
ty = ({/ve) In(8/re) . (24)

Under the quasi-linear condition I, > LoR assumed above, the decorrelation time (24) be-
longs to the case (20b), giving the collisionless MD result Xeg ~ Dmv.. So, the “double
streaming” regime (20a) is also not available in the stationary quasi-linear limit.

We thus come to the conclusion that there 'exist no non-trivial quick decorrelation regimes
with Xeg > X, given the time-independent magnetic perturbation. As we will see in the

next section, this restriction can be abolished in a non-stationary stochastic magnetic field.
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V. Non-Stationary Decorrelation

Besides finite X and r,, the decorrelation may be caused also by non-stationarity of magnetic
perturbations, giving rise to new transport regimes:

Let us put X, = 0, 7. = 0 and w be the characteristic frequency of éB(z,y,z,t). The
definition of w implies that in the time of w™! the spatial distribution of b(r,t) changes
unrecognizably. It is quite clear that until the stochastic instability has an effect, i.e. under
the condition X||/w < {* (in hydrodynamic limit), or ve/w < I (in kinetics), the decorrelation
time equals the inverse frequency: t; = w™!. At very low frequency, that the test particle has
time to pass the distance [ in nearly unchanged magnetic field, the effect of magnetic lines
exponentiation comes into play, decreasing the decorrelation time with respect to w™'. For

treating this limit we can account for time dependence in Eq. (3) as a small perturbation:

er_/dz = b(I‘J_,Z,O) + t(Z)b]_(I‘_[_,Z) ,

(25)
by(ry,z) = db(ry,2,t)/0t| =wby,
t=0
22/X“ , Vetg>1, (26a)
t(z) =
z[ve , Velg > 1. (26b)

The first term in the right-hand side of Eq. (25) generates the motion of the particle along a
stationary magnetic line, which makes the particle approach exponentially the boundary of
the magnetic flux tube (see (15)). The second term represents a non-correlated, with respect
to this motion, slow drift. with the correlation length z = Ly. This implies that the two-point
correlation function (by(z")b1(2”)) decays at |2/ —2”| > Lo. Then we can write the following

estimate for the square-average displacement component r,,, due to the non-stationarity:
(o)) = /0 /0 dz'dz"1(2')t(2") (by(')by(2")) ~ w?B2Lo / £2(de . (27)
0

18



The decorrelation time ¢4 may now be obtained from the equation similar to (21):

§ exp[—2(ta) /1) = (¥l ((t2)))" " . (28)

Resolving Eq. (28) in every limit (collisional (17a), and collisionless (17b)) we find the

expressions for t4 in hydrodynamics (vetqy > 1):

wl, w> X/, (29a)
ty & :
12/X|| lnz[(X“/wlz)5(le)_1/2] , w < X”/l2 , (29b)
and in lcinetics (Vety < 1):
wt, w > v/l (302)
iy ~ .
l/veln(6/r) , w < v/l (30b)

Substitution of (29), (30) into (19), (20), respectively, yields the effective thermal conduc-

tivity in the non-stationary stochastic magnetic field. In the collisional limit we have

;

X, w>X/L§, (QD) (31a)
Xeg & { Dm(X)*?, X/ LE > w > X/, (MD) (31b)
Xy (Do /) In =X /wB)S(ID,) 2] , X /2 > w0 (MD) . (31c)

Correspondingly, in the collisionless case,

bg”f/w SN w > v/l (QD) (32a)

Xeff ~ )
Dv. , w < v/l (MD) (32b)
We see that in non-stationary magnetic field, when a free parameter w appears, there
can arise the non-trivial (i.e. Xeg > X1 ) quick decorrelation regimes: (31a) (“fluid”), and
(32a) (“double streaming”). The new regime (31b) is also present which is somewhat similar

to the Kadomtsev-Pogutse regime. The expression (31c) is the non-stationary analog of the

Rechester-Rosenbluth regime (23).
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VI. Summary and Discussion

Depending upon the relation between the parameters, several effective transport regimes
are possible. Their number increases as new effects are taken into account, e.g. the
non-stationarity. When both stationary and non-stationary decorrelating mechanisms are
present, one should choose one that produces the shortest time of decorrelation 4.

Since the multidimensional parameter space is divided into many characteristic domains,
it is useful to present interpolation formulas which are valid in each regime. First of all, let
us note that in the collisional limit the seed transverse heat conductivity X, and the finite
frequency w of magnetic perturbations produce similar decorrelating effects. This justifies

the introduction of the notations
X,J_ = X.L + w62 y
(33)
X" =X, +wé(ID,,)/? .
Equations (33) allow one to combine Egs. (22) and (29), yielding a general expression for

the collisional decorrelation time:
tg = min {62/X, , (/X)) 1n® [ /XD)(6/10]} , veta> 1. (34)

It is pointed out that in the weak shear limit (I, > lo) X/ = X1.

Similarly, in the collisionless limit we have
tg = min {w™ , 1/veIn [ve6/(WI(DR)?)] , U/veIn(6/1e)} , veta < 1. (35)

The expressions (19), (34) (in hydrodynamics) and (20), (35) (in kinetics) solve the problem
stated.

Despite the fact that in most papers the possible non-stationarity of magnetic pertur-
bations is ignored, the parameter of the characteristic frequency w appears to be rather
important, affecting the number of transport regimes available. Moreover, it is convenient to

follow the transition between regimes as w is changed. A straightforward but cumbersome
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analysis shows that the collisional (19)—(34) and the collisionless (2‘0)—(35).scaling laws for
Xeﬁv are smoothly sewed togethér on margins between them. This indicates that no substan-
tially new regimes were omitted. Further, this is demonstrated for the case of small shear
(Is > ly, i.e. | = lp) that X, = X'|. Shown in Fig. 2 are transitions between various transport

regimes, as w varies, for two of several possible cases: X;j/X, < R?b} where (a) A. < Lo and

o>

(b) Lo < Ae <. Here A\, = v;/ue is the mean free path of electrons. |

The above discussion can be summarized as follows.

(i) The quasi-linear limit of transport in a stochastic magnetic field is outlined by the
inequalities B < 1, Iy > LoR. The magnetic shear affects the quasi-linear transport

via the length of exponentiation ! under the condition I, < Lo / R2.

(ii) There are two physically distinct transport reéimes: the quick decorrelation (QD), that
a test particle decorrelates before the magnetic line exhibits its diffusive behaviqr, and
the magnetic line diffusion (MD), in the opposite case. In a stationary “braided” mag-
netic field only MD regimes of anomalous transport are present. -The non-statioﬁarity

of magnetic perturbations can give rise to non-trivial QD regimes.
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Figure Captions

1. The magnetic flux tube in a “braided” magnetic field.

2. Dependence of Xeg(w) at X, /X < R} for (a) A < Lo and (b) Lo < A, < 1. Near
the curves the corresponding formulae numbers are shown. (a): w’' = X}/ L3, " = v..

(b): W' = v, W' = v/Lg. At W' <w < w” X.g defined by (a) Eq. (31a), (b) Eq. (32b).
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