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Abstract

With the use of consistent orderings in € = p;/a and 6§ = kj ps model equations

are derived for the drift instabilities from the electrostatic two-fluid equations. The "

electrical resistivity 71 included in the system allows the d&namics of both the collisional
drift wave instability (n # 0) and the collisionless ién temperature gradient driven
instability (n = 0). The model equations used extensively in earlier nonlinear studies
are ébtained as appropriate limits of the model‘equations derived in the present work.

The effects of sheared velocity flows in the equilibrium plasma and electron temperature

fluctuations are also discussed.



I. Introduction

In this work we consider the derivation of reduced nonlinear fluid equations for the descrip-
tion of drift wave turbulence and vortices in low beta confinement systems with magnetic
shear. Numerous earlier works on drift waves contain more specialized derivations depending
on a particular ordering of the several small parameters in the system. Here we generalize
these earlier results in several aspects being careful to distinguish between the equilibrium
expansion parameters and perturbation expansion parameters. In order to consider situa-
tions relevant to current tokamak experiments, we assume that the ambient sheared ion flows
may exist in the plasma. On the other hand, for the reasons of simplicity, we neglect effects
associated with trapped particles. Although kinetic effects such as those associated with ion
Landau damping and trapped electrons are likely to play a prominent role in some circum-
stances, we only discuss the fluid model here, assuming that the fluid model approximates
the dynamics of the strongly destabilized mode reasonably well, as is commonly believed.
One of the earliest accounts of the instability caused by ion temperature gradients is
found in the paper by Rudakov and Sagdeev,! where it is shown that the growth of the
“ionic electrostatic” wave is caused by “a continuous inflow of heat from a region with a
high unperturbed temperature into the region where the temperature is rising on account
of the compression due to the plasma wave” under the conditions of zero density gradient
(n(z) = const) and finite temperature gradient (T;(z) = Te(z) # const). More detailed dis-
cussions on the fluid and kinetic models of this instability, the dispersion relation, the critical
value of n; for the marginal stability and localization of the mode are presented by Kadomt-
sev and Pogutse,? based on the local approximation. Coppi, Rosenbluth, and Sagdeev® have
derived the integral equation of the instability due to ion temperature gradients from the
Vlasov equation, using the normal mode analysis. The fluid limit of this kinetic model is
also discussed therein. On the other hand, the model equations for instabilities of the colli-

sional drift wave due to ion and electron temperature gradients are derived and discussed by
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Hinton and Horton? and also by Horton and Varma,® based on the two-fluid equations® with
the effects of resistivity, viscosity and thermal conductivity. The ion temperature gradient
driven drift instability, modelled in a slightly different way from previous model equations
and called the ion-mixing mode by Coppi and Spight,” is used to explain the rate of density
rise observed when neutral gas is fed into a tokamak plasma during a stable discharge.”®
Simple fluid model equations of drift waves in the absence of the ion and electron temper-
ature gradients are derived in the collisionless limit by Hasegawa and Mima® and in the colli-
sional limit by Hasegawa and Wakatani.'®!! These sets of equations provides simple models
of plasma turbulence, from which one can relatively easily perform mode-coupling analyses
and study plasma-turbulence properties such as Wavenumber spectra. Horton, Estes, and
Biskamp!? have also presented a simple set of fluid equations of the ion temperature gradient
driven turbulence in order to assess the anomalous ion thermal transport. In their.model,
the electron-temperature-gradient effects are excluded and only the three scalar fields of

fluctuations, the electric potential 5, the ion pressure p and the parallel ion velocity ), are

involved. Several other simple fluid models have been proposed for the study of drift wave

turbulence under various conditions.'®

There are two different branches of the ion temperature gradient driven mode. One is
called “slab type,” which is the drift Wave'coupled with the ion acoustic wave that is desta-
bilized by the local ion temperature gradient. The other is called “interchange type,”*!s
which is destabilized by bad curvature of the magnetic field lines in the presence of the finite
ion temperature g;adienfs. Since several experimental results suggested that the turbulence
associated with these two branches of the ion temperature gradient driven mode were likely
to be the cause of the anomalous thermal transport observed in tokamaks and stellarators,®
numerous detailed studies of the ion temperature gradient driven mode have been presented.

The goal of this work is to derive a set of reduced equations governing the slab-type ion

temperature gradient driven mode, which is generalization of the model equations of Horton,



Estes, and Biskamp.'? Although it is possible to derive the interchange-type ion-temperature-
gradient-mode equations from the reduced equations (49)-(52) derived in Sec. II, we do not
present the final form of the interchange-type equations in the present work. The readers
who are interested in the interchange-type equations are suggested to refer to, for example,
Refs. 14 and 15. When the effect of magnetic shear is stronger than the effect of magnetic
field curvature, the slab-type ion temperature gradient driven instability is predicted to
be excited and become a dominant source of the experimentally observed anomalous heat
transport.171®

In deriving the reduced equations, we start from the compressible two fluid equations
and ignore fluctuations of magnetic field and electron temperature, as in Ref. 12. It is
also assumed that the mode is localized on a particular magnetic field line (i.e., k1 > k)
and typical frequency and growth rate of the mode are much smaller than the ion cyclotron
frequency. The background fields such as the mean ion temperature gradient and the ambient
magnetic field vary slowly in time and space, compared to the fluctuations. The specific
ordering of physical quantities of this mode is given in Subsection II.B as the e-ordering.

This ordering significantly simplifies the model equations as summarized in Sec. IIL

II. Basic Equations

A. Electrostatic two-fluid transport equations

We start from the electrostatic two-fluid equations.® For low-frequency modes with wave-
lengths longer than the Debye length, we may assume charge neutrality and discard the
Poisson equations (the plasma approximation). Namely, we take n; = n. and allow V-E # 0.
We also consider the case of zero-electron-mass limit (i.e., me — 0) and the constant electron

temperature T,. Effects of electron temperature fluctuations will be discussed in Sec. IV.



The set of equations then becomes

mmn; (% +v; - V) v;=—-Vp; +en;(-V® + }—;1 X B) —enmnj+ V - 11,

" 0=-T,Vn; —en;(=V® + yf— x B) + eninj

‘%%i'*-v'(nivi):(}
ag:; +V(neve) =0  (ni=ny,)
Opi '
5 TVvi- VP +9p:V o vi = (v = 1)(V - q; = IL: Vvy)
where
pi = n1;
i= Bm(Vz' - Ve)
P 5 n s =~
i = —— VT b x VT;
R N D P
and

H; — —V”,’W(O) _ Vﬁ_li)w(l) _ ufi)W@) _ V;E‘LRWFLR _

Equations (3), (4), and (5) yield
V.j=0.

9)

In the equations above, subscripts ¢ and e denote the corresponding quantities of ions

and electrons, respectively. The magnitude of the electron charge is denoted as e, w,; is the

ion cyclotron frequency we; = ZeB/myc, Z is the ratio of the ion charge to e, v is the ratio of

the specific heats, ¢, n;, m, p, T', ®, and v are the light velocity, the number density, mass,

pressure, temperature, electrostatic potential, and velocity, respectively. The magnetic field

B is assumed to be time-independent, satisfying V-B =0, and b = B/ |B| is the unit vector

in the B-direction. Since the electrostatic limit is considered, we may ignore the Maxwell’s
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equations. Therefore the current density j given by Eq. (6) and satisfying Eq. (9) need not
satisfy j = ¢V x B/4w. We note that the electron thermal energy balance equation is not
included in the system (1)—(8) since constant electron temperature T, has been assumed. In
the expression of the ion heat flux q; of Eq. (7), & denotes the heat conductivity tensor. The
traceless tensor IT; consists of the gyroviscous tensor ITE “& = —yFLR WFLR and the collisional
stress tensors II™ = —yy; WO — YD WO — )P W@, In the Cartesian coordinates, the

(@, B) component of II; defined in Eq. (8) is given® by

3 1 1
RS )(bubv-géw) (10
(1) = < auéﬁu 5 )O'#U (11)
W) = (6%,bsb, + éj;ybabu) T (12)
and
1 3
I’VFLR 3 (Oap€par + 8puEayy) baouy + 3 (babuepy + bpbueary) baCpw , (13)

where b, is the o component of b (¢ = 1,2,3), o, is the (y,v) component of the rate-of-
strain tensor
2
Ouv = auviu + auviu - § 5uuv Vi,

8, = 0/0z,, §,, is the unit tensor or the Kronecker’s delta, 61, = 6,, — b,b,, €up, is
u iy 7 [z By

an antisymmetric unit tensor and I/FLR

= p;/2ws. In the limit of strong magnetic field
(weimi > 1, where 7; is the ion-ion collision time), the viscosity coefficients are given by
Y = 0.96n;T;m;, z/_(l_z) 0.30n;T; /w?7; and z/() = Z/J_z /4 The divergence of the tensor
in Eq. (1) is defined as (V - II;)o = Opllinp and the contraction in Eq. (5) is defined as

IL;: Vv; = IL;4305vin. We note that II;: Vv; may be calculated from the formula
WO vy, = -;-tr(vv“))? (€=1,2,3)

and, in particular

WFLR, vy, = 0 ,
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namely, the gyroviscosity does not produce heat.

The parallel stress tensor ITj; = —VHZ-W(O) can be written iﬁ a explicit vector form as
Ty, = 3y (BB — %I) X, (14)
where
A:B-((B-V)vi)—év-vi (15)

and I is the unit tensor. Using E(is. (14) and (15), we obtain
O: Vv, = —3A% .

The other parts of the stress tensor generally have no simple vector expressions if bisa
function of space. However, if the dependence of b on the space coordinates x is weak
in the sense that |Gqvig|/|vig| > 0.0, (o, B,p,v = 1,2,3) or, in other words, the: space
derivatives of the velocity v; are much larger than space derivatives of the unit vector B, then

the divergence of the stress tensor V - II; in Egs. (1) may be calculated from the following

expressions:
V- WO =3b(b- V)A = VA + O(e¥) - (18)
V- -WW=v.V,v, + 0¥ | ,_ (17)
VWO =BGV v) + Vi Vo) + G(Vawy) + Gve + OFE¥) (18)

V- WFLR= -V, (b (Vxv)+2b-§(b-(V xv))

+bxV(V-v)+3(b V)2 (bxv)—(b V)V xv)+0O®E¥. (19)

Here O(c*) denotes the terms smaller than the leading terms by order of &* o~

~

10ub,] / (10avp|/ lvg]). We have also used vy = 305 = v — b(b - v), v = b v,
V.=V -bb. V) and g = b- V. In Egs. (16)~(19), the subscripts ¢ were omitted

for simplicity.



In the system of Eqs. (1)—(5), we retain the resistivity n = me/n;e?r., where 7. (77" =

0.517E" in terms of the collision frequency vZ" given by Braginskii®) is the electron collision
time, as a possible nonzero coefficient while the electron mass and the electron diffusion
coefficients are all set to be zero. The condition that the friction force R = n;enj in Egs. (1)
and (2) has a significant effect on the dynamics is given by the following argument. In the
parallel component of Eq. (2) to the magnetic field B, balancing the first term to the last
term in the right-hand side yields the relation kyn;T. ~ n;engy ~ (n,-e)2 nvji. We also expect
from Eq. (3) that the time derivative of the density is of the same order as the parallel density
flux, or wn; ~ kyn;v;. Here k) and w denote the parallel component of the wavenumber
vector k to B and a typical frequency of the mode, respectively. Eliminating v); from these

two relations, we obtain the condition for the collisional drift mode

KT,
W ~ ,
mBVB

where v, = 7! is the electron collision frequency. Since, as will be shown later, the
typical frequency w of drift waves is given by the electron diamagnetic frequency w:‘ =
(T./miwe) (ky/Ln) with L, being the ion density gradient scale length, the condition above

may be written as

2
kiTe '
Mele

Since Te/me = Mg v, where Ang = v;\/Te/m, is the mean free path of the electrons,

wr ~

(20)

the right-hand side of the condition (20) represents the inverse of the time scale of electron
diffusion in the length & ! along the magnetic field lines. On the other hand, the condition

for the collisionless drift mode (i.e., n — 0 in Egs. (1) and (2)) is, given by
k2T,
* L—e
w, K — (21)
that is, the wave motion is sufficiently slower than the electron diffusion along the magnetic
field lines. These two limiting cases—the collisional drift mode and the collisionless drift

mode—will be discussed in more detail later.



B. The e-ordering

We now simplify Eqgs. (1)—(9) by specifying a certain ordering of physical quantities. Svince
we are concerned with low-level ﬂuctuations of the plasma governed by Eq. (1)—(9), each
physical quantity may be split into two parts: the mean part, which varies slowly in time
and space, and the perturbed part, which fluctuates in time and varies rapidly in space.
For example, p; = pio + Pi, where the subscript 0 denotes the mean part and the subscript
1 denotes the fluctuating .part. As typical scales,!? we choose the ion cyclotron frequency
w,; to measure the frequency and the sound speed ¢, = (T,/m;)'/? to measure the velocity.
The lengths are then measured with the ion inertial scale length p, = c; wz;* and the electric
potential is measured with T,/e.

Since typical fusion plasmas satisfy the condition that p, < d, where a denotes é macro-
scopic scale length such as the minor radius of a toroidal confinement device, we use e-=;/a
as an essential small parameter in the system. Smallness of the fluctuating quantities are

then assumed to be of order € or
Vifcs ~ Vol s ~ Tii/nig ~ i/ pio ~ B /T, ~ O(€)

whereas the mean quantities are of order 1, such as p;o/miniT. ~ O(1). The variation of
the fluctuating and mean quantities in space may be characterized by the following orderings
of space derivatives: the perpendicular derivative V| is of order 1 or p,V, ~ O(1) and
the parallel derivatives g is of order ¢ or p,J) ~ C’J(e) when these operators are applied to
fluctuating quantities, whereas p,0, ~ O(e) and p, 9 ~ O(e*) when these operators are
applied to the mean quantities.

For fluctuations localized on a particular rational surface at ¥ = v,, where ¢ denotes an
‘appropriate magnetic flux coordinate, the mean ion_ velocity v; may be expanded around the

rational surface as

Vio(¥) = Vio(¥s) + (¥ — %:)0Vi0/Os + -+ -



The second term of this expansion may be regarded as of order ¢; i.e., | — ¥,|/|1s]| ~ O(e)
in the neighborhood of the rational surface. On the moving frame with the constant velocity
V. = vio(¥s), the mean velocity vio may be expressed as vio = (¥ — ,)0vi/Os + -+ of
O(e), which significantly simplifies the system of equations by eliminating terms involving V..
From now on, therefore, we always use this moving (inertial) frame to describe the system of
equations. On this moving coordinate system, we may assume that vio/c; ~ psV  Vio/cs ~
O(e), vio(¥ = ¥,) = 0, p,dVio/cs ~ O(e?), e¢o/T. ~ O(e) and time derivatives w;' 8/0t of
fluctuating quantities and mean quantities are of order ¢ and €3, respectively.

We now consider relative sizes of the diffusion terms of Egs. (1)-(5), assuming that the
diffusion coefficients are given in the limit of high collisionality and the strong magnetic field.
With the use of the natural units of the mode introduced above, the scales of the diffusion

coeflicients of Egs. (7) and (8) are then given by

2 (WeeTe 2
Mo (weeTe) (22)
Ui 2) | 23
mMiNiPsCs - Te WeiTi ( )

(?)

Vii T; -1 2
A (25 (wam 24
MniPsCs Te (wc T) ( )

(woirs) ™ e

; (28)

)
)
) weir (26)
)
)

nT;
NiPsCs

Wei TNy,

_ (2 1) 2 2
where vy = nTi7i, vy ~ 41/J(_1~ ~ nTijwkm, ki ~ niim/mi, 1 =~ niTi/miwdm; and

KV = k1;V 4k V). From Eqgs. (20) and (21), the ratio of the electron collision frequency
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7.1 to the electron cyclotron frequency we, = eB/mec satisfies

(weeTe) ™t ~ O(e)  for the collisional drift mode (29)

and

(weeTe) ™t <€ O(e)  for the collisionless drift mode . (30)

Here we have used & ~ L;* ;andrky L, ~ Oe).
For the collisional drift mode, therefore, the diffusion coeflicients have the following scal-

ings under the relevant normalization specified above;

Collisional drift mode ‘

n~e,

1 (me)l/z(J})s/?
V”" ﬂ”’v A m; . Te )

) N 1/2 1/2
A i (27 ()

FLR n;T; T;
"~y

Vi ~ =,
Wei Me Te .

Here we have used Eq. (29) and the relation (w; 7;)/(wee Te) ~ (me/m)Y3(T;/T:)%/*Z 2.
When the collisionality of the plasma is low, some expressions of the diffusion coefﬁcients
used for a collisional plasma need to be modified. In particular, the parallel diffusion coef-
ficients v); and k|, should be chosen to model collisionless ion Landau effects.1™1° For the
collisionless drift ﬁode, therefore, we assume that the resistivity and all the perpendicu-
lar diffusion coefficients are given by the classical collision theory as in‘ Egs. (24) and (27),
whereas v|; and &; are given as quantities of order 1. From Eq. (30), we have ’the—following

conditions for the collisionless drift mode:
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Collisionless drift mode

n<Ke,
mi\2 /T, 1/2
Vg.li)’ V(fi),m_i L eZ? (me) (f) )
FLR n;1; T;
V‘i ~ N —
Wei My Te

Under the scaling assumptions of magnitude of fluctuations described above, Egs. (16)-

(19) may be further simplified and the following expressions of the stress tensor are obtained:
—(V -y =y V A+ Vv,

— IRV X — IR (B x V(V - v) = §(V x v)) + O(&°) , (31)

—(V - ) = 20\ + v V3 vy + R X + OFP) (32)

where

~

X=b-(VLxvy),
1
/\=8||v”—§(v-v),

and the subscripts ¢ are omitted. As we will show shortly afterwards, the divergence of v;
is small or V - v; ~ O(e?) and, therefore, A ~ O(e?). In estimating the order of magnitude
of the terms in Egs. (31) and (32), we have used the collisional drift mode scalings of the
diffusion coefficients without taking into account the magnitude of the factor (m./m;)Y/2.
Therefore, the first term of Eq. (31) vy VLA ~ O(g), the second term V_(,_li) Vivy ~ O(e?),
the third term vf"BV X ~ O(¢) and the fourth term is of order 2. We note here that
X=b (VL xvy)~ O®). For Eq. (32) all the terms are of &2.

We now derive equations for fluctuating quantities, assuming that the mean quantities

are given. We first note that taking the lowest order of the continuity equation (3) yields
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V - v; = O(e?). Therefore, we need to determine the perpendicular ion flow velocity vi; up
to O(e?) as well as v; up to O(e) in order to estimate V - v; to the lowest order. Writing

vii = v + v 4+ O(e?) with v ~ O(e) and v() ~ O(e?), we require that v(© satisfy
— Vi +eni(~V. @ +v0 x B) + VA0 g VLB (Vv =0, (33)

where V§'F = po/2w,; and AO) = J; — (1/3)V - (v(o) + v(l)). Equation (33) is the lowest
order contribution from the perpendicular components of Eq. (1). It follows from Eq. (33)

that we may write

vf) =VE+Vit+ VF, (.34)
where
bx V.0
VE =C —BJ:-— ) (35)
_ bxvup

Vo = ¢ eniB (36)

and vr satisfies
en; (V—CF X B) = v”iV_L/\(o) + 5BV, b - (V x VS?)) : (37)

| In the case of the collisionless drift mode where y; ~ O(1), the term »; V1A should be
dropped from Egs. (33) and (37). It should be noted that VS?) contains non-fluctuating
mean flows vgo and vao. In Ap.pendix A, it is shown that the following identity (Eq. (A-T))
holds: |

LB x Vg - Vo + (V- TP, = 5y (b - ¥ x vi) + O(%) . (38)

Wei

The parallel component of Eq. (1) then becomes to the lowest order

ovy; ~
m; i (a—y + (VE + VF) . V’U”,‘) = —3”pi — €Ny 6”@'-—})2-03“(}) -V X V_(I?))
- emo?]j” + 21/”2-6”/\(0) + /LS?B Ay Ui - ‘ 7 (39)
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The electron momentum equation yields

0=-T.V,n; —en; <_V_L¢+v:_e XB> ,

0=-T, 6”1’?,; + en; 8||<I> + enmj” .

From Egs. (3), (5), and (9), we have

% +vE - Vn;+nioV v+ V- (nivg +nivr) + no(V -vﬁ_l)) +nio G =0,
op;
T (Ve +vVF) - Vpi+7pi0 V- (VE + VF)
+ 490 V - v 4 ypio G o + 4V - beViu(i@ =V (kVT)
and
V.j=0.

In deriving Eq. (43), the following identity is used:

bx V(pT;
7PiV‘Vd+(’)’—1)V-qFLR=7V...x (p )’

m;e;

where

qFLR= TP (BxVTi).
v—1 mw

From Eq. (40), the perpendicular components of the electron flow velocity is given by

Vie=VE —Vge ,

where
b x T, Vn;
en;B

Vde = C
Since j = en;(v; — V.), Eq. (44) may be written as

V(0 (Va+Vae)) + V- (nivE) + 100V v 4 &7 5y = 0

14
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@

to the lowest order. This equation gives a relationship between v J_) and j).
The higher order correction vg_l) to the velocity field may be calculated from Eq. (1).

Writing down the terms of Eq. (1) up to O(e?) with the use of v{” and Eq. (32"), we obtain

mn ( S v) P4 i+ (v, = Z(vr+vP) xB, (46)
where J( ) = en (va+ vge) = cb x V. (p; +n:T.) /B. Applying V - — X to Eq. (46)
yields
o~ s 8 (0) 1 col
Vb x - 8t+v"' V| (ve +vr) + — Vi (+—V I
=V - (nivp) +noV v, - (47)
where we use the following relation
m;n; <§ +v{. V) vy + (V-IIFHR), = Lhxv (g"Pz +vQ. sz) + Vil (48)
Wes . _
with
(=-— 25V x v(o) .

2wm

Equation (48) is shown to hold up to O(e?) in Appendix A (Eq. (A-6)). Using Eq. (45) as

. T (Omn; e
== | s e =D
=< (nio 7 O )

obtained from Eq. (41), we rewrite Eq. (47) as

well as the relation

Vb (2 (2 1y ) (vptve) + O v, —— v T
.wci at B miwci miwci
A 8 +(vg+vr) Vp;
wc, Lo ETYE pi
— V- (n(vatva) +— (028 - L= a2, (49
= ni\vy de en Il pr T n; . | )
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Similarly, Eqgs. (39), (42), and (43) may be written as

% ~
m; 140 ( ay + (vg + VF) - VU”,‘) = —-8”]9,- -7, a”n,' — Pio 6||(b -V X VS?))

+ 21/”,‘0”/\(0) + V.(I_Qi) Ay ?7”1- (50)
on; 1
5 T Ve Vnit nio(V - vE) = V - (i Vae) + nio G vji + — (6” po > =0 (51)
0p;
8]; + (ve+vr) - Vi + 000 (V vE+ 0| U||i) — ATV - (ni (Va + Vae)) = YTivE - Vn;
B x V ,'T,' ~

Equations (49)—(52) gives the evolution equations for the fluctuating quantities 3, i, B,
and ?;.
The electric field potential ® is uniquely determined in the following way. Dividing

Eq. (41) by n; and integrating the resulting equation, we obtain

ea) e S~
n; = np(a, B)exp (——T + iR 77/ I d3’> ,
e e S0

where o and 3 denote general magnetic coordinates and s’ denotes a distance along the
field line B = Va x V. The integration constant is chosen in such a way that n(a, 3)

represents the mean number density. In the case where ed /T., en / J14/Te K 1, we obtain

40 Te

at some plane s’ = sq (e.g., o = —oo in the case of infinite domain).
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C. Long-wavelength approximation

In this section we introduce a subsidiary ordering, assuming that wavelengths of the modes
are much longer than p,, that is, kL p, < 1. More precisely, using a small parameter 6
.sa,tisfyin.g £ € § < 1, we assume that p; V1 = O(6), p, V|| = O(6%) and w3;'9/0t =
O (6%) when these operators are applied to fluctuating quantities and p;, V, = O(6¢) and
ps V) = O(6%?) when these operators are applied to mean quantities. We also assume that
n ~ 0 (8%), VY ~ % ~ O(e) and v ~ O (e/6%). Under these assumptions, it follows from
Eqs. (35)-(37) that vy ~ v4 ~ O(8¢), ,\tO) ~ O (6%?), and vg ~ O(6%) whereas v ~ O(e).
Using the lowest order expression of V_(f) = Vg + V4, we obtain VS_I) ~ O(6%€?) from Eq. (46).

Since V- v{") ~ W . vp ~ O(6%32), it follows that
V:-v;=V- (VE + Vd) + 8” V| O (52€2>

to the lowest order. Therefore the terms V- v(l) and V-vg in Eqgs. (42) and (43) are negiected

under the subsidiary orderings in this section. Taking the lowest order contributions from

Egs. (49), (50), (42), and (43), we obtain

_(aff — ) = enV (s (va + Vae)) (54)
o)
m; N4o ( all +vg- an,-) = —a”pi -7 3||ni + 21/”,'3”)\(0) + 1/5_22 A I)ji (55)
on;
Bt +vg -Vn;+n,V:-vg+ V- ( ) + N BH v = 0 (56)
apz . B X V( T) ) ~
e +vEg - Vp; +vpio (V Vg + 6” v||1) +~V - ——e—B— =V (F.', VT,) , (57)
Where
4@ — 2a 1 ,
=300k =3V (ve+va) - (58)

D. Cold ion approximation

In this section we consider the case where the ion temperature is significantly smaller than

the electron temperature; i.e., ¢ € § = T;/T, < 1. In this case, the ion Larmor radius p; =
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(T;/m;)*?* wy becomes much smaller than py, and therefore we assume that perpendicular
wavenumber k, satisfies k) p; < ki ps ~ O(1). We also assume that the ion temperature
gradient can be much greater than the typical gradient of a mean quantity or a/L, =
O(67Y) (L' = dénpio/dr), so that the perturbed ion pressure p could scale as P/pio =
O(e/6) < 1. In this scaling, we have V1 pio ~ V1 5 ~ V. T; ~ O(e), pio ~ vf'R ~ O(6),
and ¢ ~ O(8). Although the diffusion coefficients y;, z/(h), I/S_z), %, and &) have T;/T,
dependence, we ignore this dependence and assume that n ~ O(e), vy ~ & ~ O(e™)
and z/ilz-) ~ 1/_(,_2 ~ ky ~ O(g) as in Sec. II-B so that the terms involving the diffusion
coefficients are still kept in the lowest order equations. Under these assumptions, it follows
from Eqgs. (34)—~(37) that vr becomes of order ¢ whereas vg and vq are of order e. The
polarization drift velocity v, = VF+VS_1) is then obtain from Eqs. (46) and (48) to the lowest

order as

we \ O

~ 1 (0
vpsz < (— (VE+Vd)V>VE+c;,JS?)

be(ﬁ

: Vp; | + ——— VI .
nymiw3 atp Ve p) + ENMWe; ¢ )

Taking the lowest order components of Egs. (49)-(52) we obtain

V'Bx<nz <§t (VE+Vd)'V)vE+cnm(o)+ ! V.H§°1>

Wei B mie;

b T) .
+ 2AL(7v.w_v.(,¢,VTi)>
- v. L (5 - L o2
= (ni (va + vae)) + —; ( % = m “ni) ) (59)
ovy;

o (% +ve- V”u") = —0yp: — T Oyni + 20 A + v AL By (60)
on; Te o~

Ve Vi 4 (V- vE) — V- (1 va) + o Oy vy +_ (a” ) —0, (61)
bt enio
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0

~i B iTz’ T :
op +vE-Vpi+’YV'—‘>‘<‘Y£"—)=V‘<"’VTi) : (62)
ot MWes
where

2 1
2O = g@uv”i — §V (Ve +va) -

Equation (62) has been used in deriving Eq. (59) from Eq. (49).

III. Slab Models with Magnetic Shear

In this section we consider a simple geometry of magnetic field and further simplify the basic
equation of the ion temperature gradient driven mode obtained in the previous section. In
the usual Cartesian coordinate system (z,y, z) with the unit vectors X, ¥ and Z, we assume

that the magnetic field is given by

B(z) = B, <2+w;z0$’> )

where L, denotes the shear scale length and the equation z = zo gives the magnetic surface
on which the modes are considered to be localized. This sheared slab magnetic field models
a local magnetic field configuration near a mode rational surface in a fusion device, such as
tokamaks and reyersed field pinches. In this section we are particularly concerned with a
weak shear case (a & Lg, where a denotes a typical macroscopic length such as the minor
radius of a tokamak), which is appropriate for a tokamak with small toroidal curvature.
Under this weak-shear assumption, we have B = |B(z)| ~ B, and all the terms which have
the form V- (B x V f) such as V-vg and V -nv, drop from the mode equations since these
terms can be shoWn to be too small. Here we also assume that all the mean quantities are
functions of only  and evaluated -at the mode rational surface z = zo. In particular, we use

the following space scales




and the nondimensional parameters

L _ I _ 1%
772 :Z; I{—Te (1+Th)’ I"—' Te )
L, V! L d
S_L = 9 9 S” vl[O 9
Cs cs dz

where the perpendicular shear flow Vj is assumed to be given by the E x B flow caused by
the mean electric potential
1
By = — (z — 20)*BVj
0= 5 (z —20)"BVq
with VJ = dV,/dz evaluated at = zo. The appropriate nendimensional space-time variables

are

T — o vy 2 y tes

Ps Y= ps Ly, ’ L,

T =

and the nondimensional dependent variables are

¢_e<f>ﬁ oo T n; Ln
Te Ps ’ N0 Ps ’
~'Ln ~iT,z' L

p= iZn p= Pizi Zn
Cs Ps piOTe Ps

With the use of the nondimensional variables defined above, Egs. (54)—-(58) of the long-
wavelength drift waves may be further simplified in the slab geometry. Equation (54), which

becomes 3|2,(¢ —n) =0 in the slab geometry, and the condition given in Eq. (53) yields
d=n. (63)

Using this relation, we derive from Egs. (55)-(58)

2 _ o¢
5= —(1+5.%) 5 3||U (64)
3 0
+ {0} =875 +5 6? = Gyp+n) + 8 Brv+ maA® . (65)

JOp 8¢

8~ 3~ -T 0”’0 + X, A_LP + Xy a||P ) (66)

dp
_a—t":'l' {¢ap} - S_Lm
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where

3 355—8—4-&
=%y " 8z ’
= .0 0 —~2
VJ.—X%-F 5 A=V,
and
of 8g Of Og

In deriving Eq. (66), the term V - (K,Vﬁ-) of Eq. (C-4) is replaced by V - (ngl chﬁi) for

simplicity. The normalized diffusion coefficients are given by

Ky = —-——41/”i X = al

I BmmiocsLn ’ I niOCsLn
o _ Y8 miln
L m.;n,-ocspf ’ niocspg

In the case of the low-ion temperature drift waves, we obtain the following nondimensional
form of Eqgs. (59)-(62):

0 0*

5 « ) A
5713&5 + {$, AL ¢} = (K - S.L-’E) o5 ALd+8, —— 55 07 + {ALd,p}

_I_{a_¢ @}_i_{éé @}_iﬁJ_(p-I-n)—AJ_(X.LAJ.P"'XII‘EJII?p)

0z ' 0% oy’ Oy a||
— oy Ji(6—n) +u A4 +p) (67)
n 0 0 = x
—., -+ {¢, n} -5,z -bg - 8? 8”v gl aﬁ(qﬁ - n) . (68)
| v 9¢ (2) & 510
= L {¢g,v}=-5.% — % + S| 5= % Olp+n)+pl’ ALy +‘/£”8”)\ (69)
0 0 0 ~
p+{¢, }———S_an—g— 8—?+X_LA_LP+X”3|2IP. (70)
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(1)

Here the normalized electric conductivity 0| and perpendicular viscosity p)’ are given by

mMiWeiPs
g|l =m0
I nioﬂean
and
(1)
W=t
mznzocsps

We note that Eqgs. (63) and (64) may be reduced from Eqs. (67) and (68), respectively,
under the long-wavelength approximation, whereas Eq. (70) of the perturbed pressure p is
the I' — 0 limit of Eq. (66). The equations for the parallel velocity v (Egs. (65) and (69))
are the same in both of the approximations. Exploiting these similarities of both the sets of
equations, we combine these equations and propose the following set of equations, which holds
both in the long-wavelength approximation and the low-ion-temperature approximation in
the sheared slab magnetic field. From now on, we will drop the tildes from the independent

variables for simplicity in this section.

b ) d%p

5A¢¢+{¢,AL¢}=(I(—SJ_:L')%AJ_¢+S_Lazay
5] 0 0 0

rass)+ {5 {22 Zhaay+ulats. )
on on 0¢ .
g+{¢an}=—Slma—a—y—auv'f‘anﬂa (72)
0 0 0
a—:-l—{(b,v}:—Sla:—ag-—-S“—a-g—5||(p+n)+,u_(f)A_Lv+/.L||a|2|v, (73)
0 0 0
p+{¢, }“‘—S_L:B 85 K a¢ I‘anv-l-X_LA_Lp-I-X”aﬁp (74)

where the nondimensionalized parallel electric current is given by
jlog=9|(n—¢) . (75)

In Eq. (71), the diffusion terms o} AL(p+n), AL (X_LAJ_p + x”a”p) and ,uS_ A% p, which
are kept in Eq. (67), have been dropped for the reasons of simplicity. Although dropping these
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diffusion terms from Eq. (71) is not consistent from the point of view of the collisional-drift-
wave ordering discussed in Sec. II-B, it does not change the relevant dynamics of strongly
destabilized modes, which tend to have smaller wavenumbers k. and kj. We also note
that, since plasmas in most fusion devices are either collisionless or marginally collisional,
the diffusion coeflicients #(j), ,uf) , X1, and o ! are small whereas the parallel diffusion
coefficients g and X are of order unity, which model the ion Landau effects. The diffusion
terms ,uS_l)Aigﬁ in Eq. (71), ﬂ_(f)AJ_'v in Eq. (73) and X, A p in Eq. (74) are, however, retained
as the energy sinks of high k; modes in a turbulence state of the mode. In Eq. (73), PNORT
replaced by Jjv and the term /.tnaﬁv, together with the term x”aﬁp in Eq. (74), is retained as
a simple model of the ion Landau effects associated with the parallel motion of the plasma.
One would need to use the kinetic equations in order to study the dynamics which could be
strongly affected by the diffusion, such as the dynamics of the marginally stable mode:

The domain on which Egs. (71)—(74) are solved may be given by the cubic box ~L, <
< L;,0<y<Ly,,and 0 <2 <L, Here L, and L, are constants of order unit-j); (note
that z, y, and z are normalized here: z/p, — z, y/p, — y, and z/L, — z) whereas L,
is taken to be large enough, so that when there is magnetic shear (L, # o), single helicity
modes localized at z = 0 decay sufficiently at |z| — L;. In the case of zero magnetic shear
2L, represents the width of the constant background fields. The boundary conditions of
Egs. (71)—(74) for this domain are that all the dependent variables are assumed to vanish at
z =L, and to ‘be periodic in the y and z-directions.

The energy balance equation associated with the set of equations (71)-(74) is given by

d o _ o [0008\ [ 88\ [ 88\ K[ 9\
EEt_S'L<5:c0y> 5H<v8y> <nay> I‘<p8y> Wp, | (76)

where the energy F; of the fluctuations is given by

5= 3 () + (17268 + () + £67) o
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and the energy sink by “
W = 1 (18087 + u® (1920) + 42 { o]

+%<]V_Lp|> ?'<|8”pl >+<fn<|3|| —”)'> '

Here ( ) denotes the space average of the contained quantity over the domain or

=g Lot e

If L, is taken to be oo, the normalization factor 1/2L, needs to be chosen appropriately.!”

The four transport fluxes in Eq. (76)

Op 04
Oz Oz < (VayVps)

0 o~
<’05§~> X <’U“'UE,L-> y

< 8_¢> x (RiVps) ,
<pg—§> o (Fibms) |

where 95, = —cB~108/8y and 7y, = c(en;B)”" 8p;/dz, are proportional to the transverse

and

transports of the y component of the perturbed diamagnetic flow vy, the perturbed parallel
flow v);, the perturbed density 7; and the perturbed ion pressure p;, respectively.

In the collisionless limit or o)) — oo, the set of Eqs. (71)~(75) may be further simplified.
From Egs. (71), (72), and (75), the adiabatic electron relation ¢ = n (or 7i;/ni; = e®/T,) is
obtained in the limit o) — oco. Eliminating the term 0)j from Egs. (71) and (72) and setting
¢ = n yields the evolution equation for ¢. The set of equations thus obtained provides the

fluid model of the ion temperature gradient driven mode or the ; mode in sheared magnetic
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fields with finite sheared flows:

8 8 d¢ Ip
8t(l —A)p—{d 014} =—-(1+KA}) i Siz(l—Ay) i S1 520y
310 o¢ Op 3¢ 2
(9 0 0
. 2 T} = —Swgs - Sllgé —Bi(p+ ¢) + p A v + pydfv (79)
dp : Op 0¢
—é;-f-{qﬁ,p}— .S'Lma—y —1{5—— —I‘8|v+XJ_Alp+X”8[2|p . (80)

The same domain and the boundary conditions as those fér Egs. (71)-(75) may also be used
for Egs. (78)-(80).

The energy balance equation associated with the set of equations (78)—(80) becomes

d_ Op 0 ¢ 0
brme (8)-5()-$ )

() +(19208) + () + 5 ()

where

Er=

!
DN =

and

W5 = u (1aL8P) + 1P (W L0*) + 4 <|3nv| >

i 2%‘ (IVpl') +T < lanpw '

We note that in the limit o] — oo there is no particle flux ({(n0¢/dy) = 0) since we have

assumed the adiabatic electron response (n = ¢).

IV. Effects of Electron Temperature Fluctuations

Since the introduction of of the Hasegawa-Wakatani model® it is common to take the electron

temperature as constant. With the neglect of electron temperature fluctuations it is only the
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parallel electrical resistivity that drives the drift wave branch unstable. As shown by Hinton
and Horton* and Horton and Varma,® however, in the presence of electron temperature
fluctuations the processes of electron parallel diffusivities v and &, and the thermo-electron
effects Cthermonte J)| Te in the electron momentum equation and QnermoTe Jjf J)| /e in the electron
energy balance equation (nermo = 0.71) also contribute to the growth rate of the collisional
drift wave. In particular, it is known that positive ne(= Ln/Lre) ‘Can be a strong stabilizing
effect on the collisional drift wave.'® In this section, we include these effects in the formulation
presented in the previous section.
The inclusion of the thermo-eiectric effect and the electron parallel viscosity generalizes
Eq. (2) to
0= =0 ne T + ene 9@ + ene nj) — Pne T + %V”eaﬁ Vlje (81)
where the electron parallel viscosity v = Qyisce Te/Ve With ayise = 0.4. The thermal energy

balance equation is
3 0 B . 2
57 |gp + (vE+ Vi) V| Te 4 ne Ty = Gi(my O Te) + = T Gy + 05y (82)

with the electron parallel thermal diffusivity

T Te

Klle = Cheat
m

y Otheat = 1.6 3
eVe

where the ratio of specific heats is assumed to be v = 5/3. We note that n, = n; from charge
neutrality.

As in Sec. III, we write the electron temperature as T, = T.o+ T, and the electron parallel
flow velocity as v)je = v)je0 + Ujje. For simplicity, the mean flow velocities are taken to be zero

(Veo = Vio = 0) in this section. With the use of dimensionless dependent variables

.
TO ps Cs Ps
— L ]
enoCs ps !

and dimensionless parameters
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_ Klle . o—’heat:TeO
Xjle = = ’
Ln Cs Mo Me Ve Ln Cs

_ e _ 4
Hle 3ngTeo L, 3m;nocs Ly’

M. = d(In Lep)/ (1M To)
Equation (81) can be written as

]/0'” = 5” (n - ¢ + (1 + athermo) 7;) - ,u’||e 5‘2| Ve » (83)

where j also satisfies

j=v—v,. (84)

Similarly, the nondimensional form of Eq. (82) becomes

3 (0 96\ = o -1,
- | —= e e A< e = X e e ermo - . 85
5 (at72+{¢,7'}+77 6y>+3||v le Of T + cn 5||.7‘+ o (85)
This electron thermal balance equation brings in the parameter 5, from the Ug, d7./dz
convection. Replacing Eq. (75) by (83), we obtain the set of equations (71)-(74), (83)-(85)

(with S = S) = 0 since the mean flow velocity is assumed to be zero in this section), which

governs collisional drift waves under the influence of electron temperature fluctuations.

V. Linear Dispersion Relations

In this section, we discuss linear dispersion relations of the systems derived in Secs. III and
IV. Here the local approximation is employed, in which the parallel derivative 5“ is replaced
by a constant i%w It is also assumed that the mean shear flows are zero (51 = S| = 0) for
simplicity. Under these assumptions, the space and time dependence of the normal mode |
may be given by exp Z(Ez z+ Z:y v+ k,7— &t) with Ei = %2 + 755 and the constant %” models
the operator 5” with the relations ’}5" = s/, %y + %z, where A, denotes a typical mode width

in the z-direction. In the case of zero magnetic shear (s = 0), the local approximation gives
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the exact dispersion relation of the linearized systems with the relations %” = k,. With the
use of Q = &/k,, the dispersion relation of the system of Egs. (71)-(75) is given by

ﬂ)z 1+ £

2 2 _ .2 . IR Y
(14 k)07 — (1 -k K)Q (k -
Q2 \k

. (k2 K+Q
=Z€,7Q2(Q+I{)—Z(%> én—:—gu'-—z, (86)
1"@(1«)
where
_ kR
a”kﬁ’

k= %y and all the tildes were dropped for simplicity. We also note that all the diffusion

coefficients in Eqs. (71)-(75) are ignored for simplicity.
A. Collisionless ion temperature gradient driven modes

The collisionless limit (e, = 0) of Eq. (86) gives the well-known dispersion relation of the
slab-type ion temperature gradient driven mode (Egs. (67)-(70) with S, = S = 0). In the
presence of strong ion pressure gradient (K > 1), the fastest growing mode is given!” by the

relation %% = 1/K(< 1) with the eigenfrequency

1/3

g ZLti3 ((ﬂ)z_r{) : (87)

2 F,

There are also two stable branches with k3 = 1/K given by

~ .2 1/3 ) ~ 2 1/3
0= <ﬂ) K and -l-iv3 (ﬂ) K .
k'!l 2 ky

Thus the unstable branch travels in the ion diamagnetic direction and the non-damping
stable branch travels in the electron diamagnetic direction. In the dimensionless form, the

unstable eigenfrequency may be written in terms of w = (c,/L, )0k, as

~14+4/3 * 1/3
w= — (—wm- k|2| cf)
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when

kupe = (Tl +n:)/T.) ™

where w¥ = —(cTi/eB)(ky/Ln)(1 + 1) = ~w} K, w} = (cT./eB)ky, ky, = ky/ps, &y = ky/Ln
and k, = k. /ps. This instability results from the coupling of the ion acoustic wave with the

thermal mode arising from w;':-.” More detailed physical interpretation of this mode is given

in Sec. VL

B. Collisional modification of ion temperature gradient driven
modes

The presence of small resistivity ¢, in Eq. (86) affects the growth rate of the ion temperature
gradient driven mode given by Eq. (87). Taking the ordering assumption that B =1/K <1,
(Bi/k,)? < 1, K/Q > 1 and ¢, K < 1, we obtain @ = ((1+iv/3)/2) K¥3(ky/k,)*>(1 +

15y
3

i€,/ /3), or in terms of the dimensional form,

(g2 2\1/3 V3 T;
‘7G—(_“’pz‘kllcs) (7—6773—716(1‘*'7%) )

where

*
We Ve

— k2 2
€y kﬁvtzh,e 1 Ps

where vg denotes the growth rate ¢ = Imw and vy = \/Te/m. . It is shown that the

finite resistivity reduces the growth of the ion temperature gradient driven mode.

C. Collisional drift wave

Hasegawa and Wakatani have shown that finite resistivity destabilizes the drift wave.®'? This
is a different branch of instability from the instability discussed in the previous subsection
and occurs even in the absence of ion temperature gradients. Under the ordering assumption

that (%”/%y)2 ~ O(e,) and Q = Qo+ Oy with |Q,/Qo]| ~ O(e,), we obtain to the lowest order

1-k K
Ny = —+— ~ O(1)) .
=TI (~O(1))
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Here, unlike subsections V.A and V.B, it is assumed that &, ~ K ~ O(1). From Eq. (86),

it is easy to obtain the next order expression

1+K) (R Q1+ K -KK)
(1 -k K)? \E, " (1+k%)3 ‘

Q]_=

The growth rate is then given in the dimensional form by

w¥?y k3 p? T; T;
— —e "¢ s i} ; — 2 (1 +n)k? 2) . 88
e k|21 v?h,e (1 ki Pg)s (1 + Te (l T 7 )> (1 13 ( 7 ) Lhs ( )

If the wavelength is long (k. p, < 1), therefore, finite ion pressure gradients (1 4 7; > 0) are

shown to further destabilize the unstable collisional drift wave in Eq. (88).

D. Effects of electron temperature fluctuations

Finite electron temperature fluctuations, together with electron diffusivity and thermo-
electron effects, alter the growth rate of the collisional drift wave.*5?° Based on Egs. (83)—(85)
that describe these effects, we examine the growth rate of the collisional drift wave in the
subsection. The dispersion relation obtained from the system of Eqgs. (71)~(74), (83)-(85) is
given by

2
(1+£)Q% - (1 - k2 K)Q —ie, 0*(Q + K) (1 T oy e B + o (1 + othermo) >)

X“e( -3 o Q2
1—22¢ YJJ—
27 Xje kL

o Q% (1 + Chermo) (ﬂ)z K+ Q(1 —ie,(K + Q)

3
X\io K2 2. a2 (277 \% MY
FE(1-ita f) @ (1% (2))

(R E\? 14+ K/Q —ie,(K + Q)
= (1 — i€, (k—l[) Qo /L”e> (%) T (?ill)z ) (89)
7\

where k = %y and all the tildes were dropped for simplicity. It is easy to see that Eq. (86)

is obtained from Eq. (86) in the limit of X — oo and uje — 0. Here the large X), limit

prevents electron temperature fluctuations from being excited by allowing fast heat transport
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along the magnetic field line while the small . limit corresponds to the assumption made
in deriving Eq. (86) that the electron parallel diffusion uj, is small.

The eigenfrequency Q of the collisional drift wave may be obtained from Eq. (89) under
the following ordering assumptions: €, = ky k. /o %ﬁ <L 1, o ~ Xje, 0 Xje %ﬁ ~ O(1),
B2 ~ (ky/ky)? ~ O(elf?). Writing Q = Qo + Oy with [Q1/Q| < 1, we obtain the lowest-
order frequency o of the long-wavelength collisional drift wave as {3y = 1. Calculating the

higher-order contribution £, we obtain the normalized growth rate

~ |2
UH(l + athermo) (3 k||
ImQ=¢|(1+K)fx, — = .+ (=] (1+K)
| ! " Xije k1 2 B
4
1| @1l Alle ( }
— + K)|{,
where e

> o
fk" =1+ klzl a|| Kije + Sgllll— (l + athe,mo)2
In terms of the dimensional form, the growth rate is given by

W*g Ve T; ' 1 + Othermo ) |3 ki C? T; '
Yo = 2 {ki ,03 (1 + _(1 +77%)> fk" - ("—L) [5773 + cll*2 (1 + T(l +Th)>]

2.,,2
{ vth@ Te ‘Cheat

4 2 k2 R T.
~3 Qe tlﬂ I 72” (1+-f(1+m)> : (90)

where .
g ta TH (1 )
" 3 VisC 1/62

Cheat

€

Here we have used the classical expressions of the parallel electron diffusivities
Klle = QheatMe Te/Me Ve (Qheat = 1.6) and yjje = viscme Te/Ve (Ctvise = 0.4) and the thermo- .
electron effect @ipermo = 0.71, as given in Sec. IV. We note that the first term in { } of
the expression of y¢ in Eq. (90) corresponds to the growth rate of the collisional drift wave
(Eq. (88) with ki p, < 1) enhanced by fi, over the value obtaiﬁed by only including elec-

trical conductivity (fg, — 1). It is shown in Eq. (90) that a substantial, positive 7. can
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be a strong stabilizing effect on the collisional drift wave. The role of the parallel electron
viscosity ouisc is more complicated since it contributes both to increasing the enhancement

factor fi and to the direct damping in the last term of the yg formula.

VI. Discussion

In this paper, we have derived from the electrostatic two-fluid equations the sets of equations
governing the nonlinear dynamics of the drift waves in the presence of ion temperature
gradients. The derivation is based on the consistent orderings, in which the modes are
assumed to be localized on a particular magnetic field line and to fluctuate much faster than
the evolution of the mean fields but much more slowly than ion-gyromotion. The effects
of mean shear flows and electron temperature fluctuations are also discussed. The final
equations for the collisional drift wave [Eqgs. (71)—(75)] and for the collisionless drift wave
[Eqs. (78)~(80)] provide the basis for nonlinear analysis of the collisional drift wave instability
and the collisionless ion temperature gradient driven instability, respectively.

It is worthwhile to exercise our intuition to draw physical pictures of the instabilities
discussed in the previous sections. For this purpose, we consider the simplest possible case,
namely, the case of no mean sheared flows (§, = ) = 0), no magnetic shear (s = 0) and no
diffusion. In order to understand the physical mechanism of the collisionless ion temperature
gradient driven mode, however, we need a finite ion pressure gradient (p;(z) # const. ), which
is the free energy source of the mode. On the other hand, for the collisional drift instability,
we consider the effects of a finite density gradient (n(z) # const. ), which is the driving force
of the drift wave, and finite resistivity, which give rise to the breakdown of the adiabatic
electron response (n # @#). A finite ion pressure gradient plays a secondary role in the
collisional drift instability, modifying its growth rate as shown in Eq. (88).

Starting with the collisionless ion temperature gradient driven mode, we consider the

fastest growing mode whose perpendicular wavenumber k, satisfies k2 ~ K~'. Suppose
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we have a small positive perturbation of the electrostatic potential ¢ in the plasma. This
potential perturbation induces a E x B flow circulating around the perturbation, as shown
in Fig. la. The high pressure ions and low pressure ions are mixed by the E x B flow
and this mixture creates a high pressure spot and a low pressure spot on each side of the

potential perturbations as shown in Fig. 1b. This convection of the ion pressure is described

by Eq. (80) or

_62=_K§f

ot oy’
where the effect of I is ignored. The parallel dynamics then plays an important role: into
the low pressure spot, plasmas flow from the outside along the magnetic field lines whereas
'pla,s;mas in the high pressﬁre spot are pushed away along the field lines (Fig. 1c). The
left-hand side and the third term of the right-hand side of Eq. (79) or

Ov =
o7 =~

describes this process. This process, coupled with the effect of nonzero I' (or the parallel
compressibility) of Eq. (80), induces the ion acoustic wave, which is destabilized by the ion
pressure gradient in this case. Finally, through the balance between the first term of the

left-hand side and the parallel compression term of the right-hand side of Eq. (78) or

the parallel motion of the plasmas increases the electrostatic potential at the low pressure '

spot and decreases it at the high pressure spot.

The increased electrostatic potential at the low pressure spot repeats the same sequence
of processes and generates more potential perturbations in the negative y-direction or the ion
diamagnetic direction. THis mechanism thus induces a growing mode travelling in the ion
diamagnetic direction (Eq. (87)), which is the ion temperature gradient driven instability. It

should be noted that this instability exists even in the absence of the density gradient and
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magnetic shear. On the other hand, the high pressure spot in Fig. 1b, which induces the
decrease of the potential, generates a stable branch of the mode travelling in the electron
diamagnetic direction.

The collisional drift instability is a higher order correction to the stable drift wave caused
by finite resistivity. Ignoring the ion parallel flow and the small contribution from the parallel
current 0| j, we have the linear equation of density fluctuation from Eq. (72)

on _ _0¢
o7 oy

This is a similar situation described in Figs. 1a and b, namely, the E x B flow convects the
density, instead of the ion pressure. In the case of the adiabatic electrons, the equation above
gives the stable drift wave Q = 1 (or w = w). However, in the presence of finite resistivity,
the electron density fluctuation is related to the potential fluctuation through Eq. (75) or
n=¢+j/ (i%u oy)- The parallel current j is then related to the polarization current through
the relation V -j =0 (Eq. (9)) or

2 Bip=85, (91)
which is a simplified form of Eq. (71). Here we note that the right-hand side of Eq. (91) is
proportional to the divergence of the polarization current. Therefore the difference between
7 and ® has the 90° phase shift from & or n = ¢ + w %_2,_45/0'” Eﬁ, which destabilizes the
drift wave. When a finite ion pressure gradient is present (K s 0), Eq. (91) is replaced by
(0/0t — K8/0y)AL¢ = 5”]', as in Eq. (71). This modification by finite K = ﬂ(l +ni)/Te
means inclusion of the diamagnetic flow convecting the polarization current. As shown in
Eq. (88), a finite ion pressure gradient increases the growth rate of the long-wavelength
(k1ps < 1) collisional drift wave instability.

Although the linear analysis based on the local approximation presented in Sec. V reveals

generic properties of the instabilities, the eigenvalue analysis is necessary for study of the

cross-field mode structure of the instabilities in the presence of the sheared magnetic and
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flow fields. In fact, it has been shown'”!® that the strong magnetic shear has a stabilizing
effect on the collisionless ion temperature gradient drift instability, which cannot be shown
from the local analysis. Our more recent study also shows that finite E x B mean shear
flows (51 # 0) reduce the growfh rate and consequently reduce turbulent transport in the
plasma. These stabilizing effects by magnetic and flow shear are of significant importance in
practical applications; for example, it is widely believed that improved energy confinement
observed in H-mode discharges® are related to reduction of instabilities by the E x B shear
flows near the plasma edge. Analysis of such effects by using the linear eigenmode analysis
and nonlinear numerical simulations are beyond the goal of the present paper and will be

presented -elsewhere.

35



Appendix A

In this Appendix we derive Egs. (38) and (48). It is easy to show that the following identity

holds exactly:

o bx Vp 1 - o
mm(a+v-V) —F ——wcm(bep)(a-}-v-V)n
L8k v (2 4vv)pt L (v VB x Vp) = = (B x Vou)oup, (A1)
Weq ot Wei Wei ’

where v = (v1,vq,v3), the repeated indices are summed from 1 to 3 as before. We also
assumed that the unit vector b = B/|B| is a function of space x only but B = |B| = const
in time and space, m;, e and w,; = eB/m; are also constants, and n,p and v are functions of
times ¢t and space x. The last term of the right-hand side of Eq. (A-1) may be simplified with
the use of the following identity, which can be shown to hold exactly after rather tedious

calculation
~2(b X V0,)0,p + Vp - W = (p) (b x Vv = va(b x V1)be + b x §v.)
+2b ((V1p x B) - Vo = va (V1p x b) - V) bs + (Vip x B)Gv)
b (VxV)Vp+(VxV)ip+(Vipx b))V, v. (A-2)
Taking the parallel component of Eq. (A-2) yields
(Vp- W) =2 ((V.p xB) - Vo —va(Vip x B) - Vba + (Vip x B)Gv) . (A-3)

Here the tensor W¥LR is given by Eq. (13), b= (b1, b2,03), O = b-V and v = b-v. It
should be noted that in deriving Egs. (A-1) and (A-2), no assumptions are made on the
vector v and the scalars p and n, except that v,p and n are functions of ¢ and x.

We now assume that n and v denote the ion density and the ion flow, respectively, and

satisfy the continuity equation dn/dt+ V-(nv) = 0 (Eq. (3)) and p denotes the ion pressure.
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Under the ordering assumptions made in Sec. I-2, or

v/es = 0(e) , Vi -vips/es) = O,
po/nio Te = O(6) , V1o (ps/nioTe) = O(e)
Vip(ps/ninTe) = Oe) ,  Viva(ps/cs) = O(e),
/vl = 0O(), wg' 0/0t = O(e)

the mathematical identities of Egs. (A-1) and (A-2) may be further simplified. The perpen-

dicular component of Eq. (A-1) becomes

min<5¥+v-v> vd_w—dbxv<a+v-v>p—c—u—d(beva>8ap (A-4)

up to O(e?). Here v4 = (b x Vp)/neB and the first term on the right-hand side of Eq. (A-1),
which becomes —(b x Vp)(V - v)/ws ~ O(e®) with the use of the continuity equation, is
dropped. From Eq. (A-2) we obtain

1

Wei

(b x Vva) Bap + (VIR ~.WFLR) =—b - (Vxv)VL /R (A-5)

1

up to O(e?), where vf'*} = p/2w,. Combining Eqgs. (A-4) and (A-5), we obtain

mmn -a—+v-V v+ Vv . [IFLR =LB><V —a-+v-V p—-B- V Xv VLI/}:‘LR
. ’ L Wes

ot ot
T W), 00 = LBV (F 4w V) pr Vi 06, (49
where TIT*R = yFLRWFLR ¢ = _FIR} . (V x v) and

-~

(V-WFR), = v, (B-(V xv)) + O(?)

obtained from Eq. (19) have been used. Equation (A-6) is used to obtain Eq. (48).
. The parallel ion momentum equation can also be simplified with the use of Egs. (13) and

(A-3). Under the ¢-ordering assumption made in Sec. I-B, it is easy to show that

(b x V.p) - Vo + (V §) WL 2 (VW) = p (B V x V) + O(E%) . (AT)

Equation (A-7) is equivalent to Eq. (38).
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Figure Captions

Figure Ia A small positive perturbation of the electrostatic potential ® causing a E x B flow.
Figure Ib The E x B flow viewed from the z-direction.

Figure Ic High and low p; spots created by the E x B flow. White arrows indicate plasma

flows along the magnetic field lines.

41



pio(x) A

N——
ExB flow

-
y
———— E

lon electron
X diamag diamag

Fig. 1la



Fig. 1b



2}
high p; spot
¢ /
Pio(Xx) /—»—\\
/ N
low p; spot
O
y

Fig. lec



